
Institute of Computer Science II
Computer Graphics

Tutorial: Tensor Approximation in Visualization and Graphics

Clustering and Sparsity

Renato Pajarola, Susanne K. Suter, and Roland Ruiters

Clustering and Sparsity
Clustered/Sparse output

• Several decomposition techniques utilize either clustering
or sparsity to
‣ Increase the compression ratio

‣ Reduce the decompression time

Sparse Input

• How to handle missing values?

• How to cope with sparse and irregular input samplings?

Clustering

Sparsity

Sparse and irregular input

2

Clustered Tensor Approximation
• Some datasets are composed of several parts which

are mostly independent
‣ E.g. a surface composed of several different materials

‣ There is no correlation between these parts which can be
exploited for compression

• Combine clustering and tensor approximation
‣ Proposed in [Tsai-2006]

‣ Extension of Clustered PCA to tensors

3

Clustered Tensor Approximation
• The tensor is clustered along one of its modes

• All slices corresponding to one cluster are grouped into
new tensors

• For each of these tensors a Tucker factorization is
performed

• Each of the individual clusters can be compressed with
a smaller core tensor
‣ Faster decompression

‣ Potentially better compression ratio
– Only if a good clustering is possible!

C
lustering

R
eordering

Tucker
Factorization

4

Clustered Tensor Approximation
• The clusters should be grouped in such a way,

that the compression error is minimized

• Iterative algorithm (similar to k-means)
‣ Initialize with clustering on unrolled slices

‣ Repeat until convergence
– Perform Tucker factorization for each cluster
– Reassign slices into cluster in which they can be

represented with the smallest error
■ Using core tensor and factor matrices from the previous

step

Initial clustering

R
ea

ss
ig

n
cl

us
te

rs

Update
 Factorizations

Convergence

5

Clustered Tensor Approximation
• Applications to PRT in [Tsai-2006] and [Sun-2007]

• Good approximation quality at a compression ratio of 1:75
• Interactive rendering possible
• Cluster boundaries visible at higher compression ratios

• No direct comparison to other compression techniques provided

uncompressed 1:75 1:127 1:165

[Tsai-2006]

6

Clustered Tensor Approximation
• Decreased tensor size improves rendering performance
‣ 30%-80% higher framerate for BTF rendering compared to

Tucker factorization [Tsai-2009]

• Coherence between clusters is not utilized at all
‣ Compression ratio on BTF datasets inferior to Tucker

factorization

• Clustering can result in visible cluster boundaries

• Linear interpolation in the clustered mode is expensive
‣ GPU texture interpolation cannot be used

– Clustering along view direction for BTFs

[Tsai-2006]

BTF compression errors
from [Tsai-2009]

7

• Represent matrix Y as a product of a dictionary matrix D and a sparse matrix X
‣ Each column of X contains at most k entries

• Each column of Y (signal) is thus approximated as linear combination of at most k
columns from D (atom)

Sparse Signal Coding
Atoms

Signals

Sparse
Matrix

8

• Given Y this minimization problem has to be solved:

• K-SVD [Aharon-2006] optimizes this problem
‣ Searches for both the dictionary D and the sparse representation X

Sparse Signal Coding

9

• The sparsity of X has two important advantages compared to full matrices
‣ It can be represented more compactly
‣ The matrix product can be evaluated faster

• Two different applications of K-SVD to tensors have been proposed
‣ K-Clustered Tensor Approximation [Tsai-2009] and [Tsai-2011]
‣ Sparse Tensor Decomposition [Ruiters-2009]

Sparse Signal Coding

10

K-Clustered Tensor Approximation
• Utilize inter-cluster correlations by assigning each slice in

mode 𝑚 to 𝑘 from 𝑛 clusters
‣ Each slice is approximated as the sum of the contribution of 𝑘

slices each belonging to one of 𝑛 clusters

11

≈

+
 𝑘

=
2

K-Clustered Tensor Approximation
• Utilize inter-cluster correlations by assigning each slice in

mode 𝑚 to 𝑘 from 𝑛 clusters
‣ Each slice is approximated as the sum of the contribution of 𝑘

slices each belonging to one of 𝑛 clusters

‣ This can also be considered as a sum of 𝑛 Tensors in which
along mode 𝑚 only 𝑘 slices are non-zero.

12

≈

+

+

𝑛
=

3

Only 𝑘 non-zero
slices

K-Clustered Tensor Approximation
• Utilize inter-cluster correlations by assigning each slice in

mode 𝑚 to 𝑘 from 𝑛 clusters
‣ Each slice is approximated as the sum of the contribution of 𝑘

slices each belonging to one of 𝑛 clusters

‣ This can also be considered as a sum of 𝑛 tensors in which
along mode 𝑚 only 𝑘 slices are non-zero

‣ This results in sparse 𝑼𝑚,𝑐 matrices in the Tucker factorizations
of the per-cluster tensors

13

≈

+

+

𝑼𝑚,1

𝑼𝑚,2

𝑼𝑚,3

K-Clustered Tensor Approximation
• Utilize inter-cluster correlations by assigning each slice in

mode 𝑚 to 𝑘 from 𝑛 clusters
‣ Each slice is approximated as the sum of the contribution of 𝑘

slices each belonging to one of 𝑛 clusters

‣ This can also be considered as a sum of 𝑛 tensors in which
along mode 𝑚 only 𝑘 slices are non-zero

‣ This results in sparse 𝑼𝑚,𝑐 matrices in the Tucker factorizations
of the per-cluster tensors

• Relation to the K-SVD
‣ The core tensor and the other mode matrices correspond to the

Dictionary D
‣ The sparse matrices 𝑼𝑚,𝑐 correspond to the sparse matrix X

14

≈

+

+

𝑼𝑚,1

𝑼𝑚,2

𝑼𝑚,3

Dictionary Sparse Matrices

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters
– Update the factorizations of each cluster

• Computations can be performed efficiently on
the factorization with reduced rank
‣ Not shown in the following

K-Clustered Tensor Approximation

16

Cluster
Assignments

Update
 Factorizations

R
ep

ea
t

Until
Convergence

Initial clusters
via CTA

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

K-Clustered Tensor Approximation

17

Choose cluster
in which slice can
be represented

with smallest error

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

K-Clustered Tensor Approximation

18

Update 𝑈𝑚,𝑐
in this cluster

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

K-Clustered Tensor Approximation

19

− compute
residual

Select best
cluster for residual

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

K-Clustered Tensor Approximation

20

Update 𝑈𝑚,𝑐
in all selected

clusters
simultaneously

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

– Update the tensor factorizations
■ Iteratively for each cluster

• Compute the residual by subtracting the reconstruction of all other
clusters from the data tensor

• Factorize the residual for the selected slices

K-Clustered Tensor Approximation

21

−

−
Compute
Residual

Factorization
for slices belonging

to the cluster

• The algorithm is similar to K-SVD [Aharon-2006]:
‣ Initialize the clusters with a single step CTA

‣ Repeat until convergence
– Update the assignment of each slice to 𝑘 clusters

■ Greedily via orthogonal matching pursuit
• Compute the residual by subtracting the representation in the already

chosen clusters
• Assign the cluster in which this residual can be represented with the

smallest error to the slice
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters

– Update the tensor factorizations
■ Iteratively for each cluster

• Compute the residual by subtracting the reconstruction of all other
clusters from the data tensor

• Factorize the residual for the selected slices

K-Clustered Tensor Approximation

22

−

−
Compute
Residual

Factorization
for slices belonging

to the cluster

K-Clustered Tensor Approximation

23

• BTF represented as a mode-4 tensor
‣ Views × Light × X × Y
‣ Clustering along the view mode
‣ For GPU rendering the last two modes are premultiplied

• Compression ratio better than CTA
‣ For BTF compression approximately equal to Tucker

• Faster decompression than Tucker
‣ Since only a small subset of 𝑘 of the clusters has to be

decompressed for each slice
‣ 30%-70% higher framerate for BTFs [Tsai-2009]

• Fewer problems with visible cluster boundaries
• Interpolation on GPU remains a problem

BTF compression errors
from [Tsai-2009]

K-Clustered Tensor Approximation
• Applications to BTF Compression in [Tsai-2009]

24

Input: 1.2 GB, Compressed size: ca. 4.6 MB, Compression ratio: 1:267

Uncompressed Tucker
Squared Error Ratio: 0.85%

CTA
Squared Error Ratio: 1.06%

K-CTA
Squared Error Ratio: 0.89%

• The sparsity of X has two important advantages compared to full matrices
‣ It can be represented more compactly
‣ The matrix product can be evaluated faster

• Two different applications of K-SVD to tensors have been proposed
‣ K-Clustered Tensor Approximation [Tsai-2009] and [Tsai-2011]
‣ Sparse Tensor Decomposition [Ruiters-2009]

Sparse Signal Coding

25

• 𝓣 regarded as a collection of Mode-M subtensors
‣ Each subtensor is approximated as a combination of at most k

dictionary entries

• 𝓓 is a dictionary containing mode-M subtensor

• 𝓧 is a sparse mode-(N-M+1) tensor

Sparse Tensor Decomposition

26

• Implicit summation over repeated indices

• The elements of a tensor are thus given by:

Einstein Summation Convention

27

• A mode-N tensor 𝓣 is decomposed into a mode-(M+1) dictionary 𝓓 and a
mode-(N-M+1) sparse Tensor 𝓧

Sparse Tensor Decomposition

28

Sparse Tensor Decomposition

• The decomposition is calculated by unfolding the tensor and using K-SVD
on the unfolded tensor

29

Sparse Tensor Decomposition
• Only correlations in one mode have been utilized so far
‣ Decomposition can be repeated along a different mode of 𝓓

• When performed for all modes, we get a decomposition

 𝓓 Mode-2 dictionary tensor
 𝓧(1) …𝓧(𝑁−1) Sparse mode-3 tensors
 𝓧(𝑁) Sparse mode-2 tensor

30

Sparse Tensor Decomposition
• BTF represented as a mode-3 tensor
‣ (Color*Light) × Views × Position

• Good compression ratio
‣ By a factor of 3-4 better than PCA and by

4-5 times better than Tucker at the same
RMS

• Sparsity enables faster rendering
‣ Not well suited for GPU rendering

– Interpolation a problem

BTF compression errors
from [Ruiters-2009]

BTF render timings
from [Ruiters-2009]

31

Sparse Tensor Decomposition

Images from [Ruiters-2009]

32

Original

2,4 GB

Sparse Tensor
Decomposition

3.0 MB, RMS: 0.033

PCA

3.0 MB, RMS: 0.041

N-mode SVD
3.1 MB, RMS: 0.049

PCF
3.6 MB, RMS: 0.040

Sparse Tensor Decomposition

Images from [Ruiters-2009] 33

Original

Sparse Tensor Decomposition

PCA

N-Mode SVD

Sparse Tensor Decomposition

34

Original

2,1 GB

Sparse Tensor
Decomposition

1.6 MB, RMS: 0.024

PCA

1.6 MB, RMS: 0.034

N-mode SVD
1.6 MB, RMS: 0.040

PCF
1.7 MB, RMS: 0.036

Images from [Ruiters-2009]

Sparse Tensor Decomposition

Original 14.77 GB

Sparse Tensor Decomposition 3.9MB, RMS: 0.0058

PCA 4.0MB, RMS: 0.0074

PCF 3.6 MB, RMS: 0.0082
Images from [Ruiters-2009] 35

BTF Compression Results

36

Original

CTA [Tsai-2009]
SER 1.06%

K-CTA [Tsai-2009]
SER 0.89%

CP, 145 components
SER 0.75%

PCA, 66 components
SER 0.64%

Tucker, 20 × 28 × 64 × 64 core
SER 0.85%

STD, 𝑘1 = 28, 𝑘2 = 60
SER 0.55%

All BTFs were compressed to ca. 4.6 MB SER between 𝑋 and approximation 𝑋�: (𝑋−𝑋�)2

𝑋2

Sparse and Irregularly Sampled Input
• There are several reasons, why the input data might be

incomplete and irregularly sampled
‣ Not all data have been acquired

– E.g. for some actors not all styles, actions, etc. are available

‣ The domain of the parameterization is not rectangular
– E.g. when using the Half/Diff parameterization for BRDFs

‣ The measurement results in an irregular and sparse sampling
– Might result from restrictions of the measurement device

37

BTF Measurement device at the
University of Bonn

Irregular domain of Half/Diff
parameterization

𝜃𝑑 𝜑𝑑

𝜃ℎ

Im
pu

ta
tio

n
O

rig
in

al

Imputation of missing measurements
from [Vlasic-2005]

Sparse and Irregularly Sampled Input
• Several strategies to cope with missing data exist
‣ Weighted Tensor Approximation

– Set weights on the missing data to 0 and compute weighted TA
■ The weights can be integrated into the Least Squares Problems during ALS

‣ Expectation Maximization
– Initialize the missing elements (e.g. with mean values)
– In each iteration of the ALS set the missing values to the tensor decomposition

‣ Convex Optimization [Liu-2009]
– Solve convex optimization problem which minimizes trace norm as approximation of the tensor rank

• All of these techniques operate on the dense tensor as input
‣ This can be a problem if the tensor is very large

‣ E.g. a SVBRDF at the angular sampling of the MERL BRDFs and 512x512 spatial resolution
– 3 × 180 × 90 × 90 × (512 ∗ 512) tensor, ca. 4 TB

38

Sparse and Irregularly Sampled Input

39

3D Geometry

Bonn Multi-View Dome

UVa Coaxial Scanner
[Holroyd-2010]

• Measurement of the reflectance of an object
‣ Samples are taken from different view directions

‣ and under different illumination conditions

Sparse and Irregularly Sampled Input

40

Bonn Multi-View Dome

UVa Coaxial Scanner
[Holryd-2010]

3D Geometry

• For complex geometry, this results in
irregular and sparse samplings
‣ Irregular due to variations of the local

coordinate system

‣ Sparse due to occlusions

Sparse and Irregularly Sampled Input
• A continuous analogue of the CP factorization can be utilized [Ruiters-2012]
‣ Model the SVBRDF as a Sum of Separable Functions (SSF)

 Separation rank

 One dimensional piecewise linear functions for each component c and dimension d

41

+ + +

5 dimensional function 1 dimensional functions

Objective Function

42

Fitting Term
• Penalizes deviations from the measured samples
‣ Weighted squared error

Regularization Term
• Enforces angular smoothness
‣ Square of the second derivative in the angular parameter domains

• Includes non-local spatial regularization

• To fit this representation to a given set of sample, an objective function with two terms is
minimized:

Spatial Regularization

• Not enough samples available to compute material
everywhere independently

• Most objects contain many regions with similar materials

• Not always in connected uniform regions
‣ Smoothness regularization not adequate

• Non-local, appearance neighborhood based regularization
‣ Enforces texels which are near in the appearance space to

have similar materials

‣ Based on the low-rank approximation from AppProp [An et al.
2008]

43

Similar Materials

Optimization Algorithm
• Optimization strategy very similar to Alternating Least Squares
‣ Iterate until convergence

– Update the 𝑓(𝑐,𝑑) functions one at a time
■ Keeping all the other functions fixed

• This results in a linear least squares problem
• Linear interpolation for continuous samples not on the grid can be taken into account
• Regularization operations can also be included into the optimization

44

Results

45

• 151x151 Views x Lights, 256 x 256 texture resolution

• Cook-Torrance was fitted with ideal distribution map
‣ Tensor approximation preserves the highlight shape well, but underestimates brightness

‣ BTF fails to resolve the highlight shape due to insufficient angular resolution

‣ Brightness for Cook-Torrance better, shape not well preserved

Photograph [Ruiters-2012] BTF Cook Torrance

Images from [Ruiters-2012]

Summary
• Clustered Tensor Approximation and K-Clustered Tensor Approximation
‣ Fast decoding due to clustering/sparsity

‣ Compression ratio inferior (CTA) or comparable (K-CTA) than Tucker

• Sparse Tensor Decomposition
‣ Very high compression ratios (for BTFs)

– Higher than PCA

‣ Decompression faster than Tucker but linear interpolation a problem

• Sparse and irregular input
‣ Can be treated as missing values

‣ Alternatively, a tensor model can be fitted directly to the sparse samples
– Integrating additional regularization constraints allows for even sparser samplings

46

References

47

Aharon-2006 AHARON M., ELAD M., BRUCKSTEIN A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. In IEEE
Transactions on Signal Processing, 54, 11 (Nov. 2006), 4311–4322

Holroyd-2010 HOLROYD M., LAWRENCE J., ZICKLER T.: A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance.
In ACM Transactions on Graphics 29, 4 (2010), 99.

Liu-2009 LIU J., MUSIALSKI P., WONKA P., YE J.: Tensor completion for estimating missing values in visual data. In International Conference on
Computer Vision, (2009), pp. 2114 –2121.

Ruiters-2009 RUITERS R., KLEIN R.: BTF compression via sparse tensor decomposition. In Computer Graphics Forum 28, 4 (July 2009), 1181–1188.

Ruiters-2012 RUITERS R., SCHWARTZ C., KLEIN R.: Data driven surface reflectance from sparse and irregular samples. In Computer Graphics Forum
31, 2 (May 2012), 315–324.

Sun-2007 SUN X., ZHOU K., CHEN Y., LIN S., SHI J., GUO B.: Interactive relighting with dynamic BRDFs. In ACM Transactions on Graphics 26, 3
(2007), 27.

Tsai-2006 TSAI Y.-T., SHIH Z.-C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor
approximation. In ACM Transactions on Graphics 25, 3 (2006), pp. 967–976.

Tsai-2009 TSAI Y.-T.: Parametric Representations and Tensor Approximation Algorithms for Real-Time Data-Driven Rendering. Ph.D. Dissertation,
National Chiao Tung University, May 2009.

Tsai-2012 TSAI Y.-T., SHIH Z.-C.: K-clustered tensor approximation: A sparse multilinear model for real-time rendering. In ACM Transactions on
Graphics 31, 3 (2012), 19.

Vlasic-2005 VLASIC D., BRAND M., PFISTER H., POPOVIĆ J.: Face transfer with multilinear models. In ACM Transactions on Graphics 24, 3 (2005),
pp. 426-433

	Tutorial: Tensor Approximation in Visualization and Graphics��Clustering and Sparsity�
	Clustering and Sparsity
	Clustered Tensor Approximation
	Clustered Tensor Approximation
	Clustered Tensor Approximation
	Clustered Tensor Approximation
	Clustered Tensor Approximation
	Sparse Signal Coding
	Sparse Signal Coding
	Sparse Signal Coding
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	K-Clustered Tensor Approximation
	Sparse Signal Coding
	Sparse Tensor Decomposition
	Einstein Summation Convention
	Sparse Tensor Decomposition
	Sparse Tensor Decomposition
	Sparse Tensor Decomposition
	Sparse Tensor Decomposition
	Foliennummer 32
	Foliennummer 33
	Foliennummer 34
	Sparse Tensor Decomposition
	BTF Compression Results
	Sparse and Irregularly Sampled Input
	Sparse and Irregularly Sampled Input
	Sparse and Irregularly Sampled Input
	Sparse and Irregularly Sampled Input
	Sparse and Irregularly Sampled Input
	Objective Function
	Spatial Regularization
	Optimization Algorithm
	Results
	Summary
	References

