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Data Reduction and Approximation

* A fundamental concept of data reduction is to remove redundant and
irrelevant information while preserving the relevant features

» e.g. through frequency analysis by projection onto pre-defined bases, or
extraction of data intrinsic principal components

- Identify spatio-temporal and frequency redundancies

» maintain strongest and most significant signal components

* Data reduction linked to concepts and technigues of data compression,
noise reduction as well as feature extraction and recognition/extraction
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Data Approximation using SVD

* Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D
Input datasets

» see also principal component analysis (PCA)
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Low-rank Approximation

* Exploit ordered singular values: s1 > s2 > ... = SN

* Select first r singular values (rank reduction)

» use only bases (singular vectors) of corresponding subspace
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Matrix SVD Properties

* Matrix SVD

» rank reducibility

» orthonormal row/column matrices
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What is a Tensor?
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* Data sets are often multidimensional arrays (tensors)

» Images, image collections, video, volume data etc.
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Fibers and Slices

* Individual elements of a vector a are given by a;;, from a matrix A by ai»

and from a tensor .oz by ai .43

* The generalization of rows, columns
(and tubes) is a fiber in a particular
mode

* Two dimensional sections of a tensor
are called slices

» frontal, horizontal and lateral for .oz e R3
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Unfolding and Ranks

* Operations with tensors often performed as
matrix operations using unfolded tensor

representations o A LI
» different tensor unfolding strategies possible . I i i
| |
* Forward cyclic unfolding A, of a 3rd order —Ih L L b
tensor .oz (or 3D volume) o/ A nk
. | 7 A
* The n-rank of a tensor is typically defined "7 4 l l
on an unfolding & R . . .
(3) bL-1
» n-rank R, = rank,(.c#) = rank(A:) o A4 i i
I3
. d | |
» multilinear rank-(R1, Ro, ..., Ry) of .oz AN —— -




Rank-one lensor

e N-mode tensor .o e RI1X.-xIN that can

be expressed as the outer product of
N vectors

» Kruskal tensor

» Useful to understand principles of
rank-reduced tensor reconstruction

» liInear combination of rank-one tensors
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Tucker
R basis matrices U I
2
/ \ e Three-mode factor analysis (3MFA/Tucker3)
Tucker, 1964+1966
I R @ U® R5 | ,UC er + ]
e Higher-order SVD (HOSVD)
R [ De Lathauwer et al., 2000a |
3
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core tensor 93
I
R D> e PARAFAC (parallel factors) [ Harshman, 1970 |
e CANDECOMP (CAND) (canonical decomposition)
\\\ U R [ Caroll & Chang, 1970 ]
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Tucker Model

e Higher order tensor .aze RI'x--xIN represented as a product of a core

tensor 98 € RERix..xRv gnd N factor matrices Ume RinxRn

» using n-mode products x,

%:%XlU(l) ><2U(2) X3 XNU(N)_|_£
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CANDECOMP-PARAFAC Model

» Canonical decomposition or parallel factor analysis model (CP)

» Higher order tensor .oz factorized into a sum of rank-one tensors

» normalized column vectors u,™ define factor
matrices Ume RI»R and weighting factors A,
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Linear Combination of Rank-one Tensors

* The CP model is defined as a linear combination of rank-one tensors

* The Tucker model can be interpreted as linear combination of rank-one
tensors

Ri Ry R Ry
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CP a Special Case of Tucker
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(Generalizations

* Any special form of core and
corresponding factor matrices | o7

| — €

» e.g. blocks along diagonal
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Reduced Rank Approximation

* Full reconstruction using a Tucker or CP model may require excessively
many coefficients and wide factor matrices

» large rank values R (CP), or R1, R> ... Rx (Tucker)

* Quality of approximation increases with the rank, and number of column
vectors of the factor matrices

» best possible fit of these bases matrices discussed later
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Rank-R Approximation

* Approximation of a tensor as a linear
combination of ranke-one tensors using a
limited number R of terms

» CP model of limited rank R

of = f?tr-u,(fl)ou,(fz)o...u,(fm

r—=1
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Rank-(R1, Rz, ..., Ry) Approximation

* Decomposition into a tensor with reduced,
lower multilinear rank(Ri, Ra, ..., Rn) L

P

» rank, (&) = R, < rank, () = rank(A,))

* n-mode products of factor matrices and core
tensor in a given reduced rank space

» Tucker model with limited ranks R;

J:%XlU(l) XZU(Z) X3 e XNU(N)
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Best Rank Approximation

* Rank reduced approximation that
minimizes least-squares cost

N

o = arg min (.7 ) o — o

* Alternating least squares (ALS) iterative
algorithm that converges to a minimum
approximation error based on the
Frobenius norm ... Il

» rotation of components in basis matrices
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GGeneralization of the Matrix SVD
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Properties of Higher Order TA

» Matrix SVD (~PCA)

» unigue
» rank-R decomposition

» orthonormal row-space and column-space
vectors

* Higher-order tensor decomposition
» CP model preserves rank-R decomposition

» all-orthogonal Tucker model preserves
orthonormal row-space and column-space
vectors
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Matrix and Tensor Rank Definitions

* Matrix has unigue equal column and row ranks
» result of SVD

» The n-ranks R, = rank,(.<») of a tensor .c~ may all be different

» different unfoldings A« give rise to different n-ranks rank(A)

* Matrix rank concept is not uniquely defined for higher order tensors
» n-rank R,
» multilinear rank-(R1, Rz, ..., Ry)

» tensor rank R = rank(. <)
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Tensor Rank R

e The tensor rank R = rank(.<) 1s the minimal number of rank-one tensors .4
that yield .o In a linear combination

» o7 are rank-one tensors, defined by outer product of N vectors

* Equal to the column and row rank for matrices

* Not necessarily equal to any n-rank R, of a tensor
» and It holds that R = R,

V\. 24 o " &
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Rank-R Decomposition

 Minimal number R of rank-one tensors .« that yield .oz In a linear
combination, .ov=A1 . + A2 .ep + ... + Ag AR

* CP model allows a direkt rank-R decomposition
with respect to the tensor rank R
coefficients factor matrices

R
of — Z;Lr.u,€1>0u,€2)o...ou,§N>
r=1
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Unigueness

* Unique If it is the only possible decomposition

» except for indeterminacies of scaling and permutations
* Rank-R decompositions of higher-order tensors are often unique

* Matrix rank decompositions are not generally unigue,
except e.qg. for the SVD

» due to the orthogonality constraints, and

» the diagonal matrix of ordered singular values

* The CP decomposition is unique under weaker conditions (than the SVD)

» non-orthogonal factor matrices

* The Tucker decomposition is not unigue

[Kolda and Bader, 2009] P
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Orthonormality
e Matrix SVD generates orthonormal bases U and V

core factor matrices
* A Tucker model can be formed with orthonormal tensor

factor matrices

» all-orthogonal Tucker core tensor 93

* All-orthogonality example for third-order tensor:

» horizontal matrices are mutually orthogonal with

respect to the scalar product of matrices Z i 4

- the sum of the products of the corresponding entries
vanishes

» the same holds for all frontal slices and lateral slices

27 . N
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Higher-Order SVD (HOSVD)

Tensor unfolding HOSVD algorithm
) I
IS,;,;??ET"E'% — - * SVD on every mode’s tensor
B e | : | : | ’ . Ao unfolding A
I

» set basis factor matrices U™ as R
leading left singular vectors of Ay

» Derive core &8 from original data
I3 and inverse factor matrices

» defines a Tucker model with 93, U™

Ay Q%Z:QZ%’( }(Uﬁ)ﬁb inf@y 1><>§ m@) -l

HOSVD: Lathauwer et al., 2000a - A
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Tucker Core

— - - —— - ——

* Tucker column vectors of factor tCeOrfgor factor matrices
matrices U™ are often defined to _

be orthonormal |

» Core tensor 93 represents
projection of data .ezonto its

factor matrices U™, thus is a * Optimized order of computation
representation in new bases b I .
» computed using transposes for Ll ot Ll # Ll %

orthogonal factor matrices _ | - M

B = M%I[[j(lﬂ »@lll@ﬂ Xguf@ﬂ
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Rank [runcation

e ——

* SVD allows for progressive rank
truncation

» orthogonality of singular vectors

» order of increasing singular values

* CP does not exhibit good
progressive truncation behavior

» non-orthogonal factor matrices

* All-orthogonal Tucker model
supports progressive truncation

» does not necessarily give best N riente
: : | | | | | | |
pOSS|b|e progression 6208 12800 28672 81920 360448 2203760 17170432
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Properties of Tucker Factor Matrices

* \Vectors along horizontal axis (rows) * \Vectors along vertical axis (columns)
» 1.1; spatial selectivity » 2: rank reduction

» 1.2; spatial subsampling

3 . "
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Spatial Selection in Factor Matrices

* Select submatrices Uy,
(a selection of J,row vectors)

» reconstruct only from submatrices
and core tensor

* Core tensor stays unchanged

* Potential applications

» view-frustum culling

» adaptive spatial selection
(multiresolution DVR)




Orthogonality Issues and Truncation

» Spatial selection of factor matrix row ranges
destroys the orthogonality property

* Newly derived, spatially local tensor cores
from non-orthogonal factor submatrices are
not all-orthogonal

» but only the all-orthogonality makes core tensors J”IK .
rank-reducible

* In order to achieve rank-reducible core
tensors, another SVD is applied to spatially Ui’,?
selective or averaged submatrices

» see Tsai and Shih, 2012: Suter, 2013 Iy
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Spatial Subsampling in Factor Matrices

level 4 level 3 level 2 level 1

I, 1/2 1/4 1/8

Ry,

* Spatial correspondence of rows
allows for averaging or
subsampling of factor matrix row
vectors

* Potential applications

» multiresolution modeling




Global Factor Matrices Octree Hierarchy
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Pre-Defined vs. Learned Bases

compact data representation

> bases + N
decompose coefficients reconstruct
Pre-defined bases Learned bases
bases
FT, DCT, WT 1A
coefficients compute
coefficients
—> bases
—
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~ DCT as Tucker Decomposition

* The DCT of a 2D image or higher order
tensor directly maps to the Tucker tensor
decomposition model

» tensor decomposition using pre-defined basis
factor matrices

* Using the DCT type-Il formulation, the basis
matrices U™ entries can be formed by:

A7 — € cos ((2(1‘— D+ 1)(i- 1)ﬂ>

W 21,

»rwherei€ {1,....I,yandjE {1, ... ,R,}
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Example of Subsampled TA Factor Matrices

Upcr™

U,o

Tucker factor matrices
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ﬁ‘/ other formulas for CP

Tucker Reconstruction

—— /A

cQ/f\/: 7 X]U(l) ><2U(2) ><3U(3)

* Reconstruction from rank-one tensors

1 2 .
(1) (2) _..(3) -> progressive
‘Qf Z Z Z b'”l rory - Wry OUry OUr, reconstruction

ri=lrm=1r=1

* Element-wise reconstruction

~ 1) (2 (3)
alllzlg T ZZZbI’17‘2V3 . uill”l . uizl”z . ui3l’3

rn rp rj3
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Reconstruction Complexity

(1) 287‘1, U(l)

(71

(2) .. (V)
)®U( ) ® U

O(Ry-Ry-Rs- I - I - I3)

2
7 A=Y U e YU © 3Bl - U
t

O(Ry- I - I - I3)
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