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Clustering and Sparsity 
Clustered/Sparse output 

• Several decomposition techniques utilize either clustering 
or sparsity to 
‣ Increase the compression ratio 

‣ Reduce the decompression time 

 

Sparse Input 

• How to handle missing values? 

• How to cope with sparse and irregular input samplings? 

Clustering 

Sparsity 

Sparse and irregular input 
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Clustered Tensor Approximation 
• Some datasets are composed of several parts which 

are mostly independent 
‣ E.g. a surface composed of several different materials 

‣ There is no correlation between these parts which can be 
exploited for compression 

 

• Combine clustering and tensor approximation 
‣ Proposed in [Tsai-2006] 

‣ Extension of Clustered PCA to tensors 
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Clustered Tensor Approximation 
• The tensor is clustered along one of its modes 

• All slices corresponding to one cluster are grouped into 
new tensors 

• For each of these tensors a Tucker factorization is 
performed 

 

• Each of the individual clusters can be compressed with 
a smaller core tensor 
‣ Faster decompression 

‣ Potentially better compression ratio 
– Only if a good clustering is possible! 

C
lustering 
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Clustered Tensor Approximation 
• The clusters should be grouped in such a way, 

that the compression error is minimized 

 

• Iterative algorithm (similar to k-means) 
‣ Initialize with clustering on unrolled slices 

‣ Repeat until convergence 
– Perform Tucker factorization for each cluster 
– Reassign slices into cluster in which they can be 

represented with the smallest error 
■ Using core tensor and factor matrices from the previous 

step 
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5 



Clustered Tensor Approximation 
• Applications to PRT in [Tsai-2006] and [Sun-2007] 

 
 
 

 
 
 

• Good approximation quality at a compression ratio of 1:75 
• Interactive rendering possible 
• Cluster boundaries visible at higher compression ratios 

• No direct comparison to other compression techniques provided 

uncompressed 1:75 1:127 1:165 

[Tsai-2006] 
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Clustered Tensor Approximation 
• Decreased tensor size improves rendering performance 
‣ 30%-80% higher framerate for BTF rendering compared to 

Tucker factorization [Tsai-2009] 

 

• Coherence between clusters is not utilized at all 
‣ Compression ratio on BTF datasets inferior to Tucker 

factorization 

• Clustering can result in visible cluster boundaries 

• Linear interpolation in the clustered mode is expensive 
‣ GPU texture interpolation cannot be used 

– Clustering along view direction for BTFs 
 

 

[Tsai-2006] 

BTF compression errors 
from [Tsai-2009] 
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• Represent matrix Y as a product of a dictionary matrix D and a sparse matrix X 
‣ Each column of X contains at most k entries 

 

• Each column of Y (signal) is thus approximated as linear combination of at most k 
columns from D (atom) 

Sparse Signal Coding 
Atoms 

Signals 

Sparse 
Matrix 
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• Given Y this minimization problem has to be solved: 

 

 

• K-SVD [Aharon-2006] optimizes this problem 
‣ Searches for both the dictionary D and the sparse representation X 

 

Sparse Signal Coding 
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• The sparsity of X has two important advantages compared to full matrices 
‣ It can be represented more compactly 
‣ The matrix product can be evaluated faster 

 
• Two different applications of K-SVD to tensors have been proposed 
‣ K-Clustered Tensor Approximation  [Tsai-2009] and [Tsai-2011] 
‣ Sparse Tensor Decomposition   [Ruiters-2009] 

 

 

Sparse Signal Coding 
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K-Clustered Tensor Approximation 
• Utilize inter-cluster correlations by assigning each slice in 

mode 𝑚 to 𝑘 from 𝑛 clusters 
‣ Each slice is approximated as the sum of the contribution of 𝑘 

slices each belonging to one of 𝑛 clusters 
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K-Clustered Tensor Approximation 
• Utilize inter-cluster correlations by assigning each slice in 

mode 𝑚 to 𝑘 from 𝑛 clusters 
‣ Each slice is approximated as the sum of the contribution of 𝑘 

slices each belonging to one of 𝑛 clusters 

‣ This can also be considered as a sum of 𝑛 Tensors in which 
along mode 𝑚 only 𝑘 slices are non-zero. 
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K-Clustered Tensor Approximation 
• Utilize inter-cluster correlations by assigning each slice in 

mode 𝑚 to 𝑘 from 𝑛 clusters 
‣ Each slice is approximated as the sum of the contribution of 𝑘 

slices each belonging to one of 𝑛 clusters 

‣ This can also be considered as a sum of 𝑛 tensors in which 
along mode 𝑚 only 𝑘 slices are non-zero 

‣ This results in sparse 𝑼𝑚,𝑐 matrices in the Tucker factorizations 
of the per-cluster tensors 
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K-Clustered Tensor Approximation 
• Utilize inter-cluster correlations by assigning each slice in 

mode 𝑚 to 𝑘 from 𝑛 clusters 
‣ Each slice is approximated as the sum of the contribution of 𝑘 

slices each belonging to one of 𝑛 clusters 

‣ This can also be considered as a sum of 𝑛 tensors in which 
along mode 𝑚 only 𝑘 slices are non-zero 

‣ This results in sparse 𝑼𝑚,𝑐 matrices in the Tucker factorizations 
of the per-cluster tensors 

• Relation to the K-SVD 
‣ The core tensor and the other mode matrices correspond to the 

Dictionary D 
‣ The sparse matrices 𝑼𝑚,𝑐 correspond to the sparse matrix X 
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 
– Update the factorizations of each cluster 

 
 

• Computations can be performed efficiently on  
the factorization with reduced rank 
‣ Not shown in the following 

 

K-Clustered Tensor Approximation 
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

 

K-Clustered Tensor Approximation 
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Choose cluster 
in which slice can 
be represented 
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

 

K-Clustered Tensor Approximation 

18 

Update 𝑈𝑚,𝑐  
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

 

K-Clustered Tensor Approximation 
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

 

K-Clustered Tensor Approximation 

20 

Update 𝑈𝑚,𝑐  
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

– Update the tensor factorizations 
■ Iteratively for each cluster 

• Compute the residual by subtracting the reconstruction of all other 
clusters from the data tensor 

• Factorize the residual for the selected slices 

 

K-Clustered Tensor Approximation 
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• The algorithm is similar to K-SVD [Aharon-2006]: 
‣ Initialize the clusters with a single step CTA 

‣ Repeat until convergence 
– Update the assignment of each slice to 𝑘 clusters 

■ Greedily via orthogonal matching pursuit 
• Compute the residual by subtracting the representation in the already 

chosen clusters 
• Assign the cluster in which this residual can be represented with the 

smallest error to the slice 
• Update the representation 𝑈𝑚,𝑐 in the already assigned clusters 

– Update the tensor factorizations 
■ Iteratively for each cluster 

• Compute the residual by subtracting the reconstruction of all other 
clusters from the data tensor 

• Factorize the residual for the selected slices 

 

K-Clustered Tensor Approximation 
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K-Clustered Tensor Approximation 
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• BTF represented as a mode-4 tensor 
‣ Views × Light × X × Y 
‣ Clustering along the view mode 
‣ For GPU rendering the last two modes are premultiplied 
 

• Compression ratio better than CTA 
‣ For BTF compression approximately equal to Tucker 

 

• Faster decompression than Tucker 
‣ Since only a small subset of 𝑘 of the clusters has to be 

decompressed for each slice 
‣ 30%-70% higher framerate for BTFs [Tsai-2009] 

 

• Fewer problems with visible cluster boundaries 
• Interpolation on GPU remains a problem 

BTF compression errors 
from [Tsai-2009] 



K-Clustered Tensor Approximation 
•  Applications to BTF Compression in [Tsai-2009] 
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Input: 1.2 GB, Compressed size: ca. 4.6 MB, Compression ratio: 1:267 

Uncompressed Tucker 
Squared Error Ratio: 0.85% 

CTA 
Squared Error Ratio: 1.06% 

K-CTA 
Squared Error Ratio: 0.89% 



 
 
 
 

• The sparsity of X has two important advantages compared to full matrices 
‣ It can be represented more compactly 
‣ The matrix product can be evaluated faster 

 
• Two different applications of K-SVD to tensors have been proposed 
‣ K-Clustered Tensor Approximation  [Tsai-2009] and [Tsai-2011] 
‣ Sparse Tensor Decomposition   [Ruiters-2009] 

 

 

Sparse Signal Coding 

25 



 

 

 

 

• 𝓣 regarded as a collection of Mode-M subtensors 
‣ Each subtensor is approximated as a combination of at most k 

dictionary entries 
 

• 𝓓 is a dictionary containing mode-M subtensor 

• 𝓧  is a sparse mode-(N-M+1) tensor 

 

Sparse Tensor Decomposition 
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• Implicit summation over repeated indices 

 

 

 

• The elements of a tensor                       are thus given by: 

Einstein Summation Convention 
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• A mode-N tensor 𝓣 is decomposed into a mode-(M+1) dictionary 𝓓 and a 
mode-(N-M+1) sparse Tensor 𝓧 

 

Sparse Tensor Decomposition 
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Sparse Tensor Decomposition 

 
 
 
 
 
 
 
 

• The decomposition is calculated by unfolding the tensor and using K-SVD 
on the unfolded tensor 
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Sparse Tensor Decomposition 
• Only correlations in one mode have been utilized so far 
‣ Decomposition can be repeated along a different mode of 𝓓  

 
• When performed for all modes, we get a decomposition 

 
 
 
 

 𝓓      Mode-2 dictionary tensor 
 𝓧(1) …𝓧(𝑁−1)   Sparse mode-3 tensors 
 𝓧(𝑁)     Sparse mode-2 tensor 
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Sparse Tensor Decomposition 
• BTF represented as a mode-3 tensor 
‣ (Color*Light) × Views × Position 

• Good compression ratio 
‣ By a factor of 3-4 better than PCA and by  

4-5 times better than Tucker at the same  
RMS 

• Sparsity enables faster rendering 
‣ Not well suited for GPU rendering 

– Interpolation a problem 

 

 

 

BTF compression errors 
from [Ruiters-2009] 

BTF render timings 
from [Ruiters-2009] 
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Sparse Tensor Decomposition 

Images from [Ruiters-2009] 
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Original 
 

2,4 GB 

Sparse Tensor  
Decomposition 

3.0 MB, RMS: 0.033 

PCA  
 

3.0 MB, RMS: 0.041 

N-mode SVD 
3.1 MB, RMS: 0.049 

PCF 
3.6 MB, RMS: 0.040 



Sparse Tensor Decomposition 

Images from [Ruiters-2009] 33 

Original 

Sparse Tensor Decomposition 

PCA 

N-Mode SVD 



Sparse Tensor Decomposition 
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Original 
 

2,1 GB 

Sparse Tensor  
Decomposition 

1.6 MB, RMS: 0.024 

PCA  
 

1.6 MB, RMS: 0.034 

N-mode SVD 
1.6 MB, RMS: 0.040 

PCF 
1.7 MB, RMS: 0.036 

Images from [Ruiters-2009] 



Sparse Tensor Decomposition 

Original 14.77 GB 

Sparse Tensor Decomposition 3.9MB, RMS: 0.0058 

PCA 4.0MB, RMS: 0.0074 

PCF 3.6 MB, RMS: 0.0082 
Images from [Ruiters-2009] 35 



BTF Compression Results 
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Original 

CTA  [Tsai-2009] 
SER 1.06% 

K-CTA  [Tsai-2009] 
SER 0.89% 

CP, 145 components 
SER 0.75% 

PCA, 66 components 
SER 0.64% 

Tucker, 20 × 28 × 64 × 64 core 
SER 0.85% 

STD, 𝑘1 = 28, 𝑘2 = 60 
SER 0.55% 

All BTFs were compressed to ca. 4.6 MB SER between 𝑋 and approximation 𝑋�: (𝑋−𝑋�)2

𝑋2
 



Sparse and Irregularly Sampled Input 
• There are several reasons, why the input data might be 

incomplete and irregularly sampled 
‣ Not all data have been acquired 

– E.g. for some actors not all styles, actions, etc. are available 

 

‣ The domain of the parameterization is not rectangular 
– E.g. when using the Half/Diff parameterization for BRDFs 

 

‣ The measurement results in an irregular and sparse sampling 
– Might result from restrictions of the measurement device 
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BTF Measurement device at the  
University of Bonn 

Irregular domain of Half/Diff 
parameterization 
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Imputation of missing measurements 
from [Vlasic-2005] 



Sparse and Irregularly Sampled Input 
• Several strategies to cope with missing data exist 
‣ Weighted Tensor Approximation 

– Set weights on the missing data to 0 and compute weighted TA 
■ The weights can be integrated into the Least Squares Problems during ALS 

‣ Expectation Maximization 
– Initialize the missing elements (e.g. with mean values) 
– In each iteration of the ALS set the missing values to the tensor decomposition 

‣ Convex Optimization [Liu-2009] 
– Solve convex optimization problem which minimizes trace norm as approximation of the tensor rank 

• All of these techniques operate on the dense tensor as input 
‣ This can be a problem if the tensor is very large 

‣ E.g. a SVBRDF at the angular sampling of the MERL BRDFs and 512x512 spatial resolution 
– 3 × 180 × 90 × 90 × (512 ∗ 512) tensor, ca. 4 TB 

 
 

38 



Sparse and Irregularly Sampled Input 
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3D Geometry 

Bonn Multi-View Dome 

UVa Coaxial Scanner 
[Holroyd-2010]  

• Measurement of the reflectance of an object 
‣ Samples are taken from different view directions 

‣ and under different illumination conditions 



Sparse and Irregularly Sampled Input 
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Bonn Multi-View Dome 

UVa Coaxial Scanner 
[Holryd-2010]  

3D Geometry 

• For complex geometry, this results in 
irregular and sparse samplings 
‣ Irregular due to variations of the local 

coordinate system 

‣ Sparse due to occlusions 



Sparse and Irregularly Sampled Input 
• A continuous analogue of the CP factorization can be utilized [Ruiters-2012] 
‣ Model the SVBRDF as a Sum of Separable Functions (SSF) 

 

 

 
  Separation rank 

  One dimensional piecewise linear functions for each component c and dimension d 

41 
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5 dimensional function 1 dimensional functions 



Objective Function 
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Fitting Term 
• Penalizes deviations from the measured samples  
‣ Weighted squared error 

 
Regularization Term 
• Enforces angular smoothness     
‣ Square of the second derivative in the angular parameter domains 

• Includes non-local spatial regularization 

• To fit this representation to a given set of sample, an objective function with two terms is 
minimized: 



Spatial Regularization 

• Not enough samples available to compute material 
everywhere independently 

• Most objects contain many regions with similar materials 

• Not always in connected uniform regions 
‣ Smoothness regularization not adequate 

• Non-local, appearance neighborhood based regularization 
‣ Enforces texels which are near in the appearance space to 

have similar materials 

‣ Based on the low-rank approximation from AppProp [An et al. 
2008] 
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Similar Materials 



Optimization Algorithm 
• Optimization strategy very similar to Alternating Least Squares 
‣ Iterate until convergence 

– Update the 𝑓(𝑐,𝑑) functions one at a time 
■ Keeping all the other functions fixed 

• This results in a linear least squares problem 
• Linear interpolation for continuous samples not on the grid can be taken into account 
• Regularization operations can also be included into the optimization 

 
 
 

44 



Results 
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• 151x151 Views x Lights, 256 x 256 texture resolution 

• Cook-Torrance was fitted with ideal distribution map 
‣ Tensor approximation preserves the highlight shape well, but underestimates brightness 

‣ BTF fails to resolve the highlight shape due to insufficient angular resolution 

‣ Brightness for Cook-Torrance better, shape not well preserved 

 

Photograph [Ruiters-2012] BTF Cook Torrance 

Images from [Ruiters-2012] 



Summary 
• Clustered Tensor Approximation and K-Clustered Tensor Approximation 
‣ Fast decoding due to clustering/sparsity 

‣ Compression ratio inferior (CTA) or comparable (K-CTA) than Tucker 

• Sparse Tensor Decomposition 
‣ Very high compression ratios (for BTFs) 

– Higher than PCA 

‣ Decompression faster than Tucker but linear interpolation a problem 

•  Sparse and irregular input 
‣ Can be treated as missing values 

‣ Alternatively, a tensor model can be fitted directly to the sparse samples 
– Integrating additional regularization constraints allows for even sparser samplings 
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