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Outline

• Part 1: Compact data representations compared
‣ wavelets
‣ tensor approximation (Tucker model)
‣ compression and multiscale features

• Part 2: Multiresolution TA Hierarchies
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Part 1: Compact Data 
Representations Compared



Compact Data Representations
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Compact Data Representation Models

• Discrete cosine transform
[Yeo & Liu, 1995]

• Fourier transform
[Chiueh et al, 1997]

• Wavelet transform
[Rodler, 1999; Guthe et al, 2002]

• Vector quantization
[Schneider & Westerman, 2003; Fout & Ma, 2007; Parys & Knittel, 2009]

• Tensor approximation
[Tsai & Shih, 2006+2012; Wang et al., 2005; Wu et al, 2008; Suter et al., 2010+2011+2013]

• For details go to EG13 STAR on “A Survey of Compressed 
GPU Direct Volume Rendering” 
(Thursday, 11:00-12:40 in Room C.1)
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Feature Extraction

• Typically done with multiresolution analysis
‣ significant components at low frequencies
‣ less important components at high frequencies

• Features at multiple spatial scales
• Multiscale feature extraction
‣ achieved through tensor rank truncation
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Tensor Rank Truncation (Tucker Model)
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Application: 
Multiscale Dental Growth Pattern
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Suter, Zollikofer and Pajarola. Application of tensor approximation 
to multiscale volume feature representations. In Proceedings Vision, 
Modeling and Visualization, pages 203–210, 2010.



Synthetic 3D Dental Growth Structures
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Source: Macho et al., 2003

[Suter et al., 2010]



Non-axis-aligned Synthetic Features
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Real Dental Growth Structures
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Real Multiscale Dental Growth Structures
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2‘200‘000 coeff. 310‘000 coeff. 57‘500 coeff. 16’500 coeff.

original size:
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[Suter et al., 2010]
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Reconstruction “Error” vs. Compression
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WT vs. TA
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Wavelet Transform (WT) Tensor Approximation (TA)
• Bases are adopted for a 

given dataset
‣ search for major direction/

variability within dataset

• Higher quality images at 
high data reduction ratios

• Goal: lossy, but keep 
features
‣ analyze and count

• Recursive decomposition at 
each scale into coarser 
resolutions

• Traditional multiresolution:
‣ projects signal at different 

resolutions onto a prescribed 
bases without knowledge on 
data

• Axis-aligned data reduction



Part 2: Multiresolution TA 
Hierarchies



Multiresolution Analysis
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Multiresolution Tree Data Structure
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Hierarchical Tucker Model
• Multiresolution analysis
‣ significant components at low frequencies 
‣ less important components at high frequencies
‣ high-frequency components have smaller spatial support
‣ thus, high-frequency components receive shorter basis 

vectors

• Why? 
‣ exploit more redundancy 
‣ receive smoother borders
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Wu et al.. Hierarchical tensor approximation of multidimensional 
visual data. IEEE Transactions on Visualization and Computer 
Graphics 14(1):186-199, January/February 2008.



Tensor Ensembles
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Tensor Ensemble Ranks

• Multilinear rank (R1,R2, ... RN) defined per hierarchy:
‣ start with Rn  = In  / 8 or In  / 16
‣ each next hierarchy rank Rn is half of the rank of the 

previous hierarchy level
‣ for example: 32, 16, 8, 4, 2
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[Wu et al., 2008]



Residual-based Hierarchy
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[Wu et al., 2008]
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Hierarchical TA and WT on a BTF
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biorth. wavelet wavelet packet single level TA
[Wang et al., 2005]

multi level TA

compression 
ratio: 55

compression
ratio: 3,922

original: sponge BTF 
- 45 views
- 60 illuminations
- image: 128x128

[Wu et al., 2008]



Multiresolution Direct Volume Rendering
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Suter et al.. Interactive multiscale tensor reconstruction for multiresolution 
volume visualization. IEEE Transactions on Visualization and Computer 
Graphics, 17(12):2135–2143, December 2011.



Rank-reducibility and Feature Extraction
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[Suter et al., 2011]



Recap: Tensor Bases and Properties
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Multiresolution and Multiscale DVR
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Suter, Makhinya and Pajarola. TAMRESH: Tensor approximation multiresolution 
hierarchy for interactive volume visualization. Computer Graphics Forum, 2013.



Multiscale and Multiresolution
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[Suter et al., 2013]



Storage Costs of TA Hierarchy Models

• Theoretical costs
‣ without empty space skipping
‣ without pruning/thresholding of coefficients

• Assumptions
‣ brick size
‣ initial rank 

• Suter et al., 2011: 
• Suter et al., 2013:
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Rinit = 32
B = 64

⇡ 0.17 · I3

⇡ 192 · I +0.14 · I3



Storage Costs of TA Hierarchy Models

• Core tensors
‣ Wu et al., 2008: 
‣ Suter et al., 2013:

• Factor matrices
‣ Wu et al., 2008: 
‣ Suter et al., 2013: 

• Rank
‣ Wu et al., 2008: 
‣ Suter et al., 2013: 

• Pruning is an important factor for Wu et al., 2008
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Quantization of TA Hierarchy Models

• Compact representation coefficients usually floating 
point numbers

• Quantize coefficients
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factor matrices core tensors

Wu et al., 2008 8-bit 8...20-bit

Suter et al., 2011 16-bit 8-bit

Suter et al., 2013 32-bit* 8-bit

*no quantization



Conclusion
• Compact data representations in scientific visualization
‣ Tucker models

• Multiscale feature extraction
‣ tensor rank truncation

• Hierarchical (multiresolution) Tucker models
‣ residual-based approach (pruning important) [Wu et al., 2008]

‣ simple brick-based multiresolution model [Suter et al., 2011]

‣ global bases; multiresolution and multiscalability [Suter et al., 2013]

• Compression via TA
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