

Tutorial: Tensor Approximation in Visualization and Graphics **Scientific Visualization Applications**

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

- Part 1: Compact data representations compared
 - wavelets
 - tensor approximation (Tucker model)
 - compression and multiscale features
- Part 2: Multiresolution TA Hierarchies

Part 1: Compact Data Representations Compared

Compact Data Representations

Compact Data Representation Models

- Discrete cosine transform [Yeo & Liu, 1995]
- Fourier transform [Chiueh et al, 1997]
- Wavelet transform [Rodler, 1999; Guthe et al, 2002]

Vector quantization

[Schneider & Westerman, 2003; Fout & Ma, 2007; Parys & Knittel, 2009]

Tensor approximation

[Tsai & Shih, 2006+2012; Wang et al., 2005; Wu et al, 2008; Suter et al., 2010+2011+2013]

 For details go to EG13 STAR on "A Survey of Compressed GPU Direct Volume Rendering" (Thursday, 11:00-12:40 in Room C.1)

- Typically done with multiresolution analysis
 - significant components at low frequencies
 - Iess important components at high frequencies
- Features at multiple spatial scales
- Multiscale feature extraction
 - achieved through tensor rank truncation

Tensor Rank Truncation (Tucker Model)

Application: Multiscale Dental Growth Pattern

scale = 0.05mm

Suter, Zollikofer and Pajarola. Application of tensor approximation to multiscale volume feature representations. In *Proceedings Vision*, *Modeling and Visualization*, pages 203–210, 2010.

WWW.eg.org

Synthetic 3D Dental Growth Structures

Non-axis-aligned Synthetic Features

[Suter et al., 2010]

Real Dental Growth Structures

[Suter et al., 2010]

[Suter et al., 2010]

original size: $256^3 = 16'777'216$

Reconstruction "Error" vs. Compression

universität**bonn**

WT vs. TA

Wavelet Transform (WT)

- Recursive decomposition at each scale into coarser resolutions
- Traditional multiresolution:
 - projects signal at different resolutions onto a prescribed bases without knowledge on data
- Axis-aligned data reduction

Tensor Approximation (TA)

- Bases are adopted for a given dataset
 - search for major direction/ variability within dataset
- Higher quality images at high data reduction ratios
- Goal: lossy, but keep features
 - analyze and count

Part 2: Multiresolution TA Hierarchies

Multiresolution Analysis

Multiresolution Tree Data Structure

Hierarchical Tucker Model

- Multiresolution analysis
 - significant components at low frequencies
 - Iess important components at high frequencies
 - high-frequency components have smaller spatial support
 - thus, high-frequency components receive shorter basis vectors
- Why?
 - exploit more redundancy
 - receive smoother borders

Wu et al.. Hierarchical tensor approximation of multidimensional visual data. *IEEE Transactions on Visualization and Computer Graphics* 14(1):186-199, January/February 2008.

Tensor Ensemble Ranks

[Wu et al., 2008]

- Multilinear rank (R₁,R₂, ... R_N) defined per hierarchy:
 - start with $R_n = I_n / 8$ or $I_n / 16$
 - each next hierarchy rank R_n is half of the rank of the previous hierarchy level
 - for example: 32, 16, 8, 4, 2

WWW.eg.org

Residual-based Hierarchy

[Wu et al., 2008]

Hierarchical TA and WT on a BTF

[Wu et al., 2008]

original: sponge BTF

- 45 views

- 60 illuminations

- image: 128x128

VISUALIZATIONAND MULTIMEDIALAB

WWW.eg.cre

Multiresolution Direct Volume Rendering

Suter et al.. Interactive multiscale tensor reconstruction for multiresolution volume visualization. *IEEE Transactions on Visualization and Computer Graphics*, 17(12):2135–2143, December 2011.

[Suter et al., 2011]

Recap: Tensor Bases and Properties

WWW.eg.org

Multiresolution and Multiscale DVR

Suter, Makhinya and Pajarola. TAMRESH: Tensor approximation multiresolution hierarchy for interactive volume visualization. *Computer Graphics Forum*, 2013.

Multiscale and Multiresolution

[Suter et al., 2013]

scale

(rank)

8

Storage Costs of TA Hierarchy Models

- Theoretical costs
 - without empty space skipping
 - without pruning/thresholding of coefficients
- Assumptions
 - brick size B = 64
 - initial rank $R_{init} = 32$
- Suter et al., 2011: $\approx 0.17 \cdot I^3$
- Suter et al., 2013: $\approx 192 \cdot I + 0.14 \cdot I^3$

Storage Costs of TA Hierarchy Models

- Core tensors
 - Wu et al., 2008: $O(\log(I) \cdot R^3)$
 - Suter et al., 2013: $O(R^3)$
- Factor matrices
 - Wu et al., 2008: $O(4 \cdot I \cdot R) + O(\frac{I^6}{B^6})$
 - Suter et al., 2013: $O(6 \cdot I \cdot R)$
- Rank
 - Wu et al., 2008: $R = \frac{I}{16}$
 - Suter et al., 2013: $R = \frac{B}{2} = 32$
- Pruning is an important factor for Wu et al., 2008

Quantization of TA Hierarchy Models

- Compact representation coefficients usually floating point numbers
- Quantize coefficients

	factor matrices	core tensors
Wu et al., 2008	8-bit	820-bit
Suter et al., 2011	16-bit	8-bit
Suter et al., 2013	32-bit*	8-bit

*no quantization

- Compact data representations in scientific visualization
 - Tucker models
- Multiscale feature extraction
 - tensor rank truncation
- Hierarchical (multiresolution) Tucker models
 - residual-based approach (pruning important) [Wu et al., 2008]
 - simple brick-based multiresolution model [Suter et al., 2011]
 - global bases; multiresolution and multiscalability [Suter et al., 2013]
- Compression via TA

Acknowledgments

- This work was supported by:
 - Forschungskredit of the University of Zürich
 - Swiss National Science Foundation (SNSF) grant project n °200021_132521
 - EU FP7 People Programme (Marie Curie Actions) REA Grant Agreement n°290227
 - German Science Foundation (DFG) research grant KL 1142/4-1
 - All vmmlib collaborators, contributors and users
- We would like to thank the Computer-Assisted Paleoanthropology group at University of Zürich for the acquisition of the test datasets

