

Tutorial: Tensor Approximation in Visualization and Computer Graphics

Tensor Decomposition Models

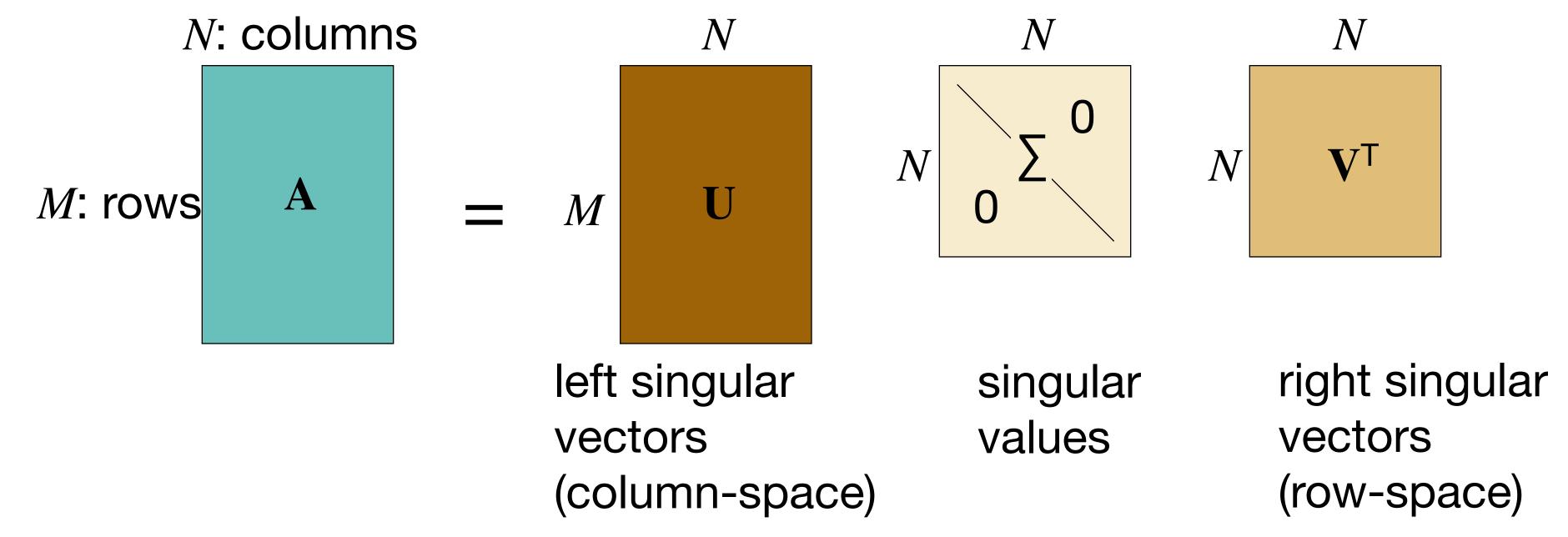
Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Data Reduction and Approximation

- A fundamental concept of data reduction is to remove redundant and irrelevant information while preserving the relevant features
 - e.g. through frequency analysis by projection onto pre-defined bases, or extraction of data intrinsic principal components
 - identify spatio-temporal and frequency redundancies
 - maintain strongest and most significant signal components
- Data reduction linked to concepts and techniques of data compression, noise reduction as well as feature extraction and recognition/extraction

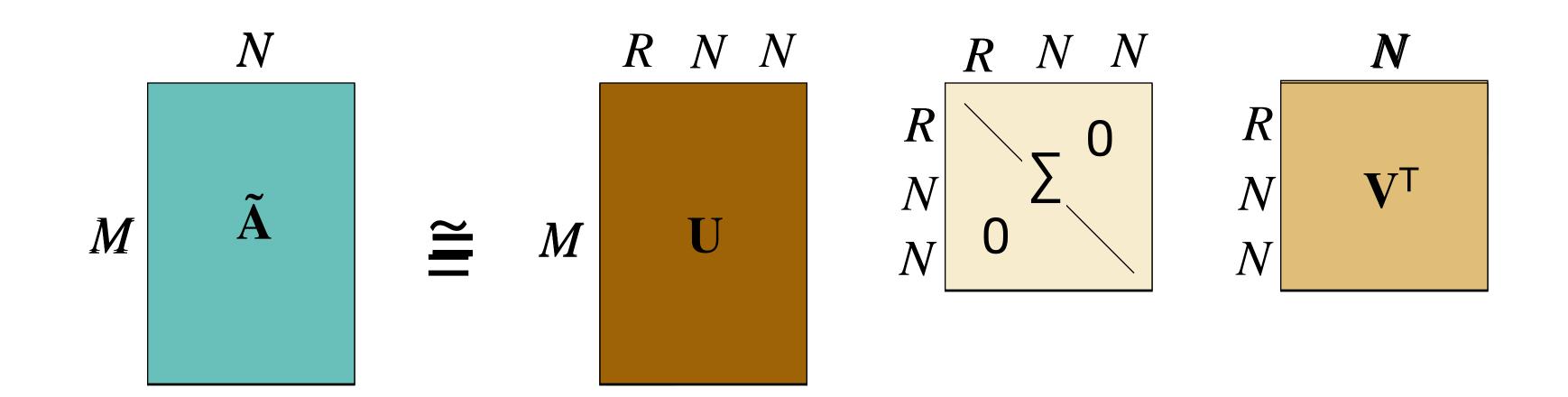
Data Approximation using SVD

- Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D input datasets
 - see also principal component analysis (PCA)



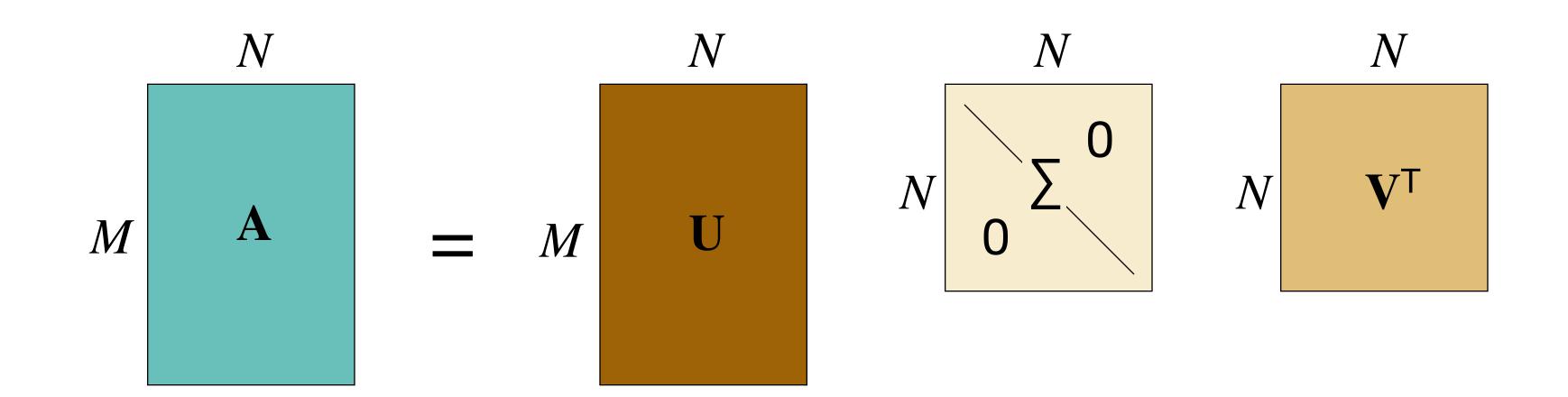
Low-rank Approximation

- Exploit ordered singular values: $s_1 \ge s_2 \ge ... \ge s_N$
- Select first r singular values (rank reduction)
 - use only bases (singular vectors) of corresponding subspace

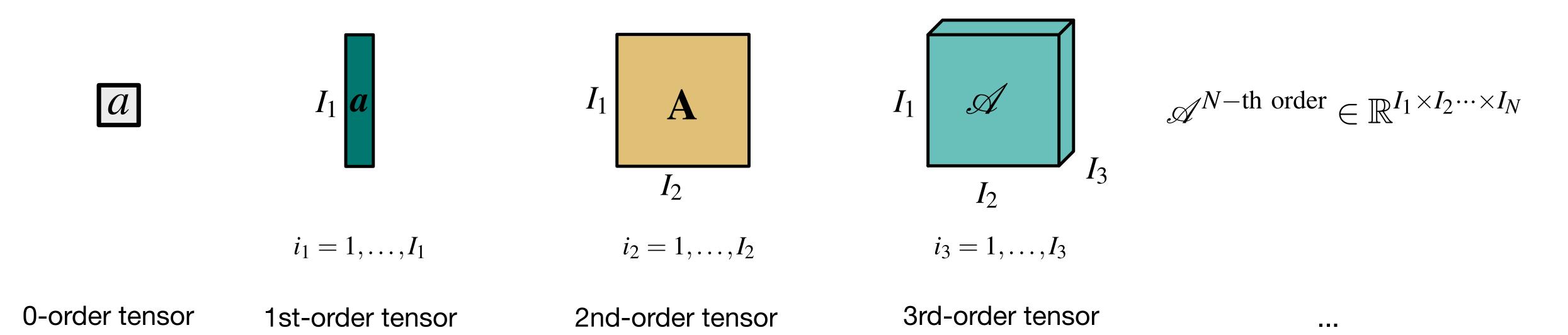


Matrix SVD Properties

- Matrix SVD
 - rank reducibility
 - orthonormal row/column matrices



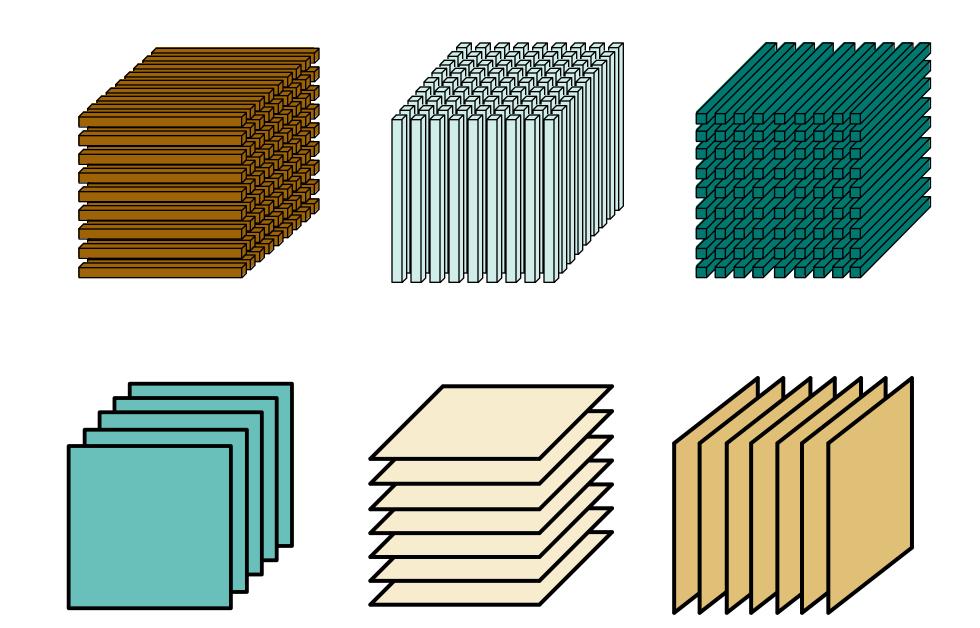
What is a Tensor?



- Data sets are often multidimensional arrays (tensors)
 - images, image collections, video, volume data etc.

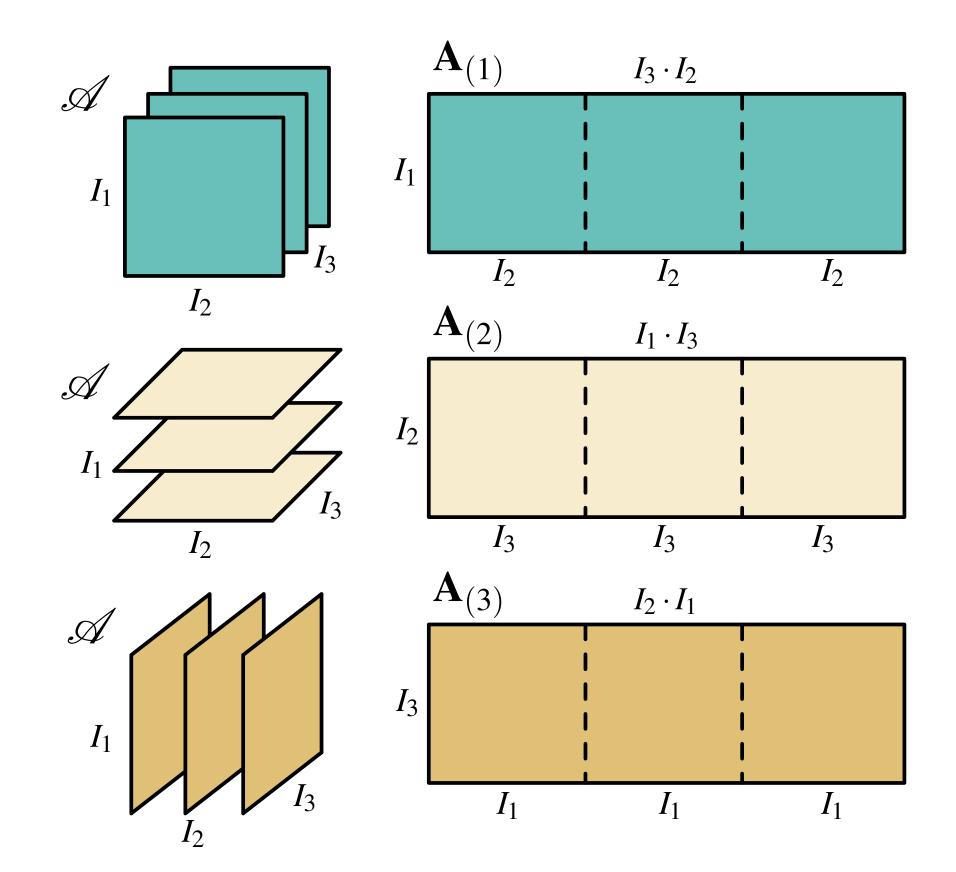
Fibers and Slices

- Individual elements of a vector \mathbf{a} are given by a_{i1} , from a matrix \mathbf{A} by $a_{i1,i2}$ and from a tensor \mathscr{A} by $a_{i1,i2,i3}$
- The generalization of rows, columns (and tubes) is a *fiber* in a particular mode
- Two dimensional sections of a tensor are called slices
 - frontal, horizontal and lateral for $\mathscr{M} \in \mathbb{R}^3$



Unfolding and Ranks

- Operations with tensors often performed as matrix operations using unfolded tensor representations
 - different tensor unfolding strategies possible
- Forward cyclic unfolding $A_{(n)}$ of a 3rd order tensor \mathscr{A} (or 3D volume)
- The *n*-rank of a tensor is typically defined on an unfolding
 - n-rank $R_n = \operatorname{rank}_n(\mathcal{A}_{(n)})$
 - multilinear rank- $(R_1, R_2, ..., R_N)$ of \mathscr{A}

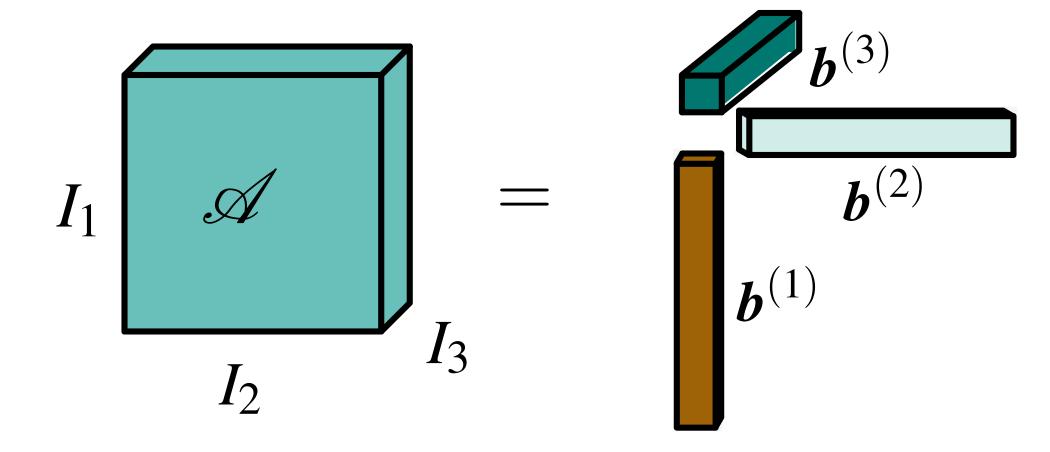


Rank-one Tensor

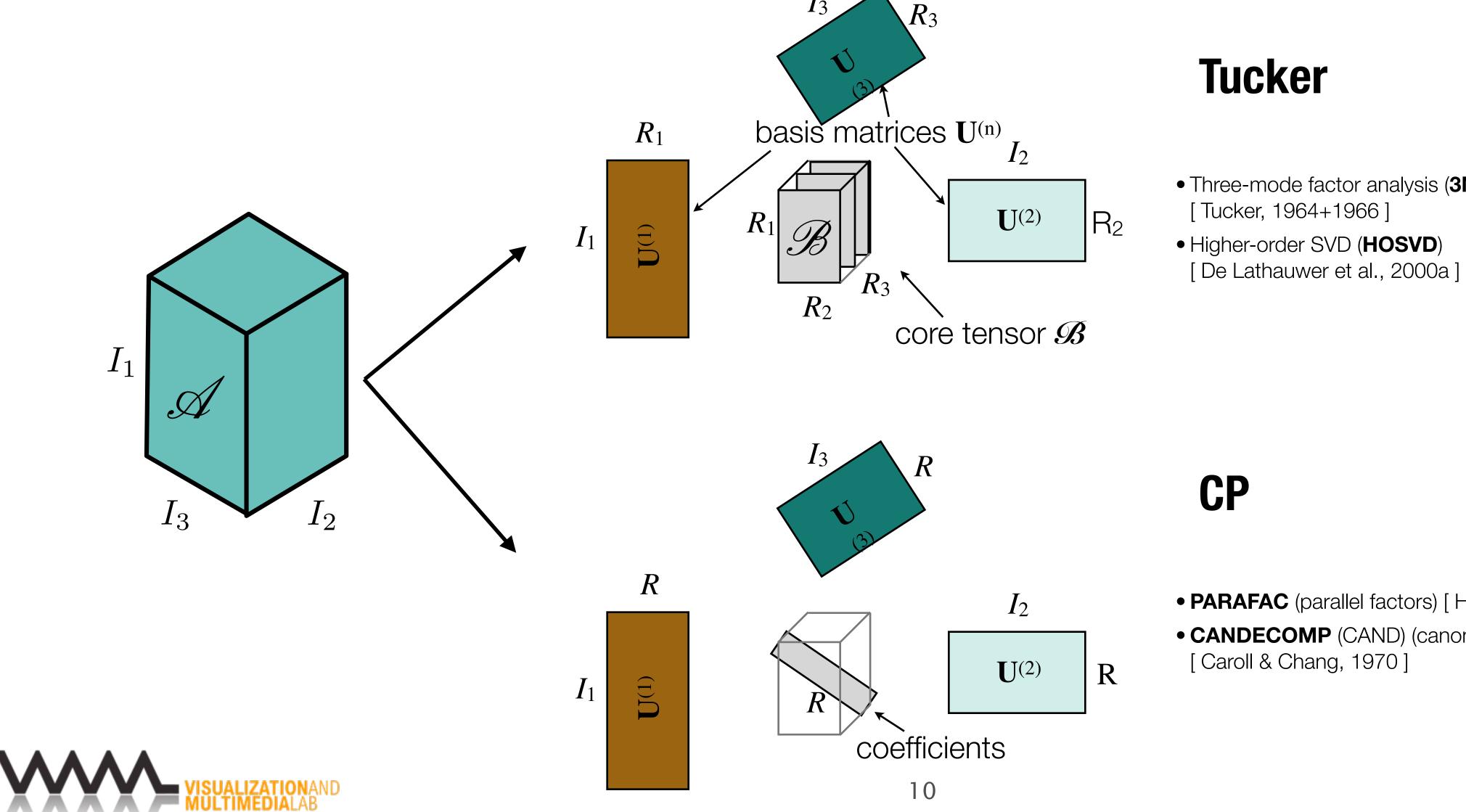
- *N*-mode tensor $\mathscr{M} \in \mathbb{R}^{I_1 \times ... \times I_N}$ that can be expressed as the outer product of N vectors
 - Kruskal tensor

- Useful to understand principles of rank-reduced tensor reconstruction
 - linear combination of rank-one tensors

$$\mathscr{A} = \boldsymbol{b}^{(1)} \circ \boldsymbol{b}^{(2)} \circ \cdots \circ \boldsymbol{b}^{(N)}$$



Tensor Decomposition Models



• Three-mode factor analysis (**3MFA/Tucker3**)

- PARAFAC (parallel factors) [Harshman, 1970]
- CANDECOMP (CAND) (canonical decomposition)

Tucker Model

- Higher order tensor $\mathscr{M} \in \mathbb{R}^{I_1 \times ... \times I_N}$ represented as a product of a core tensor $\mathscr{B} \in \mathbb{R}^{R_1 \times ... \times R_N}$ and N factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R_n}$
 - using n-mode products \times_n

$$\mathscr{A} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots \times_N \mathbf{U}^{(N)} + \varepsilon$$

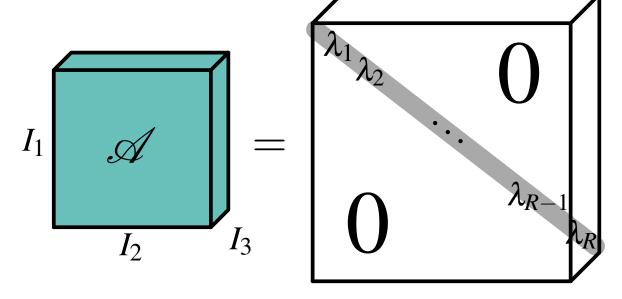
$$I_1$$
 $= R_1$ $= R_2$ $= R_3$ $= R_1$ $= R_2$ $= R_3$ $= R_3$ $= R_2$ $= R_3$ $= R_3$

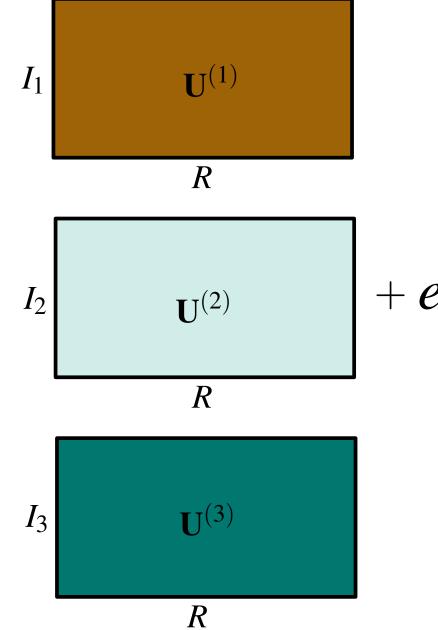
CANDECOMP-PARAFAC Model

- Canonical decomposition or parallel factor analysis model (CP)
- Higher order tensor

 factorized into a sum of rank-one tensors
 - normalized column vectors $u_r^{(n)}$ define factor matrices $\mathbf{U}^{(n)} \in \mathbb{R}^{I_n \times R}$ and weighting factors λ_r

$$\mathscr{A} = \sum_{r=1}^{R} \lambda_r \cdot u_r^{(1)} \circ u_r^{(2)} \circ \dots u_r^{(N)} + \varepsilon$$





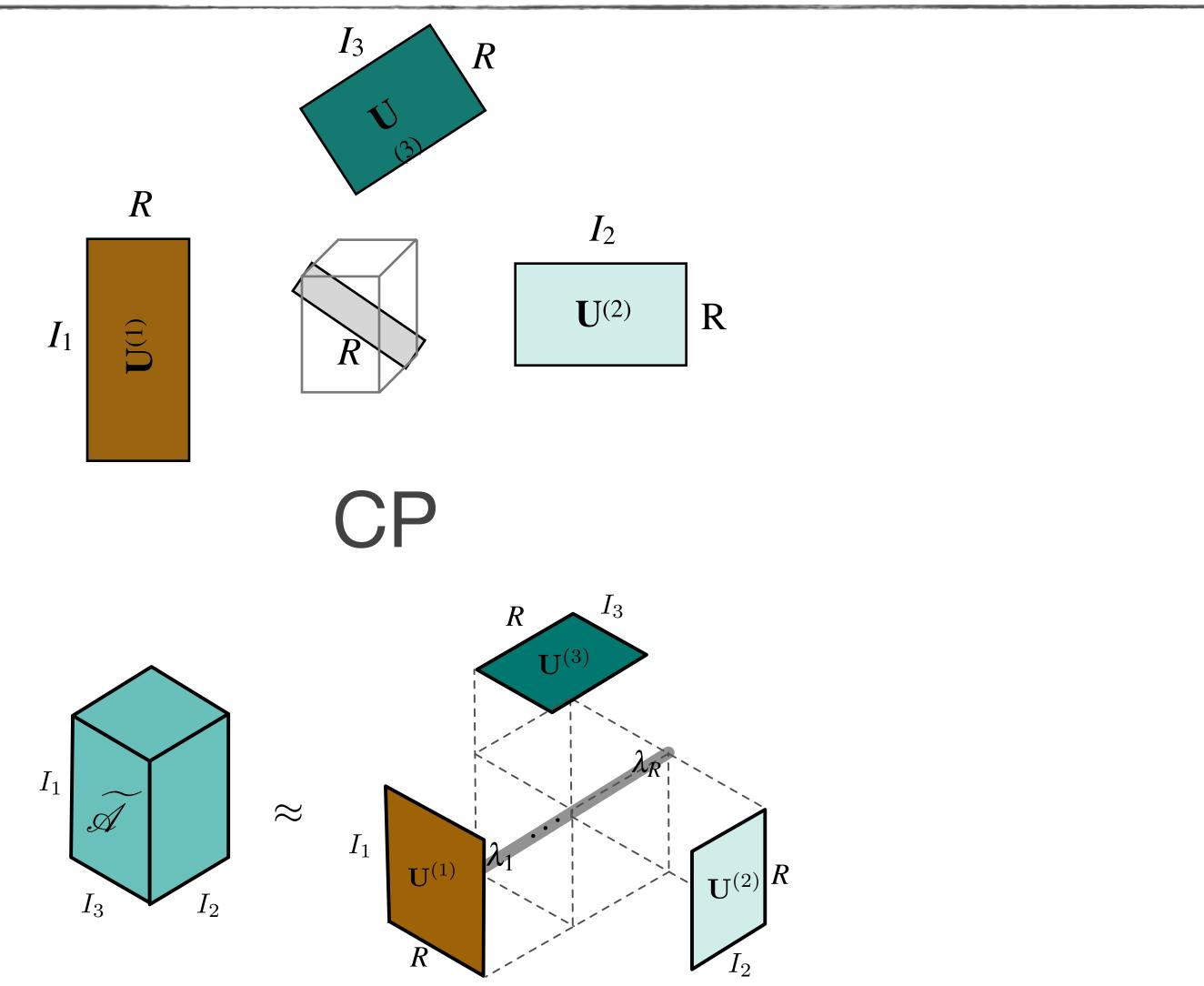
Linear Combination of Rank-one Tensors

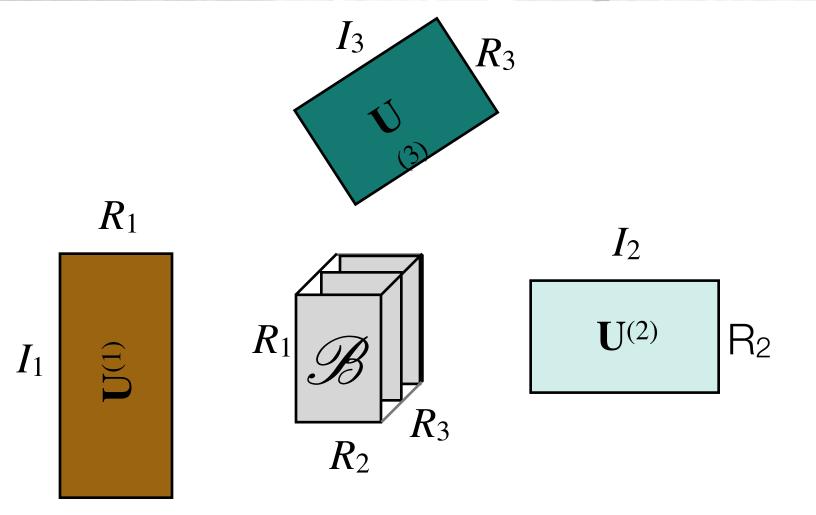
- The CP model is defined as a linear combination of rank-one tensors
- The Tucker model can be interpreted as linear combination of rank-one tensors

$$\mathscr{A} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \sum_{r=1}^{R_N} h_{r_1}^{(1)} \cdot h_{r_1}^{(2)} \cdot h_{r_2}^{(2)} \cdot h_{r_2}^{(1)} \cdot h_{r_2}^{(2)} \cdot h_{r_2}$$

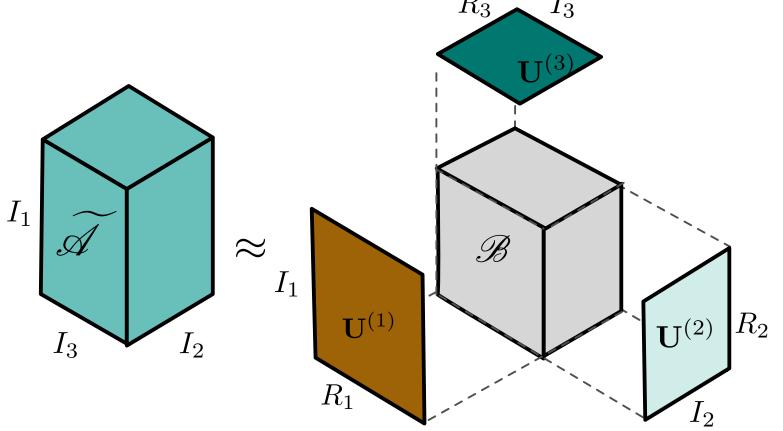
$$I_1 = b_{r_1 r_2 r_3} = b_{r_1 r_2 r_3} \begin{bmatrix} u_{r_3}^{(3)} \\ u_{r_2}^{(2)} \\ u_{r_1}^{(1)} \end{bmatrix} + \cdots + b_{R_1 R_2 R_3} \begin{bmatrix} u_{R_3}^{(3)} \\ u_{R_2}^{(2)} \\ u_{R_1}^{(1)} \end{bmatrix} + e + e$$

CP a Special Case of Tucker



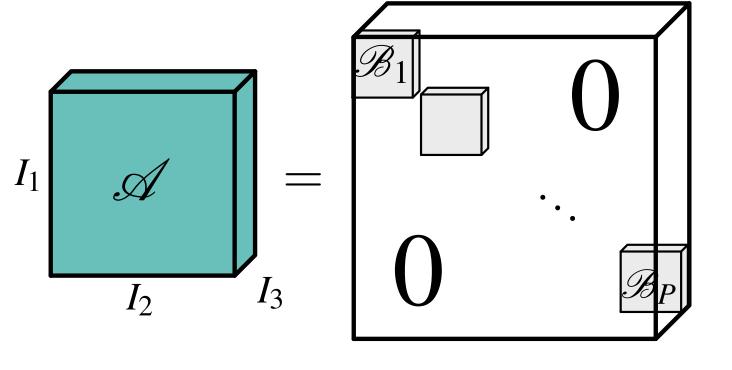


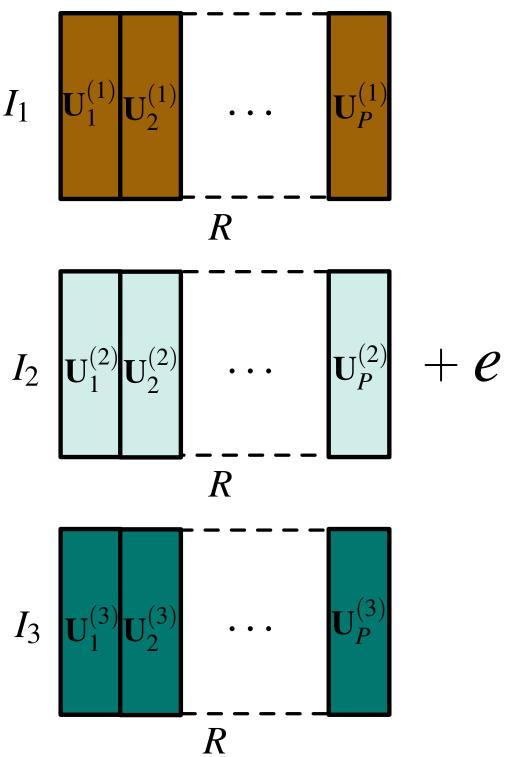
Tucker



Generalizations

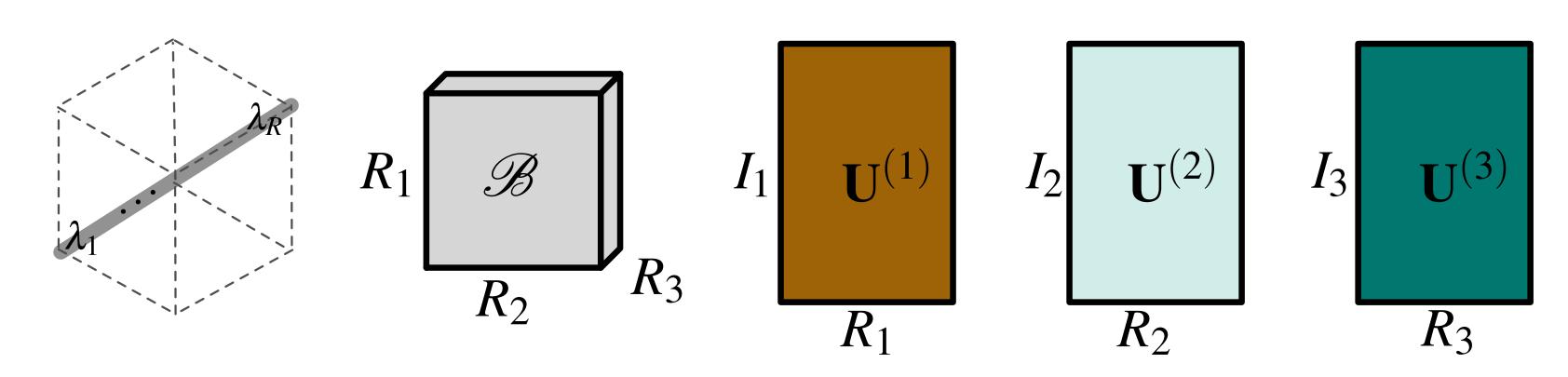
- Any special form of core and corresponding factor matrices
 - e.g. blocks along diagonal





Reduced Rank Approximation

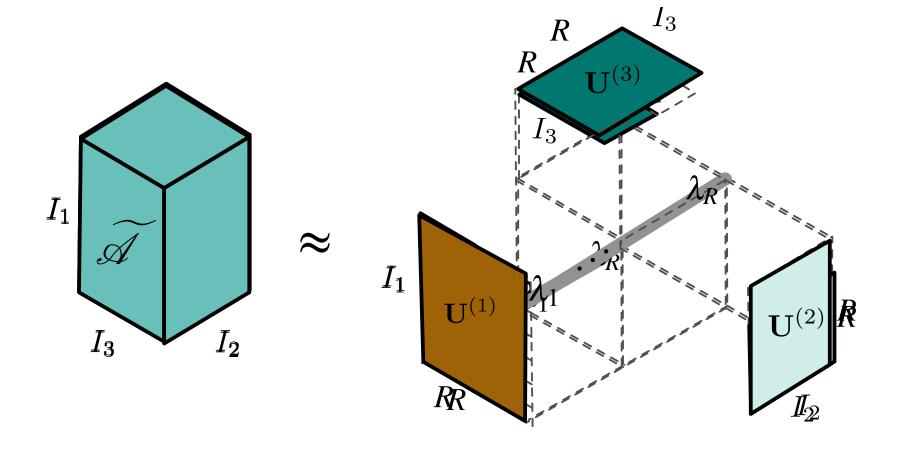
- Full reconstruction using a Tucker or CP model may require excessively many coefficients and wide factor matrices
 - large rank values R (CP), or $R_1, R_2 \dots R_N$ (Tucker)
- Quality of approximation increases with the rank, and number of column vectors of the factor matrices
 - best possible fit of these bases matrices discussed later



Rank-R Approximation

- Approximation of a tensor as a linear combination of ranke-one tensors using a limited number R of terms
 - CP model of limited rank R

$$\widetilde{\mathscr{A}} = \sum_{r=1}^{R} \lambda_r \cdot u_r^{(1)} \circ u_r^{(2)} \circ \dots u_r^{(N)}$$



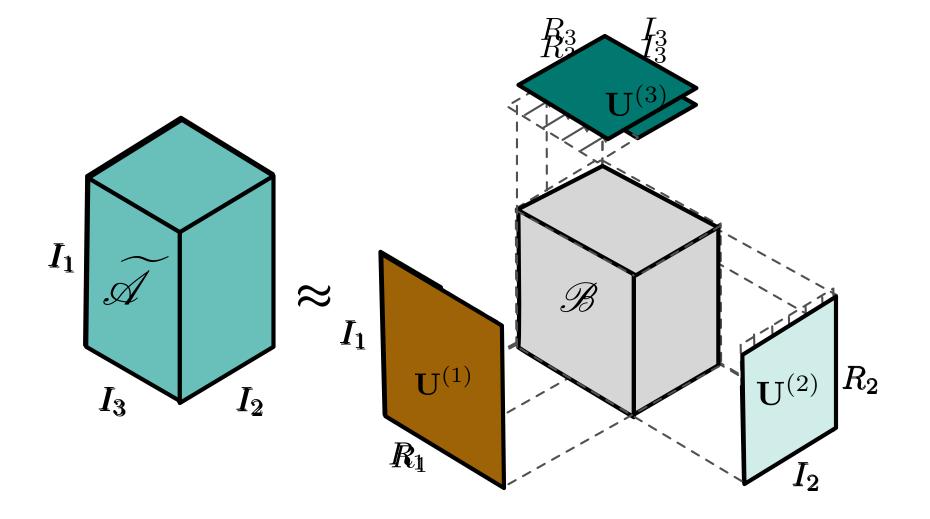
Rank- $(R_1, R_2, ..., R_N)$ Approximation

• Decomposition into a tensor with reduced, lower multilinear $rank(R_1, R_2, ..., R_N)$

$$\operatorname{rank}_n(\widetilde{\mathscr{A}}) = R_n \leq \operatorname{rank}_n(\mathscr{A}) = \operatorname{rank}(\mathbf{A}_{(n)})$$

- *n*-mode products of factor matrices and core tensor in a given reduced rank space
 - ▶ Tucker model with limited ranks R_i

$$\widetilde{\mathscr{A}} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \cdots \times_N \mathbf{U}^{(N)}$$

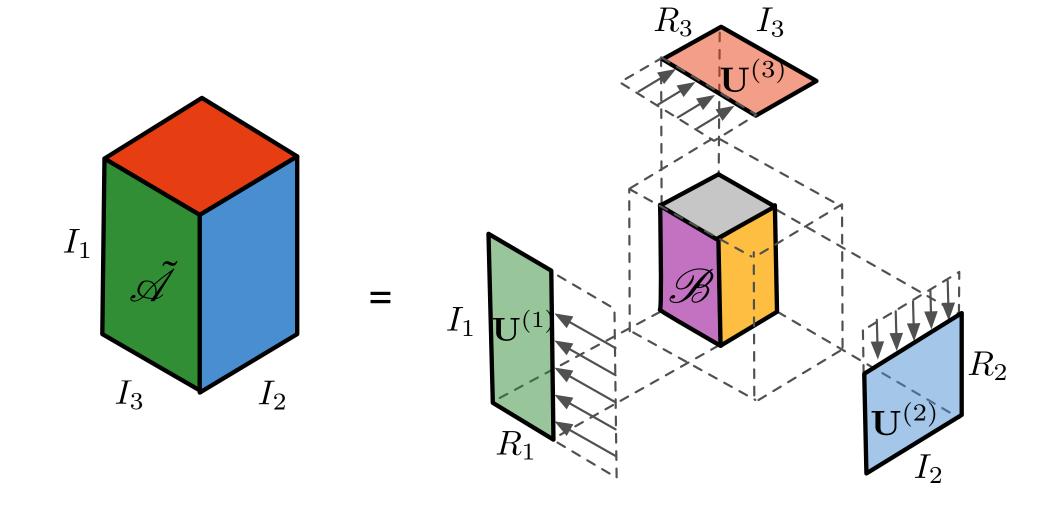


Best Rank Approximation

 Rank reduced approximation that minimizes least-squares cost

$$\mathcal{A} = \arg\min(\mathcal{A}) \|\mathcal{A} - \mathcal{A}\|^2$$

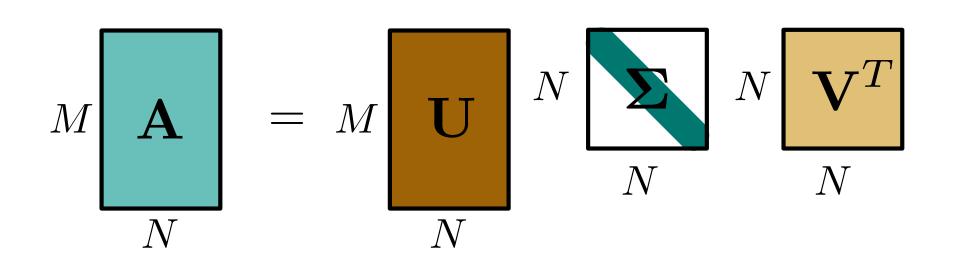
- Alternating least squares (ALS) iterative algorithm that converges to a minimum approximation error based on the Frobenius norm II...II_F
 - rotation of components in basis matrices



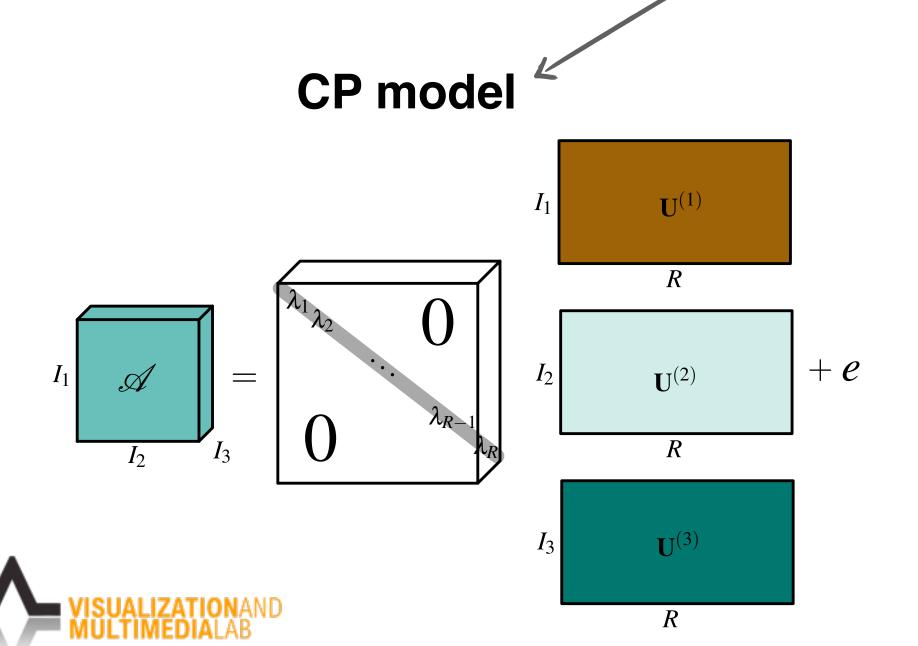
$$\widetilde{\mathscr{A}} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$$

typical high-quality data reduction: $R_k \le I_k / 2$

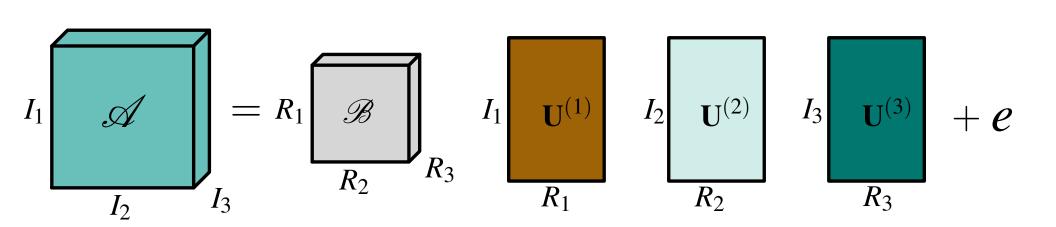
Generalization of the Matrix SVD



higher orders



Tucker model



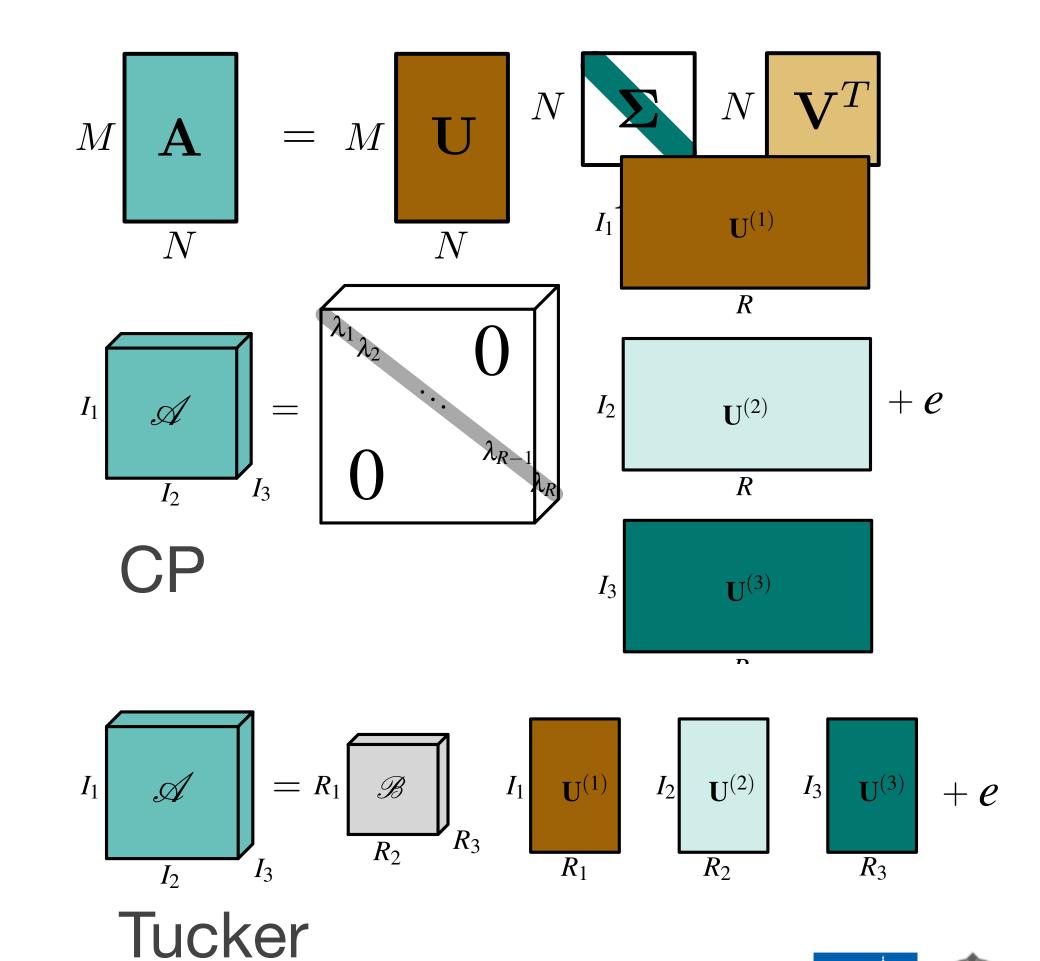
Tutorial: Tensor Approximation in Visualization and Computer Graphics

TA Properties and Features

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Properties of Higher Order TA

- Matrix SVD (~PCA)
 - unique
 - rank-R decomposition
 - orthonormal row-space and column-space vectors
- Higher-order tensor decomposition
 - CP model preserves rank-R decomposition
 - all-orthogonal Tucker model preserves orthonormal row-space and column-space vectors



universitätbo

Matrix and Tensor Rank Definitions

- Matrix has unique equal column and row ranks
 - result of SVD
- The *n*-ranks $R_n = \operatorname{rank}_n(\mathscr{A})$ of a tensor \mathscr{A} may all be different
 - different unfoldings $A_{(n)}$ give rise to different n-ranks rank($A_{(n)}$)
- Matrix rank concept is not uniquely defined for higher order tensors
 - $\rightarrow n$ -rank R_n
 - multilinear rank- $(R_1, R_2, ..., R_n)$
 - tensor rank $R = \operatorname{rank}(\mathcal{A})$

Tensor Rank R

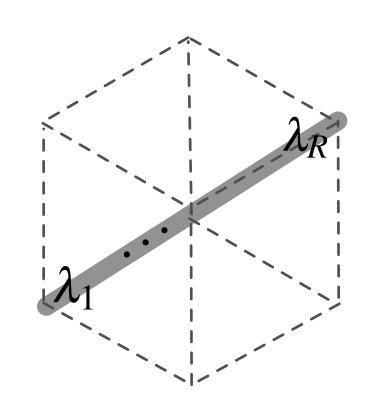
- The *tensor rank* $R = \text{rank}(\mathscr{A})$ is the minimal number of rank-one tensors \mathscr{A} that yield \mathscr{A} in a linear combination
 - \blacktriangleright \mathscr{A} are rank-one tensors, defined by outer product of N vectors
- Equal to the column and row rank for matrices
- Not necessarily equal to any n-rank R_n of a tensor
 - ▶ and it holds that $R \ge R_n$

Rank-R Decomposition

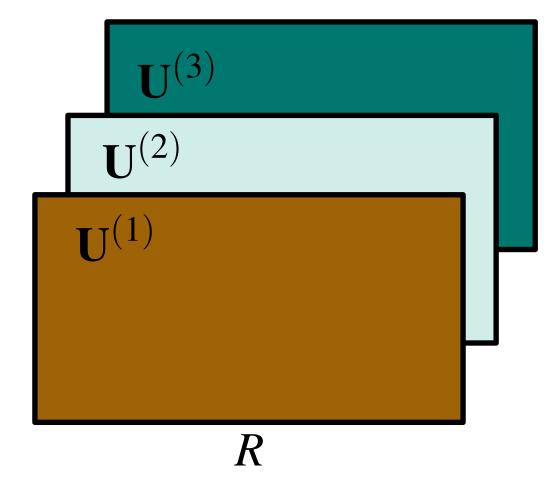
- Minimal number R of rank-one tensors \mathscr{A}_i that yield \mathscr{A} in a linear combination, $\mathscr{A} = \lambda_1 \mathscr{A}_1 + \lambda_2 \mathscr{A}_2 + ... + \lambda_R \mathscr{A}_R$
- CP model allows a direkt rank-R decomposition with respect to the *tensor rank R*

$$\mathscr{A} = \sum_{r=1}^{R} \lambda_r \cdot u_r^{(1)} \circ u_r^{(2)} \circ \cdots \circ u_r^{(N)}$$

coefficients



factor matrices

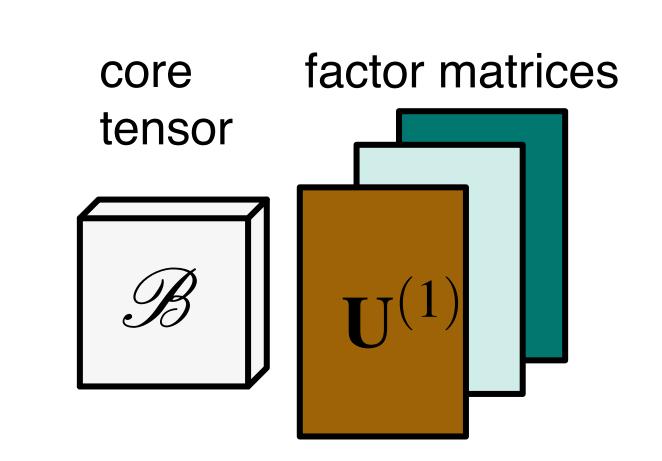


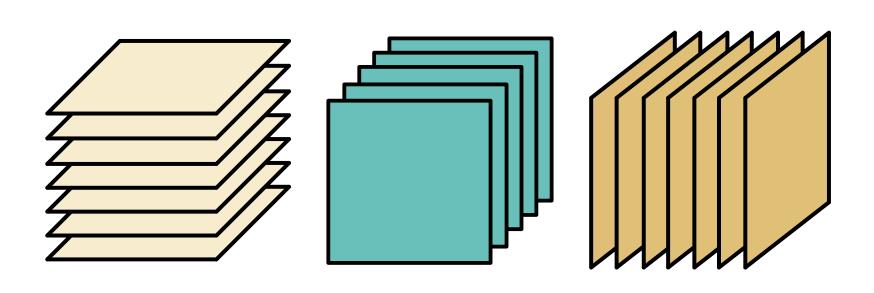
Uniqueness

- Unique if it is the only possible decomposition
 - except for indeterminacies of scaling and permutations
- Rank-R decompositions of higher-order tensors are often unique
- Matrix rank decompositions are not generally unique, except e.g. for the SVD
 - due to the orthogonality constraints, and
 - the diagonal matrix of ordered singular values
- The CP decomposition is unique under weaker conditions (than the SVD)
 - non-orthogonal factor matrices
- The Tucker decomposition is not unique

Orthonormality

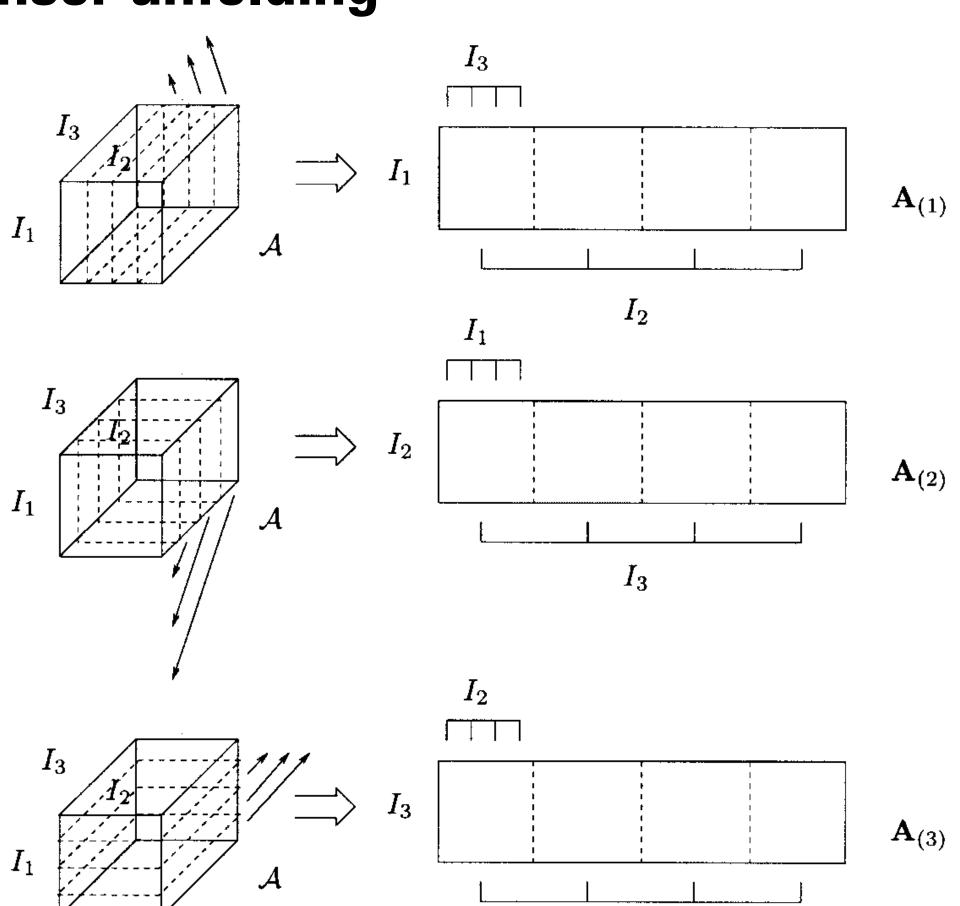
- Matrix SVD generates orthonormal bases U and V
- A Tucker model can be formed with orthonormal factor matrices
 - lacktriangleright all-orthogonal Tucker core tensor ${\cal B}$
- All-orthogonality example for third-order tensor:
 - horizontal matrices are mutually orthogonal with respect to the scalar product of matrices
 - the sum of the products of the corresponding entries vanishes
 - the same holds for all frontal slices and lateral slices
 - see De Lathauwer et al., 2000a





Higher-Order SVD (HOSVD)

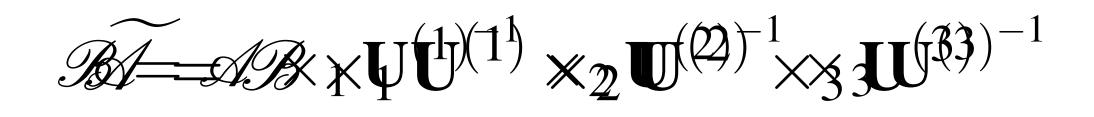
Tensor unfolding



 I_1

HOSVD algorithm

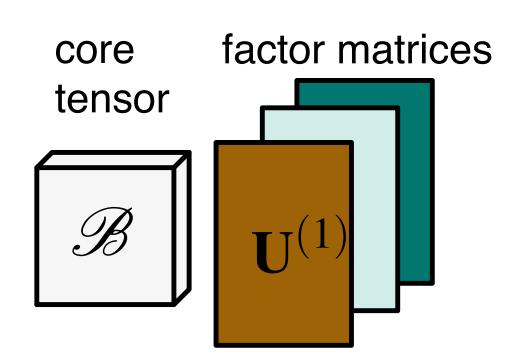
- SVD on every mode's tensor unfolding $\mathbf{A}_{(n)}$
 - set basis factor matrices $\mathbf{U}^{(n)}$ as R leading left singular vectors of $\mathbf{A}_{(n)}$
- Derive core *\$\mathcal{B}\$* from original data and inverse factor matrices
 - defines a Tucker model with **B**, U⁽ⁿ⁾



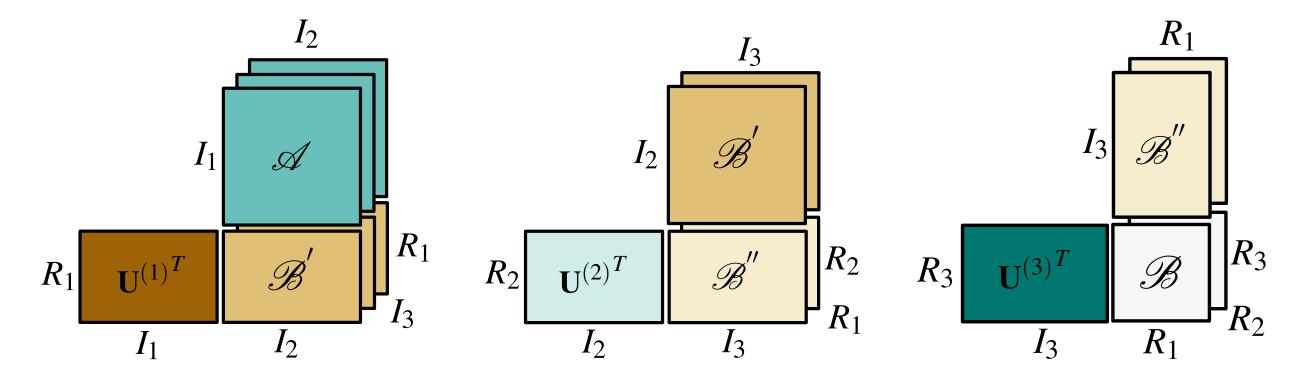
Tucker Core

- Tucker column vectors of factor matrices U⁽ⁿ⁾ are often defined to be orthonormal
- Core tensor represents
 projection of data onto its
 factor matrices U⁽ⁿ⁾, thus is a
 representation in new bases
 - computed using transposes for orthogonal factor matrices

$$\mathscr{B} = \mathscr{A} \times_{11} \mathbf{U}^{(1)^T} \times_2 \mathbf{U}^{(2)^T} \times_3 \mathbf{U}^{(3)^{TI}}$$

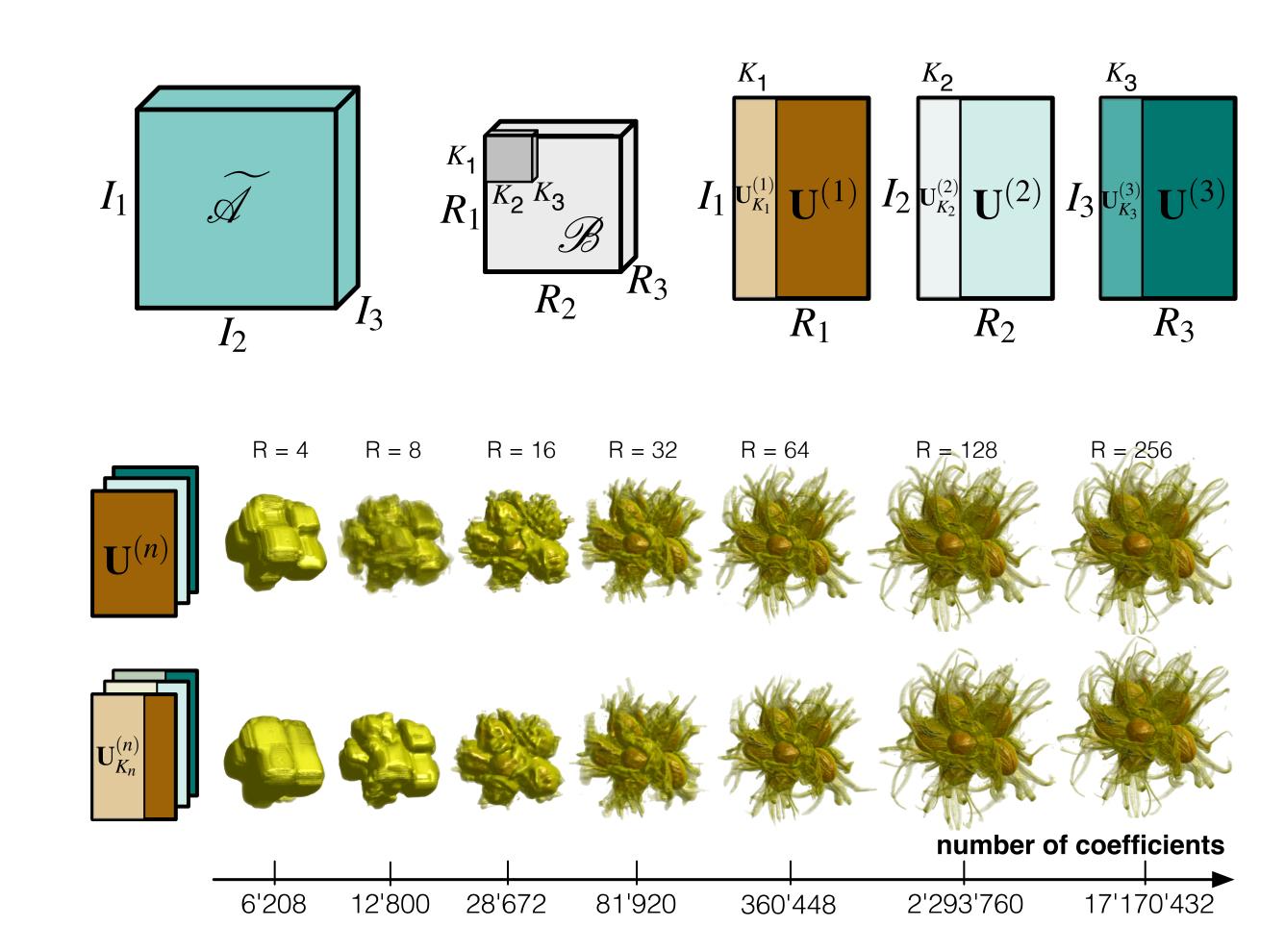


Optimized order of computation

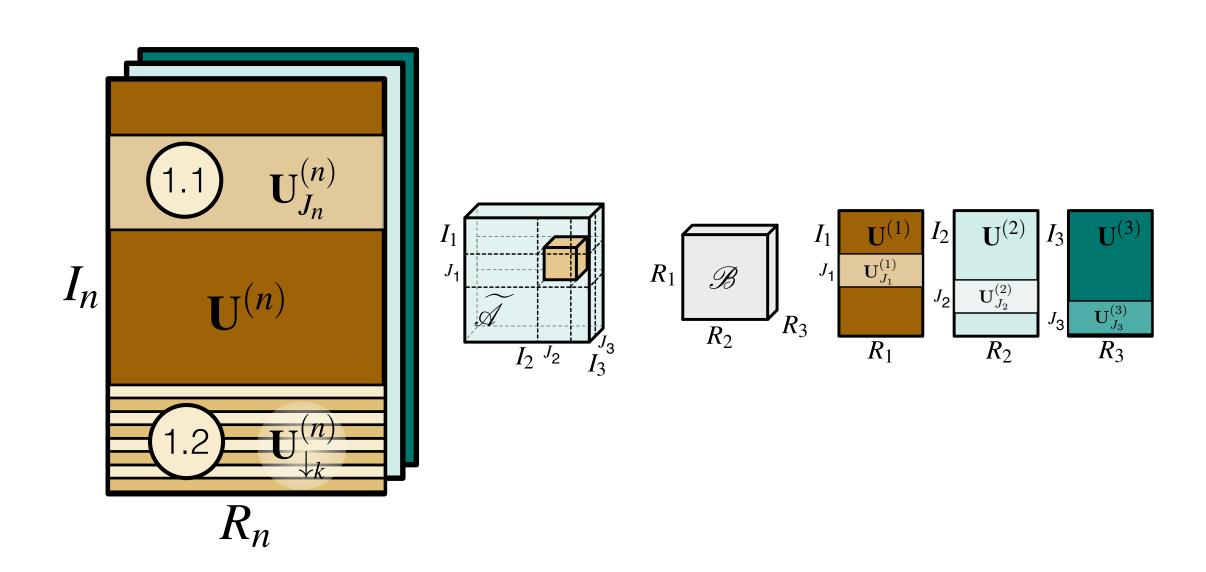


Rank Truncation

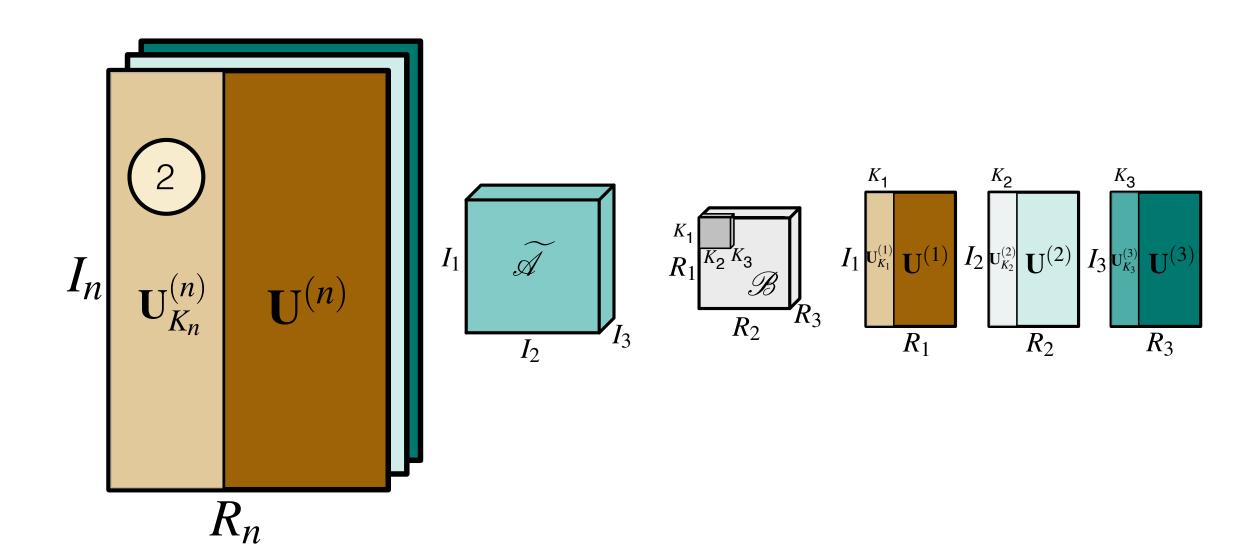
- SVD allows for progressive rank truncation
 - orthogonality of singular vectors
 - order of increasing singular values
- CP does not exhibit good progressive truncation behavior
 - non-orthogonal factor matrices
- All-orthogonal Tucker model supports progressive truncation
 - does not necessarily give best possible progression



Properties of Tucker Factor Matrices



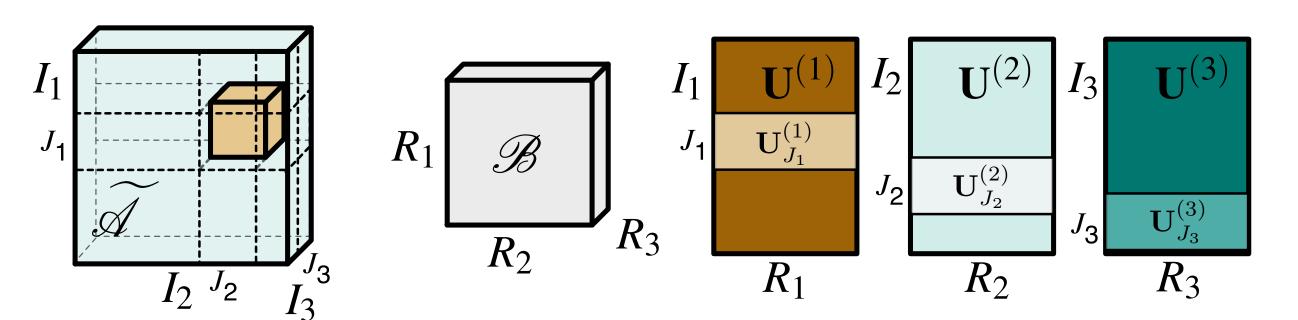
- Vectors along horizontal axis (rows)
 - ▶ 1.1; spatial selectivity
 - ▶ 1.2; spatial subsampling



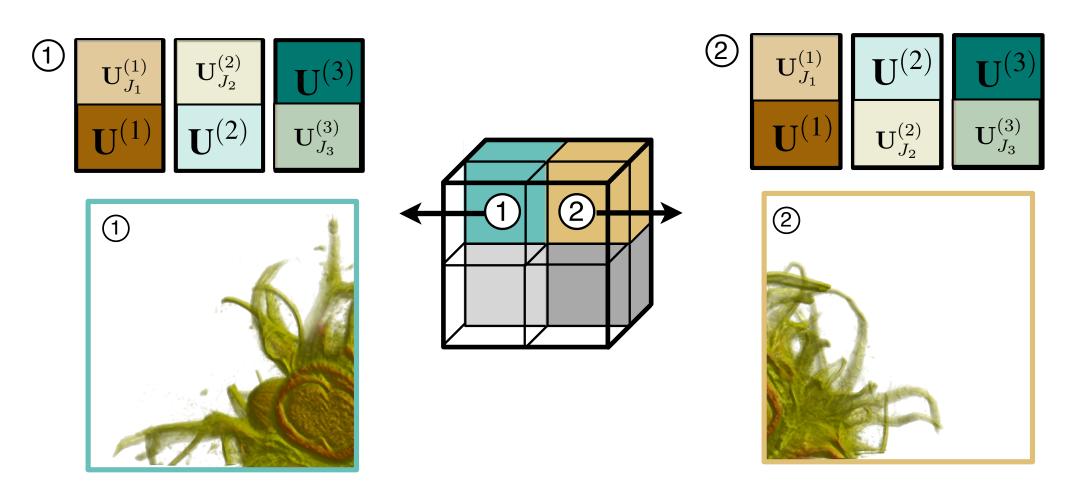
- Vectors along vertical axis (columns)
 - 2: rank reduction

Spatial Selection in Factor Matrices

- Select submatrices $\mathbf{U}^{(n)}J_n$ (a selection of J_n row vectors)
 - reconstruct only from submatrices and core tensor
- Core tensor stays unchanged
- Potential applications
 - view-frustum culling
 - adaptive spatial selection (multiresolution DVR)

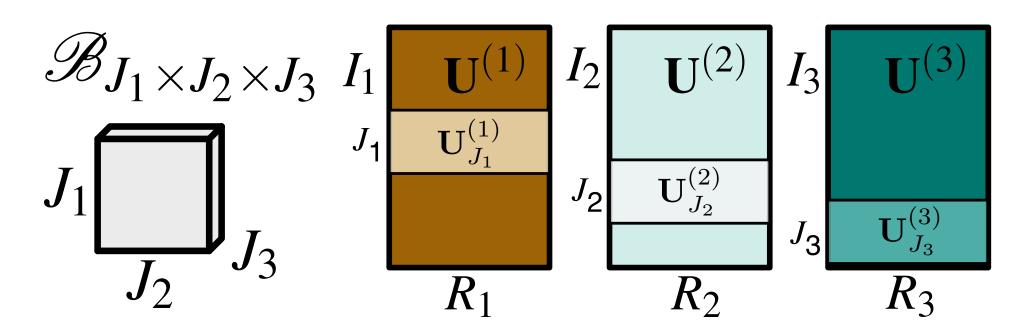


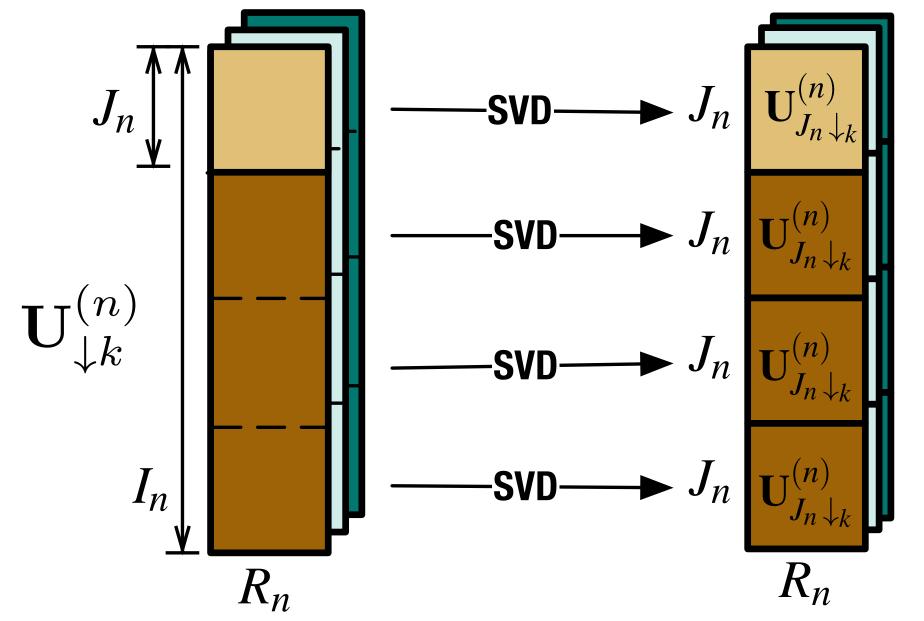
$$\widetilde{\mathscr{A}_{J_1 \times J_2 \times J_3}} = \mathscr{B} \times_1 \mathbf{U}_{J_1}^{(1)} \times_2 \mathbf{U}_{J_2}^{(2)} \times_3 \mathbf{U}_{J_3}^{(3)}$$



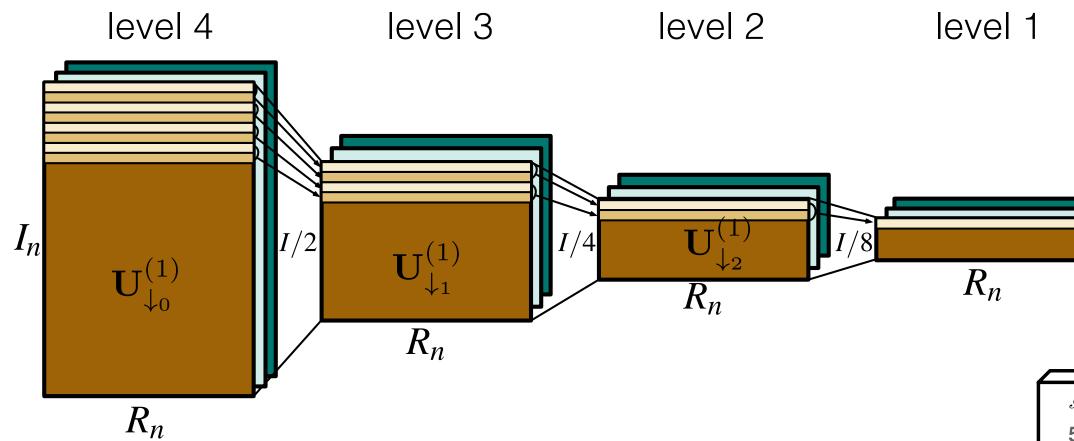
Orthogonality Issues and Truncation

- Spatial selection of factor matrix row ranges destroys the orthogonality property
- Newly derived, spatially local tensor cores from non-orthogonal factor submatrices are not all-orthogonal
 - but only the all-orthogonality makes core tensors rank-reducible
- In order to achieve rank-reducible core tensors, another SVD is applied to spatially selective or averaged submatrices
 - > see Tsai and Shih, 2012; Suter, 2013

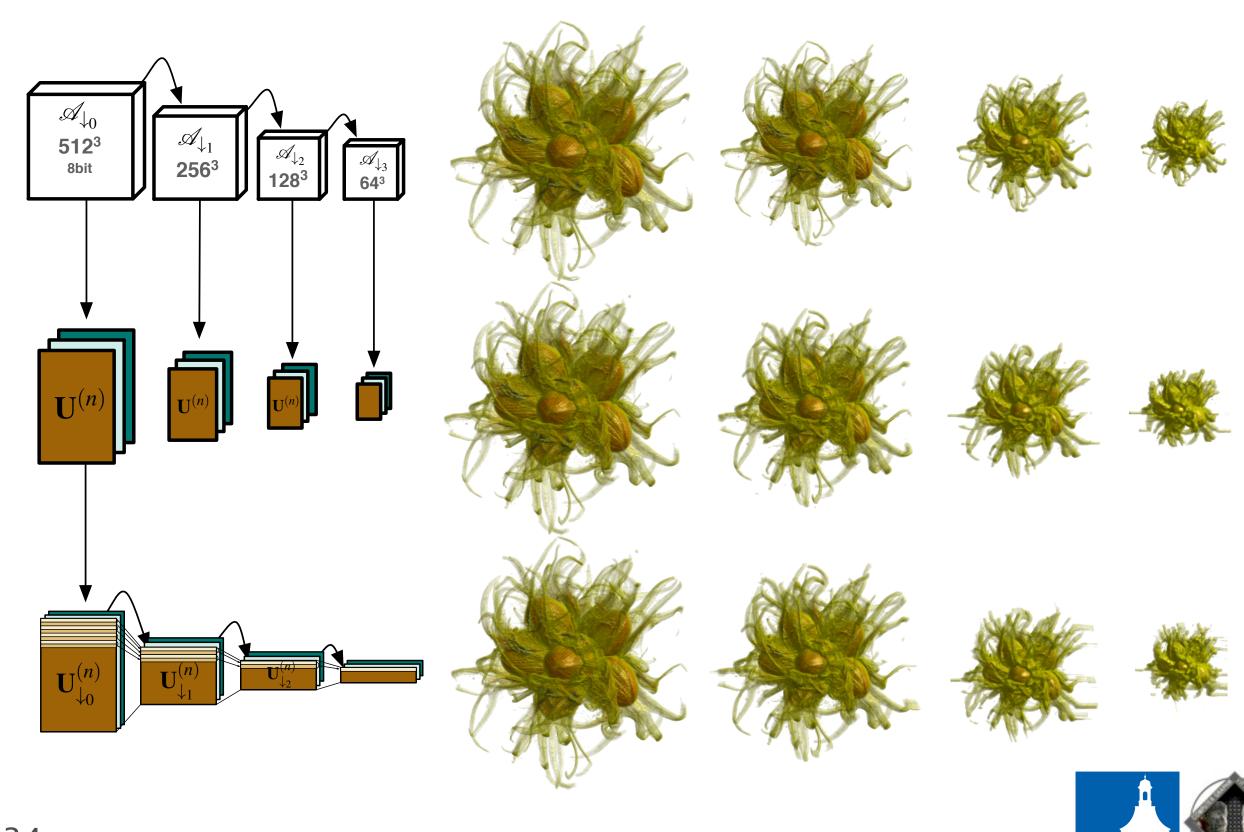




Spatial Subsampling in Factor Matrices

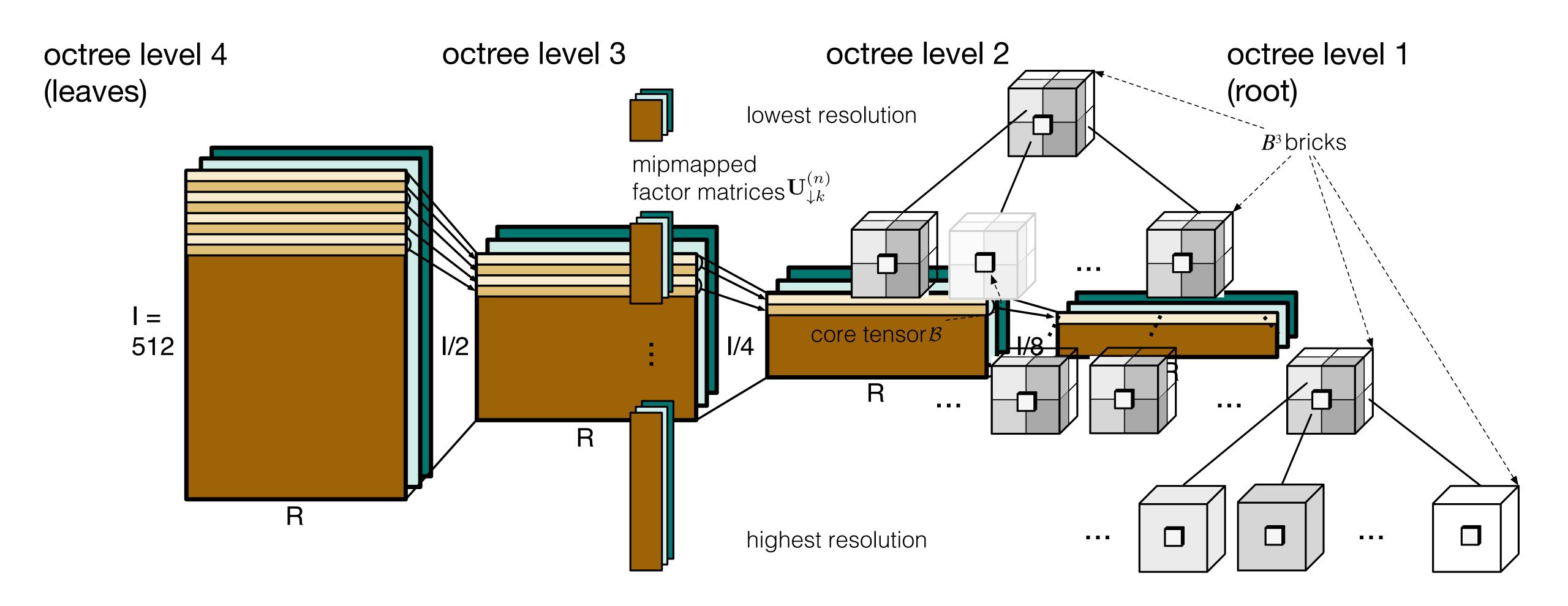


- Spatial correspondence of rows allows for averaging or subsampling of factor matrix row vectors
- Potential applications
 - multiresolution modeling

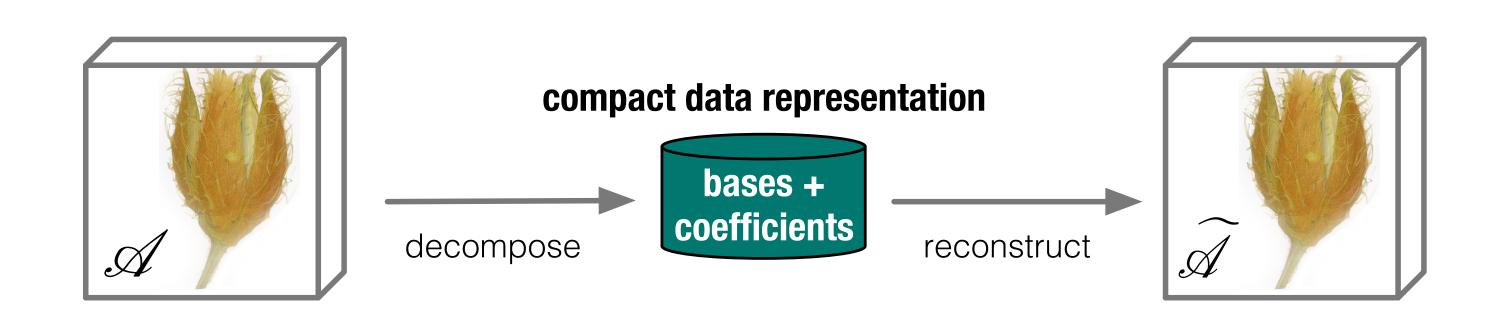


universität**bonn**

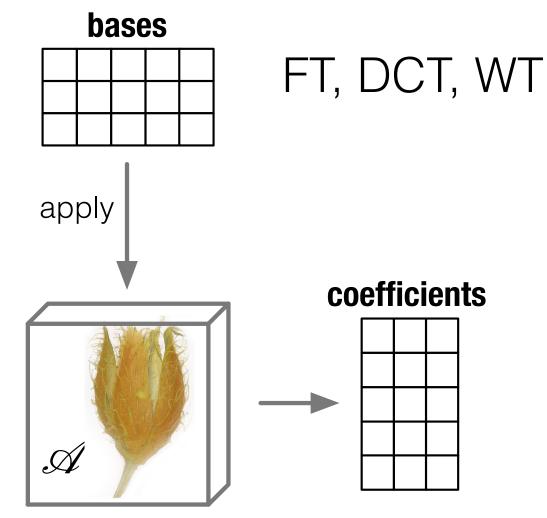
Global Factor Matrices Octree Hierarchy



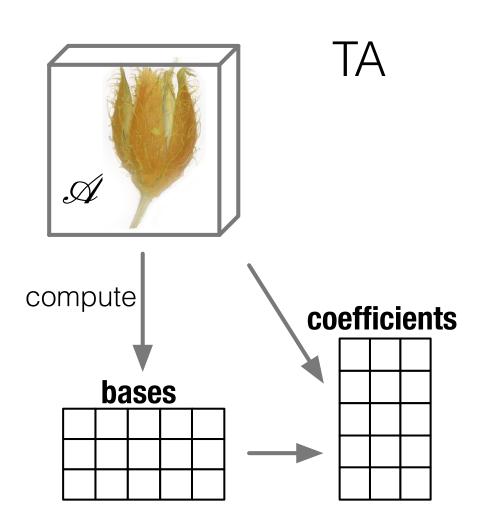
Pre-Defined vs. Learned Bases



Pre-defined bases



Learned bases

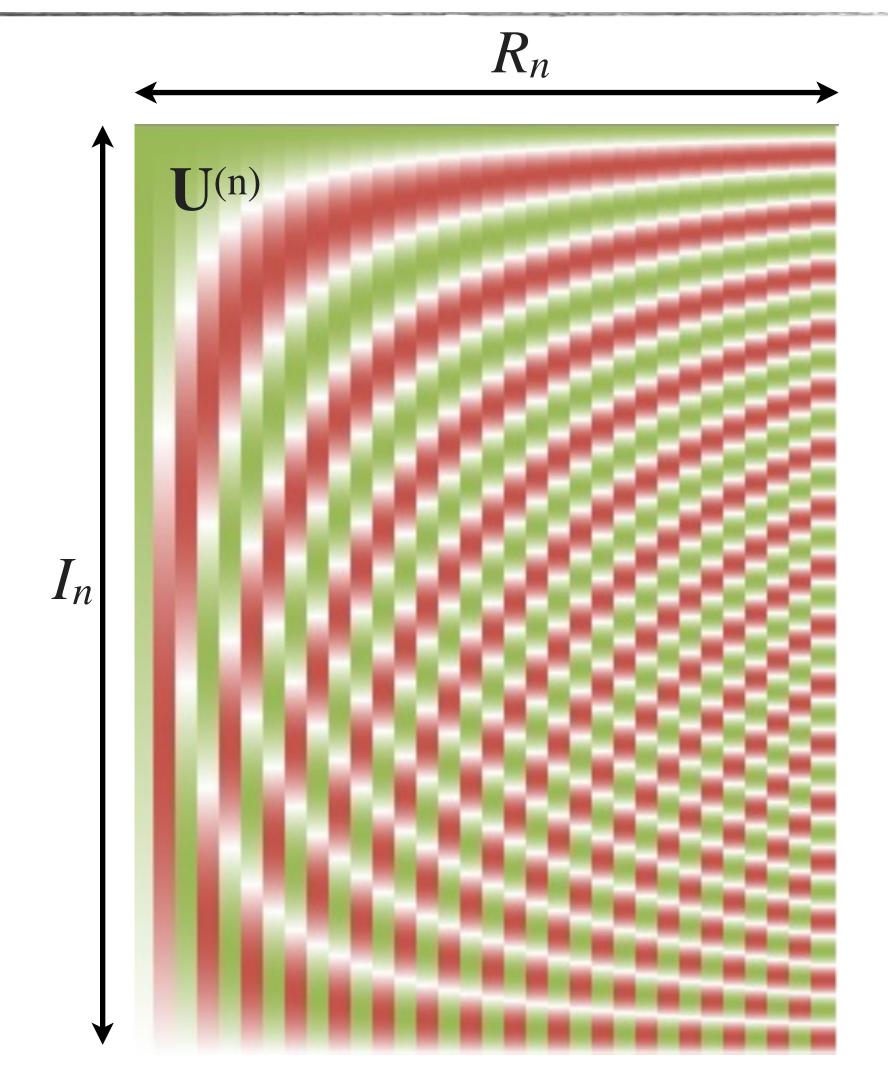


DCT as Tucker Decomposition

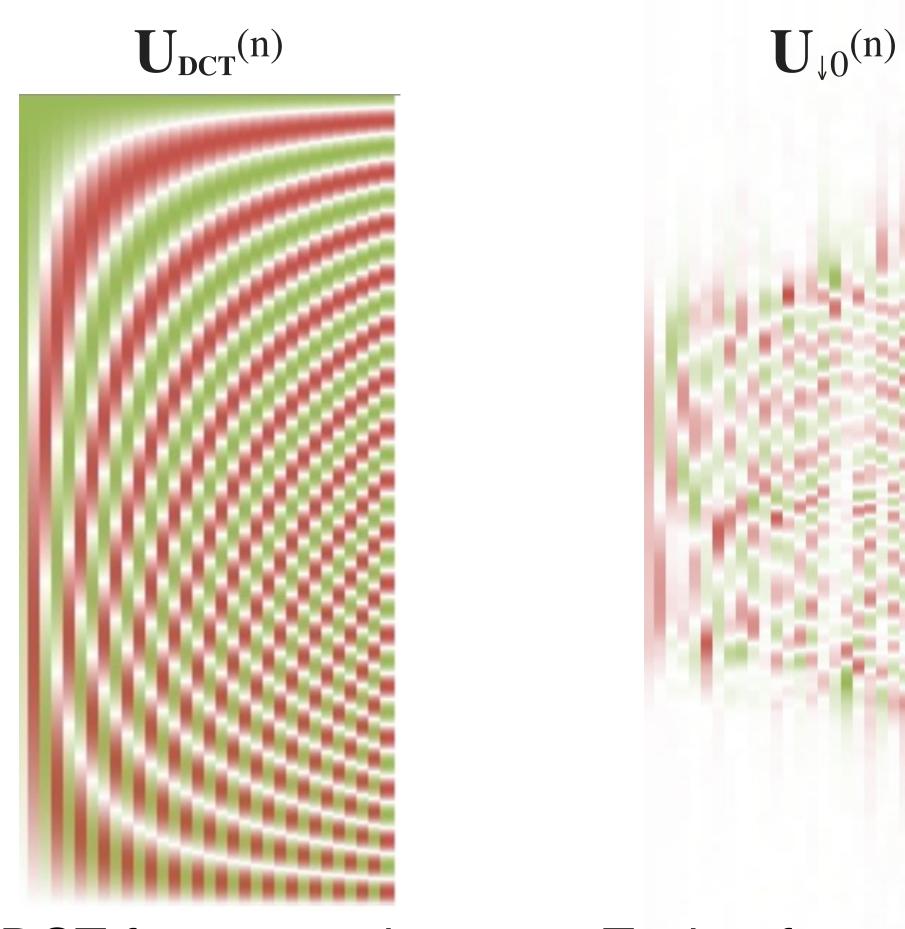
- The DCT of a 2D image or higher order tensor directly maps to the Tucker tensor decomposition model
 - tensor decomposition using pre-defined basis factor matrices
- Using the DCT type-II formulation, the basis matrices U⁽ⁿ⁾ entries can be formed by:

$$u_{ij}^{(n)} = C_i \cos \left(\frac{(2(j-1)+1)(i-1)\pi}{2I_n} \right)$$

▶ where $i \in \{1, ..., I_n\}$ and $j \in \{1, ..., R_n\}$

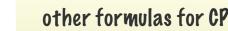


Example of Subsampled TA Factor Matrices



DCT factor matrix

Tucker factor matrices



$$I_{2} = \dots + I_{3}$$

$$b_{r_{1}r_{2}r_{3}} \qquad u_{r_{2}}^{(2)}$$

$$u^{(1)}$$

$$\widetilde{\mathscr{A}} = \mathscr{B} \times_1 \mathbf{U}^{(1)} \times_2 \mathbf{U}^{(2)} \times_3 \mathbf{U}^{(3)}$$

Reconstruction from rank-one tensors

$$\widetilde{\mathscr{A}} = \sum_{r_1=1}^{R_1} \sum_{r_2=1}^{R_2} \sum_{r_3=1}^{R_3} b_{r_1,r_2,r_3} \cdot u_{r_1}^{(1)} \circ u_{r_2}^{(2)} \circ u_{r_3}^{(3)}$$

-> progressive reconstruction

$$I_{1} \underbrace{\widetilde{A}}_{I_{2}} = \dots + \underbrace{D}_{r_{1}r_{2}r_{3}} \underbrace{u_{r_{3}}^{(2)}}_{u_{r_{1}}^{(1)}} + \dots$$

Reconstruction Complexity

$$\widetilde{\mathcal{A}} = \sum_{r_k} \mathcal{B}[r_1, \dots, r_N] \cdot \mathbf{U}_{(r_1)}^{(1)} \otimes \mathbf{U}_{(r_2)}^{(2)} \cdots \otimes \mathbf{U}_{(r_N)}^{(N)}$$

$$O(R_1 \cdot R_2 \cdot R_3 \cdot I_1 \cdot I_2 \cdot I_3)$$

$$\widetilde{\mathcal{A}} = \sum_{r} \mathbf{U}_{(r)}^{(1)} \otimes \sum_{s} \mathbf{U}_{(s)}^{(2)} \otimes \sum_{t} \mathcal{B}[r, s, t] \cdot \mathbf{U}_{(t)}^{(3)}$$

$$O(R_1 \cdot I_1 \cdot I_2 \cdot I_3)$$

