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ABSTRACT

The widespread diffusion of 3D acquisition systems has made it possible to obtain

three-dimensional digital models (such as 3D point clouds) of objects and envi-

ronments with ease and in a cost-effective manner. Among the other application

scenarios, the availability of scanned 3D models of indoor environments promises

to have a strong impact in domains such as engineering, architecture and prop-

erty management. In these domains, compact 3D models representing the as-built

structure of building interiors (often organized in so-called Building Information
Models (BIMs)) can be used in tasks as diverse as renovation planning, energy

performance analysis and emergency management.

However, the creation of such models is still by and large a manual process.

Despite the efforts profused so far, a satisfactory automatic or semi-automatic pi-

peline to extract higher-level 3D models of interiors from raw measurements has

not been developed yet. The challenges left open by the initial research are mani-

fold. Besides the general problems of coping with missing regions and occlusions

in the input data and of detecting the permanent components of the environment,

three important challenges are to be addressed: first, how to detect the individ-

ual rooms in the environment and to integrate this computation in the modeling

pipeline; second, how to effectively model environments with general wall orien-

tations; third, how to process in a scalable manner large environments composed

of many, individual rooms.

This thesis proposes a solution to these issues by introducing three processing

pipelines, each taking as input a point-based model of an indoor environment and
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producing as output a set of watertight 3D meshes, one for each room of the envi-

ronment. The proposed approaches, presented in order of increasing complexity

and generality, are all designed to work on real-world data and to cope with the

typical defects of such inputs. Moreover, each pipeline focuses on tackling a spe-

cific problem that is left unsolved by the state-of-the-art.

The first work presented in this thesis focuses on the robust modeling of 2.5D

interiors. It introduces an occlusion-aware pruning technique for discarding non-

permanent elements and – more importantly – integrates a room detection ap-

proach in the reconstruction process, thus going beyond the modeling of the in-

terior space as a single, unstructured entity. While capable of capturing many

more real-world environments than the previous works, the method assumes a

2.5D structure in the input environments, requiring that all walls are vertical and

that ceilings and floors are horizontal. The second research contribution lifts this

assumption and allows to model multi-room interiors with arbitrary wall orien-

tations. In this approach, the permanent structures are selected by analyzing the

spatial configuration of adjacent planar parts of the scene and by removing the

parts that are not coherent with the structural stability of the building. To cope

with the increased complexity of a full-3D reconstruction, the extraction of the fi-

nal room shapes is based on a more effective optimization technique. Compared to

the 2.5D case, the three-dimensional data structures used in this method are signif-

icantly more expensive to build and can become prohibitively complex if applied

to large environments. To address this problem, the last research contribution in-

cluded in this thesis proposes exploiting the subdivision of buildings into separate

rooms to reduce the complexity of the computations. By moving the detection

of rooms at the beginning of the processing, this approach allows to reconstruct

each sub-environment independently; this drastically reduces the computational

resources needed to handle large-scale building interiors with many rooms and

allows for a more conservative extraction of the permanent structures of the envi-

ronment, thus also leading to more precise reconstruction results.



KURZFASSUNG

Dank der weiten Verbreitung von 3D-Messsystemen ist es heutzutage m¨oglich,

dreidimensionale digitale Modelle (wie 3D Punktwolken) von Objekten und Um-

gebungen kosteng¨unstig und auf einfache Weise zu erstellen. Unter anderem ver-

spricht die Verf¨ugbarkeit von aufgenommenen 3D Modellen von Innenr¨aumen

starke Auswirkungen auf Gebiete wie Ingenieurwissenschaft, Architektur und Im-

mobilienmanagement zu haben. Kompakte 3D Modelle, die die as-built Struktur

von Innenr¨aumen darstellen und oft als sogenannte Building Information Mod-
els (BIMs) organisiert sind, k¨onnen in solchen Gebieten f¨ur so unterschiedliche

Aufgaben wie Umbauplanung, Energieeffizienzanalyse und Notfallmanagement

verwendet werden.

Jedoch ist die Erstellung von solchen Modellen noch weitgehend ein manueller

Prozess. Trotz der bisher geleisteten Anstrengungen ist eine ausreichende Pipe-

line zur Erzeugung von high-level 3D Modellen von Innenr¨aumen aus Rohmess-

daten noch nicht entwickelt worden. Die Herausforderungen, die von den ersten

Forschungsleistungen noch offen gelassen wurden, sind vielf¨altig. Neben den

allgemeinen Problemen, mit fehlenden Regionen und Okklusionen in den Einga-

bedaten zurechtzukommen und die permanenten Bestandteile des Raums zu ent-

decken, sind drei wichtige Herausforderungen anzusprechen: Erstens, wie man

die einzelnen R¨aume der Umgebung extrahieren und wie diese Berechnung in

die Modellierungspipeline integriert werden kann; zweitens, wie man Innenr¨aume

mit beliebigen Wandorientierungen effektiv modellieren kann; drittens, wie man

grosse Umgebungen mit vielen einzelnen R¨aumen skalierbar bearbeiten kann.
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Diese Arbeit zeigt L¨osungen zu diesen Fragen auf, indem sie drei neue Ve-

rarbeitungspipelines einf¨uhrt, die je ein Punktwolkenmodell eines Innenr¨aumes

als Eingabe nimmt und eine Gruppe von wasserdichten 3D-Meshes (eine f¨ur je-

den Raum der Umgebung) als Ausgabe produziert. Die vorgeschlagenen Ans¨atze

werden in aufsteigender Reihenfolge ihrer Komplexit¨at und allgemeinen Anwend-

barkeit pr¨asentiert und sind so entworfen, dass sie alle auf Datens¨atze aus der

realen Welt angewandt werden k¨onnen und den typischen Problemen dieser Ein-

gabedaten gerecht werden. Dar¨uber hinaus ist jede Pipeline f¨ur eine spezifis-

che Herausforderung konzipiert, die von bisherigen Methoden noch nicht gel¨ost

wurde.

Der erste Beitrag dieser Arbeit konzentriert sich auf die robuste Modellierung

von 2.5D Innenr¨aumen. Er f¨uhrt eine Methode zur Entfernung der nicht-perma-

nente Elemente ein, die Okklusionen ber¨ucksichtigt. Vor allem jedoch integriert

unsere Arbeit einen Zugang zur Raumentdeckung in den Rekonstruktionsprozess,

was ¨uber die reine Modellierung eines Innenraumes als einzige und unstrukturierte

Gesamtheit hinaus geht. Obwohl diese Methode deutlich mehr Arten von Umge-

bungen aus der realen Welt als die bisherigen Pipelines erfassen kann, geht sie

davon aus, dass die zu modellierende Umgebung eine 2.5D Struktur hat und ver-

langt deshalb, dass alle W¨ande senkrecht und alle Decken und B¨oden waagerecht

sind. Der zweite Forschungsbeitrag l¨asst diese Annahme fallen und erlaubt, In-

nenr¨aume mit verschiedenen Zimmern und beliebigen Wandorientierungen zu

modellieren. Permanente Strukturen werden bei diesem Ansatz dadurch entdeckt,

dass die r¨aumlichen Konfigurationen von adjazenten planaren Teilen der Szene

analysiert und die mit der strukturalen Stabilit¨at des Geb¨audes nicht ¨ubereinstim-

menden Teile entfernt werden. Um mit der erh¨ohten Komplexit¨at einer full-3D
Rekonstruktion zurechtzukommen, basiert die Produktion der finalen Formen der

R¨aume auf einer effektiveren Optimierungsmethode. Im Vergleich zum 2.5D

Fall ist der Aufbau der dreidimensionalen Datenstrukturen, die in dieser Methode

verwendet werden, deutlich rechenintensiver, was die Behandlung von grossen

Umgebungen unm¨oglich machen kann. Um dieses Problem zu l¨osen, zeigt der

letzte Forschungsbeitrag dieser Arbeit auf, wie die Unterteilung von Geb¨auden in

getrennte R¨aume ausgenutzt werden kann, um die Komplexit¨at der Berechnungen

zu verringern. Diese Methode nimmt die Entdeckung der R¨aume in der Pipeline

vorweg und erlaubt dadurch, jede Subumgebung unhabh¨anging von den Anderen

zu rekonstruieren. Dies senkt die erforderlichen Rechenressourcen f¨ur die Ver-

arbeitung von weitr¨aumigen Innenr¨aumen mit vielen Zimmern betr¨achtlich und

erlaubt eine konservativere Entdeckung der permanenten Strukturen der Umge-

bung, was auch zu genaueren Rekonstruktionsergebnissen f¨uhrt.
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2 1 INTRODUCTION

1.1 Background and Motivation

The availability of 3D acquisition systems has increased dramatically in the last

years. Not only are low-quality 3D sensors becoming available in cheap, hand-

held devices such as tablets and smartphones, but also high-quality static laser

scanners, once bulky and expensive and therefore only manageable by larger com-

panies, are becoming affordable and easy to use also for the larger public. As a

consequence, it is nowadays possible to obtain three-dimensional digital models

(such as 3D point clouds) of objects and environments with ease and in a cost-

effective manner.

The resulting widespread diffusion of 3D models has opened new frontiers in

domains such as engineering, architecture and property management. In particu-

lar, practitioners in these fields would greatly benefit from the easy availability of

compact, accurate and semantically rich digital representations of buildings, with

a special focus on their interior shape. Architects and interior designers can use

such models for space planning (see Figure 1.1(a)) or to virtually evaluate new

furnishing solutions, while real estate companies are testing web-based 3D visu-

alization platforms to showcase properties online, allowing customers to explore a

3D model of a property before visiting it in person (see Figure 1.1(b)). In the Ar-

chitecture, Engineering and Construction (AEC) domain, digital models of build-

ings are often organized in so-called Building Information Models (BIMs), which

document many aspects of the construction process and are therefore largely fo-

cused on permanent structures such as walls, floors and ceilings. Particularly

useful are as-built BIMs, which are meant to represent the shape of the structures

as they were constructed and must therefore be created from real-world measure-

ments. The applications for these models are manifold and include renovation

planning, energy performance analysis (shown in Figure 1.1(c)) and emergency

management [Volk et al., 2014].

(a) (b) (c)

Figure 1.1: Application scenarios for 3D models of building interiors include office space
planning (a), virtual property showcasing (b) and energy performance analysis (c).
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Figure 1.2: Simplified overview of the scan-to-BIM pipeline. An input set of raw 3D point
clouds (LEFT) is transformed into a compact 3D architectural model (MIDDLE), which
serves as a basis for a higher-level BIM model (RIGHT). The focus of this thesis lies in
the extraction of the architectural model from point clouds (shown in the dashed frame).

In practice, the creation of 3D models of interiors is mostly based on the work

of artists and designers, who model by hand the individual elements of the en-

vironment using scanned data as reference [Tang et al., 2010]. This results in te-

dious, expensive and error-prone workflows in which several weeks can be needed

before a satisfactory output model is produced. This problem is particularly rel-

evant when creating as-built BIMs of large buildings, for which the amount of

objects to be modeled is vast.

For these reasons, there is a strong need for automatic or semi-automatic mod-

eling pipelines that can transform raw and unstructured sets of measurements of

interiors into compact and structured 3D architectural models. The output of such

pipelines can be employed directly or it can be used as an intermediate result for

more general workflows (such as the scan-to-BIM process, depicted in Figure 1.2),

leading in both scenarios to a drastic reduction in the amount of man-hours re-

quired to obtain the final result.

1.2 Research Context

Due to its great practical importance, the problem of modeling indoor environ-

ments has been studied by many researchers in the last decade. The range of

contributions proposed is wide and spans many sub-fields of architecture, engi-

neering and computer science. Given the vastness of the literature on the topic,

we restrict our analysis of the related work to the approaches that can be applied

directly to indoor environments and that focus on the architectural elements of

buildings.

In this section, we provide an initial, general overview of the state-of-the-art,

in which the most relevant approaches are classified into three main categories

based on their scope of application. A more focused analysis is included in the
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forthcoming chapters (in particular, in Sections 3.1,4.1,5.1).

Interactive modeling and acquisition Many of the pipelines proposed

so far explicitly include human intervention in the modeling process. In particular,

as mentioned in the previous section, the creation of as-built BIMs from scanned

point clouds (the scan-to-BIM problem) is largely a manual process, often requir-

ing the use of several distinct software packages and involving tedious operations

such as the manual selection of patches of input points [Tang et al., 2010]. In

some more advanced pipelines, originally designed for modeling the outer shape

of buildings, user intervention is limited to more intuitive tasks and is interleaved

with optimization-based refinement steps; examples of interactive operations in-

clude sketching 3D boxes [Nan et al., 2010] or drawing polygonal outlines of

shapes [Arikan et al., 2013]. Although these approaches entail intuitive manual

operations, applying them to even moderately complex building interiors requires

significant amounts of human work.

A number of other approaches integrate human intervention directly in the ac-

quisition stage. Some researchers have proposed custom acquisition setups con-

sisting of off-the-shelf components like depth-cameras and projectors [Kim et al.,

2012]; others rely on standard smartphones for the initial capture of the indoor en-

vironment and expect that the user performing the acquisition marks relevant fea-

tures on the acquired images or registers events such as a transition from a room

to another [Sankar and Seitz, 2012; Pintore and Gobbetti, 2014]. Bringing the

user in the loop already at acquisition time makes it easier to cope with problems

like occlusions and missing data. However, besides being labor-intensive, such

approaches can only be applied if an ad-hoc acquisition of an environment is pos-

sible. In many real-world scenarios, measurements of an environment of interest

are already given or must be performed with specific technologies, in order to meet

some minimum accuracy levels required by third-party institutions. Similar con-

siderations hold for more general SLAM-based indoor reconstruction pipelines

that work on input RGB-D videos [Newcombe et al., 2011; Salas-Moreno et al.,

2013; Choi et al., 2015]. In addition to this, most of these methods are aimed at

creating general-purpose 3D representations of indoor scenes. Further processing

is required to obtain the compact and structured models that are needed in many

real-world applications.

Reconstruction of outdoor building structures The problem of mod-

eling buildings interiors is closely related to the more well-studied problem of

reconstructing outer urban scenes [Musialski et al., 2013]. While the challenges

to be tackled are different, many of the specific techniques used in urban recon-

struction methods can be successfully applied to indoor settings. In particular, a
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common approach is to extract the geometric model of a building by performing a

binary inside/outside partitioning of a spatial structure conveniently built around

the object of interest. Several structures have been proposed, including BSP-like

space partitionings [Chauve et al., 2010] or tetrahedral subdivisions [Lafarge and

Alliez, 2013]. The analogy between such a scheme and some recent indoor recon-

struction pipelines [Oesau et al., 2014] is strong. However, datasets of outdoor

urban scenes are relatively free of occlusions, which allows to use the intersec-

tion parity of visibility rays to reliably steer the inside/outside segmentation. In

fact, similar visibility criteria are used also in pipelines that do not strictly follow

this segmentation scheme and rely, for instance, on the use of box-like shapes to

represent the structures of interest [Vanegas et al., 2012]. However, the visibility-

based formulations used in these approaches are bound to fail if directly applied

to cluttered indoor settings. Similarly, assumptions like repetitions and structural

regularity in the data, commonly used when dealing with outdoor scenes [Zheng

et al., 2010; Ceylan et al., 2012; Nan et al., 2015], do not necessarily hold in

indoor environments, for which specialized approaches need to be employed.

Automatic modeling of building interiors Although indoor scenes

have been object of active research for many years [Udeshi and Hansen, 1999;

Gregor and Whitaker, 2001], the interest in the accurate reconstruction of their

permanent components, originally mostly limited to applications in the robotics

domain [Surmann et al., 2003], has increased significantly only recently. Re-

searchers have tackled the problem of mapping the architectural shape of inte-

riors, aiming not only at recognizing individual permanent structures (e.g. wall

segments, columns, stairs) but rather at capturing the global shape of the environ-

ment. Although several interactive pipelines have been developed, the holy grail

of the research is the automatic modeling of entire building interiors.

The solutions initially proposed focus on reconstructing the interior space as

a whole, without recovering its room structure, thus limiting the modeling to an

inside/outside partitioning typical of outdoor reconstruction. Most approaches

manage the complexity of the problem by restricting their scope to the extraction

of 2D floorplans [Turner and Zakhor, 2012] or by using restrictive priors on the

expected structure of the environment. The so-called Manhattan-World assump-
tion, that is, the assumption that cities and indoor scenes are built on a Cartesian

grid [Coughlan and Yuille, 2000], has been extensively used both when the input is

a set of pictures [Furukawa et al., 2009] and when it consists of dense 3D measure-

ments [Okorn et al., 2010; Budroni and B¨ohm, 2010; Sanchez and Zakhor, 2012;

Turner and Zakhor, 2013]. This prior simplifies the modeling task, but strongly

limits the range of environments that can be captured correctly. With some no-

table exceptions [Okorn et al., 2010], most approaches disregard the problem of
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viewpoint occlusions and assume that input scenes are relatively free of clutter –

an assumption that is bound to fail when dealing with real-world interiors.

1.3 Open Challenges

Despite the initial research efforts, a satisfactory (semi-)automatic approach for

the extraction of structured 3D descriptions of interiors from measured data has

not been presented yet. This is due to the high complexity of the problem, in

which the many issues to be addressed are often intertwined with each other.

Although the challenges left unsolved by traditional state-of-the-art methods

are manifold, they can be broadly categorized into the following groups.

• Handling noise and incomplete data

Raw input data are normally corrupted by measurement noise and contain out-

liers, which can appear either as isolated spurious measurements or as dense

artifacts. Moreover, the presence of clutter in the environment at acquisition

time can lead to viewpoint occlusions, which result in missing regions in the

input model. It is important that indoor modeling methods produce valid recon-

struction results even in the presence of such issues.

• Reconstruction of the permanent structures

The raw input representations of building interiors typically include non-

permanent elements (such as chairs, tables and other furniture) that are not

relevant to their architectural structure. In this sense, they represent clutter
that should be discarded and that should not influence the modeling process.

For this reason, pipelines for indoor architectural modeling should detect and

remove such objects and ensure that the final model only consists in the perma-

nent structures of the environment.

• Faithful representation of the architecture

Modern buildings exhibit a huge variety of architectural shapes and are com-

posed of both planar and curved surfaces that are very often oriented in a non-

trivial manner. However, to simplify the modeling process, most state-of-the-

art approaches make use of very restrictive assumptions on the properties of

the buildings processed, often limiting the range of environments that can be

handled to those that have planar walls aligned to three orthogonal directions

(the Manhattan-World assumption). A valid modeling pipeline should be able

to capture faithfully the variety of architectural shapes that are found in real-

world environments, without being limited by restrictive priors.
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• Extraction of the structure of the environment

Building interiors are structured into a number of sub-spaces, whose layout

and interconnection reflect the intended function of the environment. However,

traditional approaches consider an indoor environment simply as a single space

separated from the outside by the permanent structures of the building. The

modeling process should go beyond such a simple extraction of the interior

space and extract the structure of the environment as well.

• Efficient processing of large-scale environments

For a number of application scenarios (especially in the facility management

domain), the indoor environments to be modeled are very large and often com-

posed of dozens of individual sub-spaces. State-of-the-art pipelines do not con-

sider this problem explicitly, largely due to the fact that the restrictive assump-

tions they make allow for the use of low-complexity algorithm and data struc-

tures. An important research problem is therefore how to process large-scale

interiors efficiently without compromising on the descriptive power of the re-

constructed models.

1.4 Objectives

The goal of this thesis is to advance the state-of-the-art in architectural modeling

of interiors by tackling some of the most pressing aspects of the open challenges

outlined in the previous section. In particular, the specific research objectives of

the thesis can be summarized as follows.

1) Robustness to artifacts and occlusions

Dense groups of outliers and missing data caused by viewpoint occlusions are

common problems in raw models of interiors, especially in those acquired with

static laser range-scanners. A common goal of all pipelines presented in this

thesis is therefore to achieve robustness to such issues, ensuring that their ef-

fects on the final output is reduced as much as possible.

2) Detection of permanent components

Input measurements corresponding to furniture and other non-architectural el-

ements do not contribute to the desired reconstruction and increase the compu-

tational complexity of the modeling process. For this reason, all the proposed

approaches aim to detect the permanent elements of the environment and dis-

card those that belong to cluttering objects.
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3) Detection of individual rooms
The subdivision into single rooms represents a fundamental piece of informa-

tion in structured descriptions of interiors. In this work, we aim at performing a

room-aware reconstruction, thus going beyond the sheer recovery of the volume

delimited by the bounding surfaces of the building.

4) Modeling of arbitrarily oriented planar surfaces
A large array of real-world interiors can not be properly represented using only

vertical walls and horizontal floors and ceilings. For this reason, one impor-

tant goal of this thesis is to capture wall surfaces with arbitrary orientations,

using piecewise planarity as only assumption on the architectural shape of the

environment.

5) Scalable modeling of large environments
Large-scale building interiors include a large set of distinct architectural sur-

faces. If considered in its entirety, this information can lead to an unmanageable

computational complexity of the modeling process. Therefore, an objective of

this thesis is to ensure that the modeling process scales well with respect to

the size of the environment, exploiting the subdivision into separate rooms to

reduce the amount of data that must be processed together.

1.5 Contributions

The goals set for this thesis are achieved by means of three main research contri-

butions, each described in a specific chapter and here shortly summarized. They

are presented in order of increasing complexity and generality, listing for each of

them the objectives targeted and (if applicable) the scientific publications in which

the contribution is also described.

• 2.5D modeling of multi-room environments
Robustness to artifacts and occlusions, Detection of permanent components,
Detection of individual rooms
This work introduces an occlusion-aware pipeline for modeling multi-room

building interiors. Compared to the state-of-the-art, it includes a step that

selects candidate wall structures in an occlusion-aware fashion and integrates

in the reconstruction a room extraction procedure that automatically finds the

number of rooms in the environment. Moreover, it lifts the Manhattan-World

assumption and can capture (vertical) walls with arbitrary angles between them.

The approach, described in detail in Chapter 3, has been presented as a confer-

ence contribution [Mura et al., 2013] and has appeared in an extended version

as an article in a scientific journal [Mura et al., 2014].
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• Full-3D modeling of multi-room environments
Robustness to artifacts and occlusions, Detection of permanent components,
Detection of individual rooms, Modeling of arbitrarily oriented planar surfaces

In this work, the first pipeline for reconstructing multi-room interiors with gen-

eral 3D architectures is presented. The approach can handle wall structures

with arbitrary orientations, thus lifting all assumptions on the alignment of the

permanent structures. The increased complexity arising from the full-3D nature

of the problem is managed by discarding non-meaningful features from the ad-

jacency graph and by using an optimization-based formulation to reconstruct

the final models of the rooms. This contribution (presented in Chapter 4) has

appeared as a journal article [Mura et al., 2016] with associated conference talk.

• Room-based modeling of large-scale environments
Robustness to artifacts and occlusions, Detection of permanent components,
Detection of individual rooms, Modeling of arbitrarily oriented surfaces, Scal-
able modeling of large environments

This contribution focuses on achieving scalability to large environments that

contain many different rooms. To do so, the rough spatial extent of each room

is detected before performing the actual reconstruction. This allows to perform

the bulk of the computations separately on each room, thus drastically limiting

the overall complexity of the modeling process. Chapter 5 provides a complete

description of this work, which represents novel material introduced in this

thesis and has not yet appeared as a separate scientific contribution.

1.6 Dissertation Overview

The rest of this thesis is structured as follows.

Chapter 2 provides an overview of the general data processing pipeline used

in this thesis, presenting the general computational steps and describing the nature

of the input and the output of the pipeline.

Chapter 3 describes a method for reconstructing 3D models of multi-room

building interiors with a 2.5D structure (that is, only containing vertical walls

and with horizontal floors and ceilings). The approach is fast, easy to implement

and can handle a large number of real-world environments. However, the starting

assumptions make it unsuitable for the processing of buildings with more general

wall arrangements.

In Chapter 4, a more general approach is presented that lifts the assumptions

previously made and allows for the reconstruction of multi-room environments

with arbitrary wall orientations.
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Scalability to large environments is the key objective of the approach discussed

in Chapter 5. In this work, the subdivision of an indoor environment into separate

sub-spaces is exploited to allow for efficient processing of buildings composed of

many individual rooms, using a process that limits the complexity of the compu-

tation to that of the individual sub-spaces.

Finally, Chapter 6 concludes this thesis with an outlook on the results achieved

and highlighting some promising directions for future work.
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The approaches presented in this thesis follow a common processing pipeline

and share a number of commonalities in the input and output models used. This

chapter describes such common aspects, introducing the general processing pipe-

line (Section 2.1) used by the methods of Chapters 3, 4 and 5 and discussing the

formats used to represent the input (Section 2.2) and the output (Section 2.3) of

this pipeline. When discussing the input representation, special attention is de-

voted to explaining how the raw input measurements are augmented with a more

abstract structure that simplifies the subsequent modeling process.

It should be noted that the data representations described in this chapter, as

well as the related processing techniques, do not constitute an original research

achievement of this thesis, but are relatively standard components also used in

other state-of-the-art approaches.

2.1 General Processing Pipeline

The common goal of the methods proposed in this work is to transform an input

representation of an indoor environment into a compact 3D model that describes

its architectural shape and its room-based structure. The input model, consisting

of a set of raw measurements augmented by a more abstract adjacency graph of

rectangles (both described in Section 2.2) is transformed into a set of 3D polyhedra

(Section 2.3) by applying a sequence of processing steps. While some details of

the processing vary depending on the specific approach, it is possible to identify a

general pipeline (shown in Figure 2.1) composed of the following main steps.

Detection of permanent components The parts of the environment that are good

candidates for permanent structures (e.g. walls, ceilings, floor) are detected and

brought forward to the next stages. The remaining elements are considered to

originate from clutter (such as furniture) and are therefore discarded.

Construction of space partitioning The space surrounding the input scene is

divided into convex sub-regions according to the permanent components selected

in the previous step, in such a way that the boundaries of the sub-regions align

to the primitives of the permanent components. A single sub-space (i.e. a room)

of the input environment can be obtained as the union of a specific set of convex

sub-regions of the space partitioning.

Room detection The individual rooms of the environment are detected, along

with a set of positions that are inside each room and roughly define its location.

Room reconstruction The shape of each room, defined in terms of its bounding

walls, is extracted by detecting the connected set of sub-regions that correspond

to the space inside the room and by performing the union of such regions.
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Detection of 
Permanent Components

Construction of 
Space Partitioning

Room Detection

Room Reconstruction

Adjacency Graph of
Bounding Rectangles

  Room Polyhedra

INPUT

OUTPUT

3D Point Clouds

Figure 2.1: General pipeline followed by the proposed methods. The input representation
of the environment (i.e. a set of 3D point clouds and the associated adjacency graph of
bounding rectangles) is transformed into a set of 3D polyhedra describing the rooms in
the environment by means of a four-step pipeline.
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2.2 Input Data

As shortly introduced in the previous section, the environments to be processed

are represented with one or more sets of raw 3D measurements (each commonly

known as a 3D point cloud) accompanied by a graph-based structure that encodes

the planar parts of the scene and their adjacencies. This section describes this

representation, discussing first how the input 3D point clouds are organized and

pre-processed (Section 2.2.1) and then presenting the graph-based structure that

is assembled from them (Section 2.2.2).

2.2.1 3D Point Clouds

Many 3D acquisition systems work by sensing along a set of pre-defined direc-

tions the distance from their center of projection to the closest real-world surface.

Since the center of projection and the set of directions are known, the distance

measurements collected can easily be transformed into a set of 3D points, which

form a 3D point cloud.

Traditionally, the sources for this kind of data have been high-end, static laser

range-scanners, capable of delivering high-quality and dense measurements. The

main downsides of these devices, that is, their high cost and their operational com-

plexity, have been overcome in the last years: today, terrestrial laser scanners like

the Faro Focus 3D

1

have become affordable and easy to operate. Cheaper 3D

acquisition systems based on consumer-level RGB-D cameras, such as the Mat-

terport Pro 3D Camera

2

, are also available for cost-effective acquisition of 3D

models of interiors. Moreover, an increasing number of tablets and hand-held

devices are equipped with 3D sensors; these, used in combination with the other

sensors and with the necessary sensor fusion technology and loop-closure algo-

rithms, can turn even a regular smartphone into a 3D mapping system. This is

the case, for instance, of the smartphones equipped with the Google Tango tech-

nology

3

. Although with different quality levels, any of these approaches allows

to acquire a point-based digital model of an environment, thus making 3D point

clouds a convenient and generic initial representation for higher-level 3D model-

ing pipelines.

Using a mathematical notation, a 3D point cloud P can be defined as a collec-

tion of n points in R3

:

P = {p
i

= (x
i

, y
i

, z
i

) | i = 1, . . . , n , x
i

, y
i

, z
i

2 R }. (2.1)

1

http://www.faro.com/products/3d-surveying

2

https://matterport.com

3

https://get.google.com/tango
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Since in this format no ordering between the individual points is given, in the

following we refer to it as an unstructured point cloud. Each point p
i

represents a

sample on a surface of the real-world. In order to represent an object or an envi-

ronment in a faithful manner, a sufficient number of samples must be included in

the point cloud to represent the surfaces of interest. Depending on the complex-

ity of the scene to be captured, the point cloud needs to be created by merging

subsets of samples acquired from different viewpoints. Each of these subsets is

itself a point cloud, often referred to as a scan to highlight the coherent origin of

its points.

Points from a same scan are acquired by the scanning device using a spe-

cific pattern; in particular, points in space that project to nearby locations in the

view plane of the device are scanned subsequently. While the specific details vary

depending on the device, it is often possible to keep the samples in a scan ar-

ranged in a way that reflects the acquisition pattern. A frequently used format is

the so-called range-grid (see Figure 2.2), in which points are arranged in a grid

that represents a 2D parametrization of the field-of-view of the scanning device.

In this representation, each point is associated not only with a triple of coordi-

nates in R3

, but also with a pair of coordinates (u, v) that describe its position

in the parametrization. Using a more formal notation, a range-grid P grid

can be

described as follows:

P grid

= {p
i

= (x
i

, y
i

, z
i

, u, v) | i = 1, . . . , n, x
i

, y
i

, z
i

2 R,
u, v 2 N, 1  u  n

rows

, 1  v  n
cols

}.
(2.2)

where n
rows

and n
cols

are the dimensions of the discretized parametrization of

the field-of-view of the device. In practice, the coordinates of each point inside

the parametrization can be represented implicitly by storing the points in a specific

order (e.g. row-major or column-major).

Each scan contains samples that are expressed in a local reference system.

To create a single point cloud from multiple scans it is necessary to align the

individual scans into a single reference frame. This process, often denoted as

registration, associates each scan with a matrix Treg

expressing the rigid body

transformation that brings the scan from its local reference system to the global

one.

A point cloud can be represented as a grid set consisting of m individual range-

grids, as shown in Figure 2.2 and expressed by the following notation:

P grid set

= { (P grid

i

,Treg

i

) | i = 1, . . . ,m }. (2.3)

For a number of applications, especially those involving view-dependent com-

putations, it is convenient to represent the input point cloud using this format.
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0 ), (P grid
1 ,T reg

1 )}

Figure 2.2: Description of the grid set representation used in the thesis. The points of
a grid set point cloud (P grid set in the figure) result from the union of a set of range grid

point clouds (P grid

0

and P grid

1

). Each range grid is associated with a transformation
matrix (Treg

0

and Treg

1

) that aligns its points to the common reference system of the point
cloud.

Local Features Estimation

The point clouds described above represent the typical output of many 3D acqui-

sition devices. In such representations, each sample only carries basic geometric

information about its position in the 3D space. Even for basic point-based geom-

etry processing it is useful to augment every sample with additional features that

describe the properties of the underlying real-world surface around the sample.

For the tasks presented in this thesis, we augment each sample with two features:

the normal vector, which points in the direction perpendicular to the surface at the

point, and the radius of influence, which represents the spatial extent over which

the sample approximates the underlying surface.

Since normal vector and radius of influence are local properties of the surface,

they are typically estimated from the set of points that lie in the spatial neigh-

borhood of a point or, alternatively, from its k nearest points (also known as k
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(a) (b)

Figure 2.3: Definition of the k = 5 nearest neighbors of a point in an unstructured (a)
and in a range-grid point cloud (b). The query point is highlighted by the green circle

nearest neighbors or k-nn). In unstructured point clouds (see Equation 2.1), this

set of points is often obtained by querying a pre-built spatial data structure (e.g.

a kd-tree [Gross and Pfister, 2007]). If a grid parametrization is available, how-

ever, a practical approach is to approximate this set of points by considering the

points on the grid that are contained in a rectangular window centered at the point

of interest [Steder et al., 2011]. This is justified by the fact that points that are

close in 3D space project to adjacent locations in the view plane of the acquisition

device. Due to a number of factors (variable orientations of real-world surfaces

with respect to the view direction, discontinuities caused by the projection pro-

cess, different distortion factors of the different regions of the parametrization),

the points in the window do not coincide with the exact spatial neighbors. A good

approximation, however, can be obtained by considering the points that lie inside

an over-sized window around the target point and by selecting from this set the k
points that are nearest to the target (see Figure 2.3). This strategy allows to avoid

the overhead of building and querying a space partitioning structure (which have,

respectively, a complexity of O(n log n) and O(log n), with n being the number

of points in the point cloud) and allows to find the local neighborhood of a point

in a constant amount of operations.

Given a point and its neighbors, the radius of influence at that point can be

computed as (half of) the average distance to its neighbors, while the normal vec-

tor can be estimated as the eigenvector corresponding to the smallest eigenvalue
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of the covariance matrix created from the neighbors [Hoppe et al., 1992]. Note

that, for most applications, the normal vectors need to be oriented so that they

consistently point either to the inside or to the outside of the object they belong. If

the viewpoint from which the points were acquired is given (which is trivially the

case for the formats described in Equations 2.2 and 2.3), this can be achieved by

computing the vector from the viewpoint to the target point (the view vector) and

by flipping the normal vector if its dot product with the view vector is positive.

In fact, even in the case of unstructured point clouds (Equation 2.1) it is sufficient

that each scanned point is accompanied by the view vector to be able to compute

the correct orientations for the normal vectors.

A more detailed discussion of the issues connected to feature estimation in

point clouds is outside the scope of this work. In the context of this thesis, the

input point clouds (regardless of their specific format) are assumed to contain

consistently oriented normals (pointing towards the inside of the environment they

describe) and radii of influence.

Test Datasets

In order to test the methods proposed in this thesis, a variety of point-based mod-

els of building interiors were used. The test datasets, described in detail in Ap-

pendix A, are represented either as unstructured point clouds (Equation 2.1) or

as grid sets (Equation 2.3). The main reason for this is that, depending on the

intended processing pipeline, one or the other format is more suitable. In partic-

ular, the methods described in Chapters 3 and 4, which make use of the visibility

information of the scanned scene, expect the format described in Equation 2.3 for

the input point cloud. The approach presented in Chapter 5, on the other hand, is

oblivious of the viewpoints from which the scene was acquired and works directly

on input point clouds expressed as in Equation 2.1.

Our test suite includes models obtained using different acquisition systems.

Most real-world datasets (obtained by physically acquiring an existing environ-

ment) come from high-end terrestrial laser scanning, although some representa-

tives of lower-quality technologies are also included.

In addition to real-world models, a number of synthetic datasets were gener-

ated by modeling an environment by hand using a 3D modeling software [Blender

Foundation, 2016] and by then ray-casting in software the resulting model from

a set of fixed positions. To simulate the noise that is present in real-world data,

the result of each ray-surface intersection operation is corrupted by adding a vari-

able offset (obtained from a Gaussian distribution with standard deviation �
noise

)

along the ray direction. This process effectively simulates the scanning modal-

ity of time-of-flight static laser scanners and generates point clouds similar to the

ones obtained with this technology.
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2.2.2 Adjacency Graph of Bounding Rectangles

The point clouds output by scanning devices can contain millions of individual

samples. Their distribution in the scene is a by-product of the way the view plane

is covered by view rays and does not take into account the properties of the scene

itself. For this reason, many geometrically simple parts of the scenes such as

planar regions are represented redundantly by a large number of co-planar points.

Since many man-made objects and in particular building interiors are mostly com-

posed of piecewise-planar surfaces, it is convenient to replace the input point-

based cloud with a more compact representation.

For this reason, the methods presented in this thesis perform a planar decom-

position of the input point clouds, based on the use of oriented bounding rectan-
gles as shape proxies for the planar regions of the scene. Each bounding rectangle

lies on the plane of the region it represents and fully encloses the set of points of

such region; its orientation on the plane is defined based on the global up-vector

of the scene, resulting in an overall alignment of the rectangles that matches the

main shape of the environment.

In addition to this, the bounding rectangles extracted are arranged in a graph

structure that encodes their adjacency relations. This higher-level representation

abstracts from the individual input measurements and allows for a simplified part-

based analysis of the environment.

Extraction of Planar Patches

The first step in the computation of the graph-based abstraction is the segmen-

tation of the input point cloud into a set of co-planar patches of points. This is

an important problem in the context of point cloud processing and a number of

well-established techniques have been proposed, including methods based on re-

gion growing [Rabbani et al., 2006; Poppinga et al., 2008] and RANSAC-based

approaches [Schnabel et al., 2007], as well as more complex optimization-based

pipelines [Monszpart et al., 2015; Oesau et al., 2016]. In the context of this thesis,

the co-planar patches are obtained by applying a region growing approach to the

pre-processed input point clouds, which (as explained in Section 2.2.1) are aug-

mented with oriented normal vectors. In this process, described in Algorithm 1, a

set of locally planar points are selected as seeds for the growing process, that is,

each of them is considered as a potential patch and is incrementally expanded by

adding compatible points from its spatial surroundings. In practice, whenever a

new point is added to a patch, its nearest neighbors are retrieved and added to a

queue, which represents the frontier of the patch. A point of the frontier is con-

sidered compatible with the patch if its distance from the plane of the patch is

smaller than a threshold ✓
o↵

and if its normal vector does not deviate significantly
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from that of the patch plane, that is, if the angle between its normal and that of the

plane is smaller than ✓
ang

. The result of this algorithm is a segmentation S of the

input point cloud into a set of planar patches P
1

, . . . ,P
n

.

It is important to notice that this algorithm can be applied both to an unstruc-

tured point cloud (Equation 2.1) and to a point cloud in range-grid format (Equa-

tion 2.2). From an implementation point of view, the main difference lies in the

definition of the query operation for the nearest neighbors (lines 4, 26 in Algo-

rithm 1); in particular, for range-grid point clouds it is possible to use the approx-

imate definition described in the previous section 2.2.1. Point clouds represented

as a set of individual scans (Equation 2.3) can be segmented by simply applying

the algorithm to each scan separately and by merging co-planar patches belonging

to different scans in a subsequent step. This can be done by greedy merging of

adjacent patches based on the parameters of the underlying plane or, in case of

noisier input data, by applying statistical techniques to compare the point sets of

the patches to be merged [Boulch and Marlet, 2014].

Computation of Oriented Bounding Rectangles

Each patch extracted is compactly represented using its bounding rectangle. To

this purpose, the first step is to compute the parameters of the plane that best

approximates each patch. A plane ⇧ in R3

can be represented by a vector n
⇧

,

corresponding to its normal direction, and by a point p
⇧

that lies on the plane

itself. The direction of the normal vector n
⇧

can be extracted by a Principal
Component Analysis (PCA) of the set of points of the patch (using the same ap-

proach described in Section 2.2.1 to estimate the normal vectors of a point cloud);

its orientation is chosen so that it matches the one of the point normals, which

in the context of this thesis are assumed to be given and pointing inside the en-

vironment (Section 2.2.1). The choice of p
⇧

that corresponds to the best plane

in a least-squares sense is the barycenter of the points [Gross and Pfister, 2007].

Note that, to make the estimation more robust to possible outlier points result-

ing from the region growing, we first perform a Least Median of Squares (LMS)

regression [Rousseeuw, 1984] on the set of points of the patch and estimate the

parameters of the plane only from the resulting set of inlier points.

The points of the patch are then projected onto the plane and a bounding rect-

angle of the projections is computed. A critical point in this step is the choice of

an appropriate orientation of the bounding rectangles. We have shown in the con-

text of object detection [Mattausch et al., 2014] that simply using the two largest

eigenvectors obtained by PCA can result in inconsistent orientations for the rect-

angles of the scene (see Figure 2.4).

To overcome this issue, every bounding rectangle is aligned to a pair (v
1

,v
2

)

of orthogonal 3D vectors that capture the orientation of the environment. For
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Input : Point cloud P with vertex normals

Maximum plane offset ✓
o↵

Maximum normal deviation ✓
ang

Number of nearest neighbors k
Output: Segmentation S = {P

1

, . . . ,P
n

} of P into planar patches

1 PlanarSegmentation (P )

2 S  GenerateSeeds( P )

3 foreach s 2 S do
4 N  GetNearestNeighbors( s, P , k )

5 ⇧ FitPlane( N )

6 Q ; , P  ;
7 foreach p0 2 N do
8 if p0 not visited then
9 n

⇧

 normal(⇧) , n0  normal(p0)

10 if Cos

�1

(n
⇧

· n0
)  ✓

ang

^ dist(⇧, p0)  ✓
o↵

then
11 Q Q [ { p0 } , mark p0 as visited

12 end
13 end
14 end
15 while Q 6= ; do
16 p0  PopItem( Q )

17 if p0 not visited then
18 n

⇧

 normal(⇧) , n0  normal(p0)

19 if Cos

�1

(n
⇧

· n0
)  ✓

ang

^ dist(⇧, p0)  ✓
o↵

then
20 P  P [ { p0 }
21 ⇧ UpdatePlane ( ⇧, p0 )

22 else
23 mark p0 as not visited

24 end
25 end
26 N  GetNearestNeighbors( s, P , k )

27 foreach p0 2 N do
28 if p0 not visited then
29 Q Q [ { p0 } , mark p0 as visited

30 end
31 end
32 end
33 S  S [ P
34 end
35 return S
36 end
Algorithm 1: Extraction of co-planar patches of points using region growing.
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(a) (b)

Figure 2.4: Consistent alignment of horizontal bounding rectangles. Orienting a hori-
zontal rectangle based on the two largest eigenvectors of the underlying point set often
results in an inconsistent orientation with respect to other parts of the scene (a). A more
coherent orientation is obtained by deriving the reference system from that of a spatially
close non-horizontal rectangle (b).

a non-horizontal rectangle, this pair is defined based on the up-vector v
up

of the

scene (assumed, without loss of generality, to be (0, 0, 1)) and on the normal nP of

the patch; for a horizontal rectangle, whose normal vector coincides with v
up

, the

reference system is derived from the one of its closest non-horizontal rectangle

(see Figure 2.5). As shown in Figure 2.4(b), this approach allows to recover a

valid orientation of a region even in presence of large missing parts.

The result of this step is a set of rectangles R = {r
1

, . . . , r
n

} that approximate

the planar parts of the input scene. Although R constitutes a compact represen-

tation of the scene, some operations (e.g. the coverage computation mentioned

in Section 4.4) require access to the lower-level segmentation into planar patches.

An implementation of the procedure described in this section should therefore

ensure that each rectangle r
i

2 R can easily access the corresponding patch P
i

.

Construction of the Adjacency Graph

In order to reason about non-local properties of a scene it is often useful to con-

sider the inter-relationships between its parts. For this reason, we arrange the

bounding rectangles R according to their adjacency relations into an adjacency
graph G

adj

= (V,E), as done in many shape analysis methods [Laga et al., 2013;

Zheng et al., 2014]. In this graph, as shown in Figure 2.6, the set V contains one

node for each bounding rectangle, while E is composed of all the pairs (v
1

, v
2

)

for which the corresponding rectangles v
1

, v
2

2 V are adjacent, that is, the mini-

mum distance between them is smaller than a threshold ✓
adj

. Under ideal sampling
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vup R
R�

v�
2 =

v1 � NR�

||v1 � NR� ||

NR

NR�

v�
1 = v2

v1 =
NR � v2

||NR � v2||
v2 =

vup � NR
||vup � NR||

Figure 2.5: Definition of the reference frame for the bounding rectangles. The reference
frame of a non-horizontal rectangle (rectangle R on the left) is derived from the global up-
vector v

up

of the scene and helps define a consistent orientation for the nearby horizontal
rectangles (see R0, on the right).

conditions (e.g. uniform sampling of all scene surfaces, absence of noise, no view-

point occlusions), the value of ✓
adj

could be simply set to a value slightly larger

than the sample distance. However, it is often necessary to increase the adjacency

threshold to cope with the defects of real-world point clouds. In practice, ✓
adj

can

be treated as an input parameter for a processing pipeline based on such an adja-

cency graph and adjusted based on the expected or estimated level of noise in the

input data.

(a) (b)

Figure 2.6: Contact graph for the point cloud of an indoor environment. An input point
cloud (a) is associated with a graph (b) in which the nodes correspond to parts of the scene
(represented by bounding rectangles) and the edges correspond to adjacencies between
the parts. Note that in (b) some parts have been removed for clarity of illustration.
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2.3 Output Data

The space inside an indoor environment is bounded and completely separated

from the outside by its main architectural surfaces (i.e., walls, ceilings, floor). For

this reason, a typical way to describe building interiors is by means of a closed

3D polyhedron, whose boundary represents the interface surface between inner

and outer space. In practice, a watertight polygonal mesh is used to represent this

polyhedron [Turner and Zakhor, 2013; Oesau et al., 2014]. A similar represen-

tation can be used for an individual room inside a large environment. Since this

thesis targets multi-room environments, our output reconstruction is represented

as a set of watertight meshes (see Figure 2.7), one for each room in the envi-

ronment. Note that, using this representation, a thick wall separating two rooms

appears as two separate sheets, each in a different room polyhedron, and that the

solid space between these corresponds to empty space between the rooms.

(a) (b)

Figure 2.7: Example of input point clouds of building interiors (a) and of the recon-
structed room polyhedra (b).
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This chapter describes the first research contribution of this thesis, which al-

lows to robustly model multi-room building interiors that have a 2.5D structure.

The method follows the general pipeline outlined in Chapter 2 and uses the 2.5D

prior to achieve robustness to the defects of real-world data while keeping the

complexity of the computation low. For this reason, it represents a practical ap-

proach that can be used to model a significant array of real-world environments

while still being fast and simple to implement. To cope with the general case of

interiors with arbitrary wall orientations, the more general approach of Chapter 4

should be used, at the cost of an increased complexity and of a higher computa-

tional cost.

3.1 Motivation and Background

A large number of modern buildings (e.g. blocks of apartments, office build-

ings) exhibit a regular architectural structure, with vertical walls and horizontal

floors and ceilings. Such buildings are said to have a 2.5D structure, meaning

that their three-dimensional shape can be obtained by vertical extrusion of a two-

dimensional entity, that is, the floorplan of the building.

Assuming a 2.5D structure provides some useful priors on the shape of the

architectural structures to be reconstructed, which greatly simplifies the modeling

process: since all wall structures are assumed to be vertical, the analysis of a

building can be performed by considering the projection of the input model onto

the horizontal plane of the floor. In particular, the input 3D points corresponding

to the same vertical wall should appear on this projection as thin clusters of almost

colinear 2D points; this allows for an early pruning of groups of points that do not

exhibit a clear dominant direction. Moreover, the main wall directions can be

extracted by detecting 2D lines in the projection, using well-established methods

such as the Hough transform or the mean-shift clustering algorithm. In addition

to this, the presence of horizontal floors and ceilings allows to consistently define

the notion of height of the environment (i.e. the distance between the floor and

the ceiling) and to use it to support the modeling process.

State-of-the-art The 2.5D assumption effectively allows to cast the mod-

eling problem in terms of the extraction of the floorplan of the environment and

is therefore a strong prior in itself. In spite of this, a large number of methods

further simplify the task by relying on the even more restrictive Manhattan-World

assumption, which additionally imposes that walls are either orthogonal or par-

allel to each other. This implies that walls can have only one of two dominant

orientations, which can be found by first detecting the largest peak in the distribu-

tion of wall orientations and by then looking for the second largest peak near the
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direction perpendicular to the first one [Okorn et al., 2010; Budroni and B¨ohm,

2010]. The same assumption is also exploited by methods that do not perform a

floorplan-based modeling, for instance to simultaneously detect both large-scale

and small-scale architectural structures [Sanchez and Zakhor, 2012] or to for-

mulate the reconstruction as the labeling of an axis-aligned voxelization of the

environment [Furukawa et al., 2009; Turner and Zakhor, 2013]. A voxel-based

representation is also used by Adan et al. [Adan et al., 2013], who use it to guide

the extraction of the wall structures. More interestingly, their voxelization is used

to detect doorways and windows in an occlusion-aware manner.

Since these approaches are heavily limited in the array of environments that

they can capture, more modern pipelines typically only rely on the 2.5D prior.

Some approaches focus entirely on the extraction of the floorplan, arguing that

a full 3D model can be generated from the floorplan itself [Turner and Zakhor,

2012], while others also extrude it vertically according to the recovered height of

the environment [Cabral and Furukawa, 2014]. Oesau et al. [Oesau et al., 2014]

go one step further and generate a 3D space partitioning by stacking lines detected

in the vertical projection of the input model, then label the volumetric cells into

inside/outside using a visibility-driven energy minimization.

Although more flexible than the approaches based on Manhattan-World, such

methods generally suffer from two main drawbacks. First, most of them disre-

gard the problem of occlusions in the input data, assuming either that the scene

is almost completely visible or that parts of the building occluded from one view

are available from another viewpoint. In fact, the few methods that achieve some

degree of robustness to occlusions, either as a side-effect of the specific recon-

struction algorithm used [Furukawa et al., 2009] or by explicit recovery of the

occluded regions [Adan et al., 2013], rely on the orthogonality of the wall struc-

tures. Second, these methods perform a sheer recovery of the boundaries of the

environment and do not extract any semantic information about the subdivision

into different rooms, which (as explained in Chapter 1) is of fundamental impor-

tance in many real-world application scenarios, such as room asset planning and

management or energy efficiency simulation.

Contribution The work described in this chapter – which was presented as a

conference contribution [Mura et al., 2013] and as a journal article [Mura et al.,

2014] – aims at filling the research gap with respect to the two points mentioned

above (i.e. robustness to occlusions and recovery of room subdivision) while ex-

plicitly targeting the reconstruction of the architectural structures of the environ-

ment. In particular, we propose a robust modeling pipeline that is capable of

coping with heavy occlusions and missing data and of automatically recognizing

different rooms as separate parts of the environment. The approach is based on
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the 2.5D prior, but does not impose other constraints on the mutual orientations

of the walls, thus lifting the much more restrictive Manhattan-World assumption

used by many state-of-the-art methods.

3.2 Method Overview

Coherently with the outline provided in Section 2.1, the method takes as input

an adjacency graph G
adj

of bounding rectangles that describes the scene to be

modeled, together with the associated point clouds. Since the pipeline makes use

of the visibility information during the detection of permanent components and in

the room reconstruction stage, we arrange the point clouds according to the format

described in Equation 2.3. The output model – a set of watertight meshes, one for

each room in the environment – is obtained by applying a pipeline that follows a

scheme similar to the one outlined in Section 2.1. The three steps of the pipeline,

visually summarized in Figure 3.1, are shortly introduced in this section; a more

detailed description is given in the remainder of this chapter.

Occlusion-aware detection of permanent components Vertical rectangles that

are potential wall structures are selected from the input adjacency graph. Tak-

ing into account the per-scan visibility information, occluding rectangles are then

projected onto the potential wall rectangles to recover their actual (unoccluded)

vertical extent and get a robust indicator of whether they are genuine wall seg-

ments, pruning those which are more likely to be clutter.

Construction of floorplan-based space partitioning This step is performed en-

tirely in 2D, on the plane of the ground. First, the projections of the candidate per-

manent components are clustered to get a smaller number of good representative

lines for walls. Then, a cell complex is built from the intersections of the rep-

resentative lines and its edges are weighted according to the likelihood of being

genuine walls.

Room detection and reconstruction Diffusion distances are computed on the

cell-graph of the complex and are used to drive an iterative clustering of the cells

that extracts the boundaries of the individual rooms. For each room, the final

geometry is obtained by robustly fitting planes to the points that lie along the

room boundary and by intersecting the reconstructed wall planes with the planes

of the floor and ceiling.

Differently from the general pipeline shown in Section 2.2.2, the last two steps

are merged into one, as the room reconstruction technique used in this approach

detects one room after another and at the same time reconstructs its 2D floorplan.
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Adjacency Graph of
Bounding Rectangles

  Room Polyhedra

INPUT

OUTPUT

3D Point Clouds

Room Detection 
and Reconstruction

Construction of 
Floorplan-based

Space Partitioning

Occlusion-aware Detection 
of Permanent Components

Figure 3.1: Overview of our 2.5D reconstruction pipeline. With respect to the general
outline in Section 2.1, the room detection and reconstruction steps are merged into one.
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3.3 Occlusion-aware Detection of Permanent
Components

The adjacency graph G
adj

corresponds to a general piece-wise planar representa-

tion of the environment considered; this also includes furniture and other non-

permanent elements that do not belong to the architectural shape of the envi-

ronment. Since we explicitly target 2.5D environments with vertical walls, we

select as candidates for permanent components only the rectangles for which

|n · v
up

| < ✏, where n denotes the normal vector of a rectangle of G
adj

and v
up

is the global up-vector of the scene. This simple criterion effectively rules out flat

structures like tables. We also discard small cluttering rectangles for which the

horizontal extent is smaller than a threshold ✓
hor

(set to 40cm in our experiments).

This process does not yet exclude large vertical cluttering elements such as

large cabinets or bookshelves from the potential wall patches. We therefore per-

form a further pruning, following the intuition that genuine wall structures must

cover a vertical extent that is approximately equal to the distance between the floor

and the ceiling. Checking for this condition in real-world inputs such as 3D scans

of offices or apartments is problematic, as obstacles located between the camera

and the walls can severely limit the amount of structure visible. Taking more scans

from additional viewpoints can only partially solve this problem and it cannot be

considered a viable solution, especially for data sets that originate from static 3D

laser range scanning.

For this purpose, we employ a lightweight visibility test to estimate the ex-

pected unoccluded vertical extent of each candidate permanent rectangle r. In our

technique, an occlusion happens if a bounding rectangle r and an occluder rect-

angle r
occl

overlap when seen from the scan position from which they were taken.

We construct the infinite shadow volume [Crow, 1977] of each r
occl

by casting rays

from the scan position through its four corners. We then compute the intersection

of this shadow volume with the plane of r. Finally, the quadrilateral resulting

from the intersection of the shadow volume is tested for overlap with r. In prac-

tice, we scale each rectangle by a factor of 1.05 to ensure intersection between

the shadow volume of r
occl

and a potentially occluded rectangle r. The process is

illustrated in Figure 3.2. If an occlusion between r and r
occl

occurs, we consider

the vertical extent of the projection of r
occl

onto r and add it to the vertical extent

of r itself. By repeating this check for every r
occl

, we obtain the combined height

h of r. We then prune r from the candidate list based on the following condition:

h  (1 � ⌘) · h
rooms

. Here ⌘ is a small number (set to 0.05 in our tests) and

h
rooms

is the distance between the floor and the ceiling. An accurate measure for

h
rooms

is obtained as a byproduct of the robust fitting of wall and ceiling planes

described in Section 3.5.4.
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h

r

roccl

Figure 3.2: Computation of the unoccluded vertical extent of a rectangle. An occluding
bounding rectangle r

occl

is projected onto the plane of a candidate permanent rectangle r
to recover its unoccluded vertical extent h.

Repeating this check for each vertical rectangle that satisfies the aforemen-

tioned condition yields a pruned list of actual candidate permanent components

that are likely to belong to wall structures. The use of the unoccluded vertical

extent significantly improves the selection of candidate walls in cluttered environ-

ments and all subsequent steps of the algorithm benefit from this. The approach

works well even though it is based on an approximation of the scan visibility

problem. On the other hand, a more sophisticated analysis would be inadequate

for this task due to the imperfect nature of real world input data, which contain

large holes and missing parts.

3.4 Construction of Floorplan-based Space
Partitioning

The candidate permanent rectangles detected in the previous stage provide some

evidence of the likely location of the main wall structures of the environment. As

outlined in Section 2.1, these can be used to build a space partitioning structure

that describes the space surrounding the input scans as a set of convex sub-regions.

Thanks to the 2.5D hypothesis used in this method, the construction of this struc-

ture can be formulated entirely in terms of 2D computations on the floorplan of

the environment, leading to a simplified process compared to a full-3D approach.
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3.4.1 Computing Representative Lines

The candidate permanent rectangles detected in the previous step are projected

vertically onto the plane of the floor to obtain a set of 2D line segments, which are

then clustered using mean-shift [Comaniciu and Meer, 2002]. Such an approach,

employed in a similar manner also in other state-of-the-art approaches [Oesau

et al., 2014], aims at merging almost co-linear segments into a reduced set of

representative lines that describe the main orientations of the walls in the environ-

ment. A first clustering yields the main directions of the walls; for each direction

obtained we then perform a 1D mean-shift clustering which identifies all possible

offsets of parallel wall segments of that orientation. This way we extract a set

of clusters of line segments C = {C
0

, . . . , C
n

}. Each cluster C
k

corresponds to a

particular wall structure and is associated with a representative line l
k

. The list of

representative lines L = {l
0

, . . . , l
n

}, together with the associated clusters of line

segments C, are used to construct the space partitioning structure and to compute

the weights of its edges.

3.4.2 Cell Complex Construction

The representative lines L induce a partition of the plane that models the floorplan

of the processed indoor environment. The resulting data structure is a standard 2D
cell complex, also known in the literature as an arrangement of lines [Edelsbrunner

et al., 1986]. It is worth mentioning that, during the construction process, each

edge of the complex is associated to the representative line l
k

from which the

edge originated, together with the corresponding cluster of 2D line segments C
k

.

Using the infinite representative lines to construct the complex contributes sig-

nificantly to the robustness to occlusions of the whole method: even if part of a

wall is missing due to an occlusion, the 2D region around the missing part will

still be split along the actual wall, thus generating 2D cells whose boundaries fol-

low the separation induced by the unoccluded wall structure. Since in our pipeline

the shape of a room is obtained by aggregation of a set of 2D cells of the com-

plex (see Section 3.5.2), the room reconstruction algorithm can still extract correct

room shapes that adhere to the actual wall boundaries.

The edges of the cell complex are weighted in a way that allows for the sub-

sequent extraction of the individual room shapes. In particular, given an edge e
ij

between two faces f
i

and f
j

of the cell complex, we assign it a weight w
ij

that cor-

responds to its likelihood of corresponding to a real wall structure. To do so, we

consider all contributing candidate walls (i.e., all line segments of the cluster C
k

associated to e
ij

) and project them onto e
ij

itself. Let us denote with cov(e
ij

) the

fraction of the extent of e
ij

that is covered by such projections. The weight w
ij

is
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Figure 3.3: Computation of the coverage of an edge of the 2D cell complex. The 2D line
segments of candidate walls (in light blue) are first projected onto the edge, then the ratio
of the occupied length to the total length is assigned as a weight to the segment.

then defined as follows:

w
ij

=

cov(e
ij

)

length(e
ij

)

(3.1)

The computation of the weight w
ij

of the edge between two faces f
i

and f
j

is

shown in Figure 3.3.

Note that we also keep a so called infinity face f1, which corresponds to the

outside and has an edge incident to each face on the boundary of the cell complex.

This infinity face plays an important role in the termination criterion during the

subsequent iterative clustering.

3.5 Room Detection and Reconstruction

The cell complex computed in the previous step partitions the plane of the floor-

plan into a set of faces. In this step, the shapes of the rooms of the environment are

reconstructed first in 2D, as sub-regions of the floorplan corresponding to specific

clusters of faces, then in 3D, by robustly extruding the 2D room shapes into 3D

polyhedra. This procedure yields the final room models.

3.5.1 Diffusion Embedding

Given the cell complex representing the environment and the coverage weights

w
ij

of the edges between neighboring faces, it is possible to establish a global

affinity measure for all pairs of faces. We use the coverage weights to derive a
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sparse affinity matrix L, with entries L
ij

defined as follows:

L
ij

=

8
><

>:

e�wij/�
if i 6= j ^ f

i

, f
j

are adjacent,

1 if i = j,

0 otherwise

(3.2)

where � is a scaling parameter.

From matrix L we define a Markov probability transition matrix as M =

D�1L, with D = diag(

P
n

j=1

L
ij

). Each element M
ij

can be seen as a local

affinity value between faces f
i

and f
j

, as it is defined by considering only direct

connectivity between faces. We propagate these local affinities by means of dif-
fusion maps [Coifman and Lafon, 2006], which are known to be robust against

noise [Lipman et al., 2010] and therefore well suited for our task. The diffusion

map � embeds the faces in a multidimensional Euclidean space. Given a face f
i

,

its corresponding coordinate in the embedding space is

�(f
i

) = (�t

1

�
1

(f
i

),�t

2

�
2

(f
i

), . . . ,�t

m

�
m

(f
i

)) , (3.3)

where �
k

and �
k

are the k-th eigenvalue and eigenvector of M respectively. Two

parameters control this diffusion process: the diffusion time t (a measure of smooth-

ness that determines how much the affinities are propagated) and the number m of

eigenvectors of M used in the diffusion map (corresponding to the dimensionality

of the embedding). The Euclidean distance in this multidimensional space is a

measure of dissimilarity between the faces of the cell complex. In other words, if

||�(f
i

)��(f
j

)||
2

is low then the faces f
i

and f
j

are likely to be in the same room.

This process has a physical interpretation as heat diffusion: it can be seen as a

measure of how much heat can flow from f
i

to f
j

in a given diffusion time. This

can be clearly understood by examining Figure 3.4, where the diffusion distances

from a reference face to all the other faces are visualized as a heatmap. The heat

diffuses quickly to the faces that belong to the same room, as they are close to the

reference face in the Euclidean embedding. On the other hand, heat propagates

slower to outer faces (indicated by a green color) and to faces that belong to other

rooms, which in the embedding are far from the reference face (indicated by a

blue/cyan color).

Visualizing the position of the faces in their embedding space is helpful to-

wards understanding the importance of the diffusion process. However, this is

not directly possible when m > 3. To give an intuition of how the Euclidean

embedding is shaped, separate 3D projections of the embedded points could be

considered, one at a time. In Figure 3.5 we show the projection of a diffusion

embedding generated in our tests onto three of its dimensions, selected manually

for the sake of illustration. Each object in the plot corresponds to a face of the 2D
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Figure 3.4: Heatmap visualization of the diffusion distances for two different datasets. In
both cases, the distances from a reference face (marked by the arrow) to all other faces
in the complex are shown. Note how the cells in the same room (highlighted by the black
dotted line) as the source are closer in terms of diffusion distances than the cells that
belong to the outer space or to other rooms (shown in green and blue).

Figure 3.5: Scatterplots showing two rotated views of a 3D projection of the Euclidean
embedding. Each point in the plot represents a face of the 2D cell complex and is colored
according to its final room assignment. The plot refers to the dataset ‘Office 2’ and the
three dimensions have been manually selected for illustration purposes only.

cell complex and is colored according to the room it is assigned as a result of the

segmentation stage. While this offers only a partial view of the embedding space,

it can be still understood how faces belonging to the same room are close in the

diffusion embedding. The remaining m � 3 coordinates, not shown in this plot,

make the separation between the faces belonging to different rooms fully accurate.

The properties of the embedding can be analyzed indirectly by considering the

matrix of pairwise distances that results from the diffusion process. In this matrix,

the i-th row contains the diffusion distances from face f
i

to all other faces in the
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Figure 3.6: Color-coded visualization of the pairwise distances for the cell complex of
dataset ‘Office 3’ using two different values of the diffusion time t. The matrices have
been rearranged so that rows corresponding to faces in a same cluster are adjacent; the
colored bars to the sides of the matrices highlight the correspondence with the detected
rooms. Each red square on the diagonal corresponds to the pairwise distances between
faces in the same room cluster. Note how faces within the same cluster are close, and how
increasing the diffusion time removes noise and emphasizes the structure of the clusters.

complex. In Figure 3.6 a color-coded version of the distance matrix is shown.

Note that the order of the rows has been modified so that the rows corresponding

to faces in a same room appear one after another. The matrix has a block struc-

ture, with the red squares along the diagonal denoting the distances between faces

of a same room. The first six squares correspond to rooms, while the last square

represents the distances between the outer faces. It is worth noticing how the

squares correspond to uniformly low distance values, which confirms that faces

within a same room are close in terms of diffusion distances. The diffusion pro-

cess corrects many errors due to missing data, clutter, and wrong candidate walls,

emphasizing the room separations.

These arguments show that the diffusion formulation is very effective in high-

lighting the similarities between faces within the same room. We also noticed that

the process is only slightly influenced by variations in the parameter settings. All

the results shown in this paper have been obtained using t = 40 and � = 0.0625.

The maximum dimensionality of the embedding, which corresponds to the max-

imum number of eigenvalues that can be used in the diffusion maps, is bounded

from above by the number of faces n
f

of the complex. In practice, using such a

high number of eigenvalues does not lead to better results and only increases the

computation time. Since using an embedding of dimensionality 80 proved suffi-

cient to correctly capture even the most complex environments in our test suite,

we have conservatively set m = min(n
f

, 80).
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3.5.2 Iterative Clustering

The embedding distances between the faces of the 2D complex allow to apply a

clustering algorithm to the set of faces, grouping them into a number of clusters,

each corresponding to a single room of the environment.

We exploit the fact that the location at which each scan was acquired is known

(see Section 3.2) to automatically extract the correct number of rooms. To this

purpose, we perform an iterative clustering algorithm, described in pseudo-code

in Algorithm 2 and explained visually in Figure 3.7. Each iteration executes a

binary version of the k-medoids clustering [Kaufman and Rousseeuw, 1987], in

which k = 2 (line 5 of Algorithm 2). The k-medoids algorithm works by alter-

nating between two steps: computation of the cluster centers (the medoids) and

assignment of the data points to the best cluster. Differently from the more com-

monly used k-means algorithm, the cluster centers are restricted to be items of the

input dataset.

In particular, given two clusters K
0

and K
1

, each medoid k
i

is updated accord-

ing to the rule k
i

= argminKi

P
kj2Ki

||k
i

� k
j

||2. At each step, the k-medoids is

initialized by setting as initial medoids the two faces that are farthest away from

each other in terms of diffusion distance. Of the two clusters that result from

each partitioning step, one always corresponds to a new single room, denoted

as K
R

in Algorithm 2. For example, the split labeled 1 in Figure 3.7 extracts

the room shown in red. For environments with genus � 1 (such as ‘Office 2’,

shown in Figure3.9), K
R

can correspond to a hole (i.e. a set of outside faces

disjoint from f1); since we assume that each room is scanned from at least one

viewpoint (Section 3.2), we discard K
R

if it does not include a face containing

a viewpoint. The second cluster extracted by the k-medoids contains the faces

not yet labeled (shown in gray in Figure 3.7 and denoted as K1 in Algorithm 2)

and always includes the face f1. This behavior is linked to the properties of the

diffusion embedding, which are analyzed in detail in the next paragraph. As the

algorithm proceeds to iteratively cluster K1 (line 5 in Algorithm 2), it creates a

split sequence like the one shown in the bottom of Figure 3.7.

The iterative partitioning has to be stopped when all rooms have been de-

tected. To do so, we exploit the viewpoint information that comes with the input

point clouds. In particular, we can assert that the faces that contain a scan po-

sition (v 2 V in Algorithm 2) are certainly inside a room. Conversely, we can

assume that each room was scanned from at least one location inside it (see Sec-

tion 3.2). Hence, to check if K1 contains yet unlabeled rooms, it is sufficient to

check whether it contains a face v 2 V (line 7 in Algorithm 2). Otherwise we

can conclude that all rooms have been detected, in which case the partitioning

process is terminated. In Figure 3.7, this termination criterion is met after the last

remaining room has been extracted in the split labeled 10.
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Input : Set F of the faces in the Euclidean embedding

Set V of the faces containing viewpoints

Output: Set K of clusters defining the rooms

1 ClusterRooms (F ,V )

2 K ;
3 K1  F
4 repeat

// create clusters K
R

(new room) and

// K1 (unlabeled faces containing f1)
5 (K

R

, K1 ) KMedoids(K1 )

// update set of room clusters

6 K  K [ K
R

7 until 9v 2 V : v 2 K1
8 return { K }
9 end

Algorithm 2: Iterative clustering algorithm for the extraction of room clusters.

The advantage of this method over other room clustering alternatives is that

the subdivision is stopped when all rooms have been extracted, without the need

of specifying the target number of rooms in advance. In fact, this approach effec-

tively integrates the detection of the rooms into the reconstruction process.

Analysis of the diffusion-based clustering The clustering algorithm

proposed exhibits the systematic behavior of extracting a single room in each

iteration. Two factors are responsible for this behavior: the specific properties of

the diffusion embedding and the characteristics of the k-medoids clustering. The

two aspects are examined in detail in this section.

A relevant property of the embedding is that, for the set of faces of any given

room, the faces representing the outside (and including f1) are closer than the

faces inside any other room. Evidence for this is provided by the color-coded

visualization of Figure 3.4: the faces of the room where the source face is located

(indicated by the arrow) are closer to the outer faces than to the faces in other

rooms. This property is even more evident if we consider the visualization of the

pairwise distance matrix in Figure 3.6.

This happens because the faces that correspond to the inside and those that

represent the outside are in contact along the whole perimeter wall of the build-

ing, which corresponds to many edges of the complex. Using the heat diffusion

analogy, these edges represent the only barrier that prevents the heat from diffus-
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Figure 3.7: Illustration of the iterative partitioning process. The input cell complex
(framed in red) is iteratively divided into two clusters, generating an (unbalanced) binary
tree of splits. At each split (identified by a number), the set of input faces is partitioned
into a room cluster and a set of unlabeled faces (shown in gray). The partial partitioning
corresponding to each split step can be seen in the top part of the figure. Note that the
only splits that are actually performed in our algorithm are the ones numbered in black,
while the gray numbers denote hypothetical splits. A measure of the quality of each split
(including the hypothetical ones) in the bar plot in the inset.

ing from the inside to the outside. On the other hand, any two individual rooms

do not touch directly, but are separated either by empty space or by a thick wall;

in either case, the heat can not diffuse directly from one room to another, but must

travel across (possibly many) outer faces. For this reason, as long as the candidate

walls are sufficiently solid, the faces of any room are much closer in the diffusion

embedding to the outside faces than to the faces of any other room.

During each iteration of the clustering process, the first assignment of faces to

the medoids will create two unbalanced clusters, with medoids k
1

and k
2

. This

is because the medoid that is closer to f1 (let us assume this is k
2

) will become

the pivot for most of the faces of the complex. As a consequence, k
2

will move

towards f1. Since every room is closer to the outside than to any other room,

every face in the complex will be assigned to the cluster of k
2

, with the exception

of the faces that belong to the room containing k
1

.

The use of the k-medoids algorithm, which requires the cluster centers to be

faces of the complex, further increases the robustness and the stability of this

partitioning process. This is because a cluster center will either be a face inside

a room (and hence the cluster is strongly bound to this particular room) or a face

close to f1 (possibly, f1 itself). We have also experimented with an alternative
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formulation based on applying the more traditional k-means clustering, where

cluster centers can correspond to arbitrary positions in the embedded space. We

discovered that k-means is much more dependent on the diffusion parameters (in

particular, on the diffusion time t) and requires considerable adjustment of their

values to yield correct results.

To further prove the effectiveness of our algorithm we have evaluated the qual-

ity of each split a posteriori. Let B = {e
1

, . . . , e
n

} be the set of edges that separate

the two components extracted in a single binary split. We define the split quality
q
split

of B as follows:

q
split

(B) =
P

n

i=1

w(e
i

) · length(e
i

)P
n

i=1

length(e
i

)

, (3.4)

where w(e) denotes the coverage of e due to candidate wall segments and fol-

lows the definition of Equation 3.1. This quality function measures how solid the

boundary between two adjacent clusters is in the range [0..1], where 1 corresponds

to a split along a perfectly solid wall. The edge lengths act here as weights, ensur-

ing that each edge contributes to the split cost proportionally to its importance.

The quality of the splits generated in the sequence of Figure 3.7 is shown as

a bar plot in the inset of the same picture. The splits actually performed by our

algorithm are identified by the black numbers. According to the quality measure,

each of those splits generates a boundary that corresponds to an actual wall with

high confidence. On the other hand, forcing a further (hypothetical) split when

the algorithm would normally terminate would yield a boundary with clearly low

quality. These hypothetical splits are denoted by light gray numbers. Since we

are taking the viewpoints into account to check for the proper termination depth,

no threshold has to be set to avoid such bad splits.

3.5.3 Post-processing

When the input environment contains long corridors, the diffusion process might

fail to propagate the affinity values between the distant faces of such a struc-

ture, resulting in corridors being incorrectly split into several separate clusters

(see Figure 3.8). This issue could be solved by increasing the diffusion time t in

Equation 3.3, which however would require an interactive and adaptive tuning of

this parameter. As an alternative, we propose a simple post-processing technique

based on explicitly checking the goodness of the boundary between adjacent clus-

ters. This is based on the fact that incorrect splits can be easily and robustly

detected since they do not correspond to an actual wall segment.

The first step of the post-processing is to discover the adjacencies between the

detected clusters of 2D cells, that is, to detect the pairs of clusters whose bound-

aries touch in at least one edge. For each such pair, we compute the (possibly
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(a) (b)

Figure 3.8: Post-processing step to correct room over-segmentation. Large rooms with
an elongated shape such as corridors may be incorrectly split into multiple clusters (a).
By applying our robust post-processing step, we are able to detect these cases and recover
the correct shape of any over-segmented room (b).

multiple) connected components of the shared boundary B, then evaluate the split

quality q
split

(B) as defined in Equation 3.4.

Two adjacent clusters are then split if for each of their boundary segments q
split

is lower than a threshold, that we have set to 0.5 in our experiments. This method

robustly and correctly merges connected structures like the corridor in Figure 3.8.

Note that, in practice, the choice of this threshold did not require any fine tuning,

as we have observed a clear-cut distinction between erroneous and correct splits.

In all our experiments, fake boundaries always had q
split

< 0.22, while real ones

always had q
split

> 0.97 (as shown by the plot of Figure 3.7).

3.5.4 Final Reconstruction

The final 3D model of the environment is obtained by extracting a 3D polyhedron

from each detected room cluster. To do so, the boundary edges of each cluster are

extracted, merging adjacent edges that are colinear. Then, the full 3D extent of the

walls is recovered. Instead of simply extruding the 2D boundary edges vertically,

we apply a different approach based on robust statistics to obtain a more accurate

estimation of the wall parameters.

For each edge in the boundary of a cluster, we access the 2D line segments

C
k

associated to the edge (see Section 3.4.1) and we select the points of the cor-

responding rectangles. A robust plane fitting algorithm is then applied to these

points to extract the final wall planes. The fitting is based on the Iteratively Re-
weighted Least Squares (IRLS) [Huber and Ronchetti, 2009], which is based on

solving a sequence of weighted least squares problems until convergence. Ro-

bustness is achieved by using a suitable weight function, chosen so that outliers

(which correspond to large residuals) have a reduced influence in the estimation.

In our experiments, we used the function w(x) = 1/|x| as weight function for the

IRLS, which corresponds to minimizing the L
1

norm of the residuals.
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Model #Perm. rect. #Rooms Time

Room 1 21 1 6.7s

Room 2 25 1 8.6s

Office 1 58 2 10.5s

Office 2 113 6 9.5s

Office 3 134 6 34.4s

Synth 1 52 4 19.4s

Synth 2 60 3 18.6s

Synth 3 202 11 85.3s

Table 3.1: Relevant statistics and running times of the reconstruction. For each input
model, we show the number of candidate permanent rectangles detected (col. Perm.

rect.), the number of rooms extracted (col. Rooms) and the processing time for the whole
reconstruction process (col. Time)

We use a similar fitting procedure for reconstructing the floor and ceiling

planes. Since we assume that floor and ceiling are planar and orthogonal to the

up-vector, we find the two horizontal rectangles r
floor

and r
ceil

with respectively

minimum and maximum height. To increase the accuracy and robustness of the

estimation, we propose the following strategy to fit the final planes. Given r
floor

(respectively r
ceil

), we take the horizontal rectangles whose distance from r
floor

(and r
ceil

) is less than a threshold and use their points as support set for an IRLS

fit. Note that throughout this process for practical purposes we only consider rect-

angles with a diagonal larger than 50cm.

Given the fitted planes of the walls and of the floor and the ceiling, the poly-

gons of the final polyhedra are obtained by intersecting pairs of adjacent wall

planes with the floor and ceiling planes.

3.6 Results

We evaluated the effectiveness of our approach on 8 models of building interiors.

Of these, 5 correspond to real-world environments (‘Room 1’, ‘Room 2’, ‘Office

1’, ‘Office 2’, ‘Office 3’), while the remaining 3 (‘Synth 1’, ‘Synth 2’, ‘Synth

3’) are synthetic datasets, created by a 3D artist and sampled in software (see

Section 2.2.1 for a description of this process). Detailed information on the in-

put datasets are given in Appendix A. Relevant statistics about the reconstruction

process are listed in Table 3.1.

Implementation We implemented a software prototype of the proposed pi-

peline in C++, using OpenMP to parallelize some processing stages, including
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the weighting of the cell complex. All tests were run on an Intel Xeon E5-2670

2.6GHz processor. As shown in Table 3.1, the processing times vary from 6.7s
for the smallest model (‘Room 1’) to less than 90s for the largest dataset (‘Synth

3’), which contains almost 70M points. These timings also include the planar

abstraction, i.e. the segmentation into planar patches and the extraction of bound-

ing rectangles. Note that in this pre-processing step we set ✓
o↵

= 0.5cm and

✓
ang

= 0.975; the specific choice of ✓
adj

does not influence the computation, since

this pipeline only considers the nodes (i.e., the rectangles) of the input graph G
adj

,

without taking into account the adjacency relations between them.

Correctness of reconstruction The behavior of our modeling pipeline

was studied both for multi-room environments and for individual rooms. The

reconstruction results for the datasets considered are shown in Figure 3.9 (real-

world datasets) and in Figure 3.10 (synthetic datasets).

The datasets ‘Room 1’ and ‘Room 2’, each consisting of a single room, allow

to specifically evaluate the reconstruction of the room shapes, independently of

the room detection capabilities of the pipeline. Both cases represent challenging

inputs, as the large window fronts cause many reflection artifacts and thus a large

amount of outliers; moreover, the shape of ‘Room 2’ is concave and highly irreg-

ular. Nevertheless, the method can correctly extract the shape of the two rooms.

Room 2Room 1

Office 1 Office 2 Office 3

Figure 3.9: Reconstruction results for real-world datasets. For clarity of visualization,
the input models are shown with the ceiling removed.
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Synth 2 Synth 3Synth 1

Figure 3.10: Reconstruction results for synthetic datasets. Notice the presence of scat-
tered points in the input models, added to simulate the artifacts from laser rays hitting
reflective surfaces (e.g. windows). Ceilings have been removed for the sake of clarity.

The datasets ‘Office 1’, ‘Office 2’ and ‘Office 3’ are part of three different

office environments, all composed of multiple rooms. The highly anisotropic

shape of the corridor in ‘Office 1’ is reconstructed correctly and separated from

the neighboring room. ‘Office 3’ represents a larger environment composed of

several rooms, all attached to a central corridor, whereas ‘Office 2’ has a more

complex and irregular structure, lacking a single central corridor and containing

some empty space completely surrounded by other rooms. In both cases, all the

rooms are correctly detected and reconstructed.

In order to test the approach on more general architectural shapes, we per-

formed additional tests using three synthetic models (‘Synth 1’, ‘Synth 2’ and

‘Synth 3’). In all these models, the depth measurements produced during the

ray-casting process were corrupted with additive Gaussian noise, using a standard

deviation �
noise

= 1mm; this corresponds to a noise level comparable to that of

static laser range-scanners. Moreover, we simulated the scattered outliers caused

by window reflections. To do so, instead of discarding all the rays that exit through

a window opening, for 0.5% of these rays we generate depth values from a uniform

distribution in the range 6m� 8m (chosen so that the resulting points are outside

of the room). ‘Synth 1’ and ‘Synth 2’ show two cases that clearly violate the

Manhattan-World assumption; in particular, the rooms in ‘Synth 2’ exhibit a very

irregular boundary and a high variation of incident angles between walls. Even

more challenging is ‘Synth 3’, as it contains a higher number of rooms, many of

which having a non-trivial shape composed of many separate wall segments (see,

for instance, the central room colored in blue). In spite of these challenges, the

proposed pipeline is capable of producing valid results for all three datasets.
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Figure 3.11: Reconstruction results for dataset ‘Synth 1’ corrupted with increasing levels
of measurement noise (�

noise

, in the vertical axis) and registration error (err
reg

, in the
horizontal axis).

Robustness To assess the robustness of our method we have corrupted model

‘Synth 1’ with high levels of noise (using �
noise

= 5, 10, 20mm) and introduced

an artificial registration error (25, 50, 100mm) in the translation part of the regis-

tration matrices. While such levels of degradation do not appear in data obtained

by static laser scanning, they are not uncommon when using other acquisition

technologies, such as hand-held cameras or cart and vehicle-based systems. As

shown in Figure 3.11, for a combination of high levels of noise and high alignment

error some reconstruction artifacts appear (e.g., walls separating adjacent rooms

are attached to the actual rooms). Even under these challenging conditions our

algorithm is able to successfully detect all rooms in the environment.

Reconstruction accuracy In addition to the results shown above, we have

evaluated the reconstruction accuracy of our method, using both synthetic (‘Synth

1’) and real-world inputs (‘Room 1’).

In the first case, the 3D model created during the modeling process serves as

a ground truth. We generated two virtual scans of this model, with and without

noise; we then selected for each wall surface of the ground truth model the set

of points lying on it. This made it possible to evaluate the distance from each

reconstructed face to the real inlier points. As shown by the color-coded visual-
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Figure 3.12: Color-coded visualization of the maximum fitting error for the visible wall
faces of the synthetic dataset ‘Synth 1’. A detailed analysis of the errors for all recon-
structed faces (including those not visible in this picture) is given in Figure 3.13.
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Figure 3.13: Accuracy of the final wall planes reconstruction for synthetic dataset ‘Synth
1’. The green bars refer to the IRLS fitting scheme proposed, while the red bars corre-
spond to a more standard reference approach (LMS). For each wall plane of the recon-
structed model (on the horizontal axis) the maximum distance from the plane to the set of
points used for the fit is shown.

ization in Figure 3.12, the accuracy of the reconstruction is generally very good.

The more detailed plot in Figure 3.13, which quantifies the errors for all the faces

of the model, shows that the maximum error exceeds 2mm for a few faces only,

while for most of them is well below 1mm. We also compared these reconstruc-

tion errors (obtained with our IRLS-based fitting scheme) against those resulting

from the use of the Least Median of Squares (LMS) approach; the comparison

shows that the accuracy of IRLS is comparable and generally better than the one

of LMS.

Performing a quantitative evaluation for real-world datasets like ‘Room 1’ is

more problematic, as a reliable ground-truth model of the acquired environment

is unavailable. We therefore evaluated the distance between pairs of parallel walls

of the real environment using a manually-operated laser distance measure device.
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Real 3.086m 6.170m 5.700m
Model 3.090m 6.160m 5.689m
Disp. 4.81 / 4.91cm 5.71 / 7.51cm 3.22 / 5.11cm

Table 3.2: Reconstruction accuracy for dataset ‘Room 1’. For each pair of parallel walls,
we show their real-world distance (Real) and their distance in the reconstructed model
(Model). The last row (Disp.) shows, for each wall plane in each pair of parallel walls,
the spatial dispersion of the points that are used for the fit with respect to the plane itself.

We then compared the measurements with the distance between the corresponding

wall faces in the reconstructed model. The results shown in Table 3.2 confirm that

also on real-world inputs our method is able to achieve very good accuracy levels.

3.7 Discussion and Outlook

This chapter presented a pipeline for the architectural reconstruction of real-world

multi-room building interiors that exhibit a 2.5D structure. Our method is robust

against clutter and occlusions and is able to partition the environment into the

correct number of individual rooms. This approach represents an important step

towards going beyond a plain geometric reconstruction of an indoor environment

to extract semantic information as well. A number of more recent works com-

plement and improve the capabilities of our pipeline [Turner and Zakhor, 2014;

Ochmann et al., 2016], in some cases integrating the room reconstruction into

a more extensive recovery of the semantic structure of the environment [Ikehata

et al., 2015; Armeni et al., 2016].

Though innovative and of significant practical value, our method has several

limitations. The approach focuses on the robust extraction of the basic room

shapes and does not attempt to recognize fine architectural details, such as small

recesses in the walls; these can be recovered separately, by performing a 2D anal-

ysis of each wall surface extracted. Moreover, the room detection relies on the

assumption that each room contains at least one scan position; rooms that do not

satisfy this condition can not be extracted by the iterative clustering procedure

(Figure 3.14(a)). Note, however, that this assumption is typically verified in real-

world datasets. The most significant limitation of this method is linked to the
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(a) (b)

Figure 3.14: Some limitations of our 2.5D reconstruction approach. Rooms that are
only partially covered by scans originating in other rooms (such as the rooms attached
to the corridor in (a)) are not recognized by our method. Moreover, our pipeline can not
faithfully model environments with slanted walls (b) and different ceiling heights.

2.5D prior used. While this allows to simplify the modeling problem and to make

it more efficient, a number of real-world architectures with slanted surfaces (e.g.

traditional roofed houses) can not be explained in terms of vertical walls and hor-

izontal floors and ceilings (of the same height). In such cases, the approach can

not deliver a satisfactory reconstruction, as clearly shown in Figure 3.14(b)).

The method described in Chapter 4 overcomes this latter, substantial limitation

of the approach and allows for the modeling of more general architectures with

arbitrarily oriented planar surfaces.
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The approach described in Chapter 3 performs a room-aware reconstruction of

an indoor environment starting from data containing artifacts and missing regions;

however, due to the 2.5D prior used, it can not provide a meaningful reconstruc-

tion of a significant share of real-world building interiors. This chapter presents a

pipeline that lifts the 2.5D assumption and can model environments with arbitrary

wall orientations, thus allowing for a full-3D description of building interiors.

4.1 Motivation and Background

Many modern buildings exhibit a regular architecture, based on the presence of

vertical wall surfaces and of horizontal floors and ceilings. This structure – better

known in the literature as the 2.5D structure – is commonly used by automatic

indoor modeling methods to simplify the reconstruction process and have a well-

defined prior to guide the detection of permanent structures. Often, the condition

that ceilings and floors have the same height is included into the 2.5D prior, as

done in the approach presented in the previous chapter.

Although the methods based on this assumption have proven capable to re-

construct real-world interiors in a robust and often fully automatic manner, their

applicability is limited to a subset of the settings that need to be covered by prac-

titioners. A large array of cases (e.g. traditional roofed houses) have a full-3D
nature, that is, they are bound by architectural surfaces with arbitrary orientations.

When applied to digital models of such environments, 2.5D approaches often fail

to produce a solution, or in the best case output a model that only roughly cap-

tures the real shape of the interiors (see Figure 3.14(b) in Section 3.7). In such

cases, the required model must be created by hand using a 3D modeling software,

possibly starting from the incorrect solution generated automatically. The manual

reconstruction process is tedious, time-consuming and error-prone and is further

complicated by the general orientations of the structures of the environment. For

this reason, the need for automatic or semi-automatic pipelines for the modeling of

indoor architecture is even stronger for cases that do not exhibit a 2.5D structure.

State-of-the-art Despite the great practical significance of the problem, most

state-of-the-art reconstruction pipelines are based on the restrictive Manhattan-

World and 2.5D assumptions. This is especially true for methods specialized in

indoor environments. As already described in Section 3.1, traditional approaches

assume axis-aligned wall orientations [Furukawa et al., 2009; Budroni and B¨ohm,

2010; Okorn et al., 2010; Adan et al., 2013; Turner and Zakhor, 2013]. More

modern approaches (including the 2.5D pipeline proposed in Chapter 3) lift the

orthogonality constraint between architectural surfaces [Turner and Zakhor, 2012;

Oesau et al., 2014; Cabral and Furukawa, 2014] and are able to recover the seman-
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tics of the environment [Ikehata et al., 2015; Ochmann et al., 2016; Armeni et al.,

2016], but disregard the task of reconstructing more general 3D structures. The

method of Oesau and colleagues [Oesau et al., 2014] goes in the direction of a

more general 3D reconstruction, by creating a three-dimensional space partition-

ing from which the shape of the interior environment is extracted. However, this

structure is built from vertical and horizontal planes only, thus leading in practice

to a 2.5D reconstruction.

In the context of outdoor urban reconstruction, several methods are capable of

reconstructing more general 3D structures. Often, the final geometric model of a

building is obtained by performing an inside/outside partitioning of a spatial struc-

ture built around the objects of interest. Different structures have been proposed,

typically derived from a binary space partitioning (BSP) [Chauve et al., 2010] or

from a tetrahedral space subdivision [Lafarge and Alliez, 2013]. While these par-

titioning schemes can represent arbitrary wall orientations, the overall approaches

are meant to work on relatively occlusion-free outdoor scenes and are therefore

bound to fail in cluttered and heavily occluded settings such as real-world indoor

environments. An exception to this is the work by Boulch et al. [Boulch et al.,

2014], which is based on a visibility formulation that is amenable for indoor set-

tings. However, none of these methods performs a separation between structural

components and clutter nor deals with the detection of rooms.

Contribution This chapter introduces a novel modeling pipeline that lifts the

restrictive Manhattan-World and 2.5D assumptions and is capable of reconstruct-

ing multi-room building interiors with arbitrary wall orientations. The proposed

solution, published as a journal article [Mura et al., 2016] and presented in a con-

nected conference talk, employs a three-dimensional BSP structure to represent

the input scene, as done in more general outdoor reconstruction settings. The in-

creased complexity of the data structure is balanced by an early pruning of the

parts of the scene that do not belong to permanent structures of interest. This

allows to handle a significantly larger class of real-world environments and recon-

struct prevalent 3D structures such as slanted walls and sloped ceilings robustly
and in a unified manner. While more expressive in the type of structures that

can be recognized, our approach includes the main capabilities of modern indoor

modeling frameworks, such as room detection and separation between permanent

components and clutter.

4.2 Method Overview

The full-3D pipeline proposed strictly adheres to the general scheme outlined in

Section 2.2.2. In particular, the method is composed of four main computation
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steps, which extract from the input representation of the environment (i.e. the

adjacency graph of bounding rectangles G
adj

and the associated point clouds) a

set of 3D polyhedra representing the rooms in the environment. As in the method

described in Chapter 3, the input point clouds are assumed to cover the environ-

ment in an adequate manner (that is, with at least one scan in each room) and are

represented using the grid set format (Equation 2.3), which allows to access the

viewpoints from which the environment was acquired.

The individual steps, visually summarized in Figure 4.1, are shortly introduced

in this section; an in-depth description is provided in the rest of the chapter.

Graph-based detection of permanent components The rectangles G
adj

are di-

vided into permanent components (i.e., the static architecture) and clutter (non-

structural components like furniture) by reasoning on the structural relations be-

tween adjacent elements based on six rules.

Construction of 3D space partitioning The planes of the permanent components

are used to build a 3D BSP structure that partitions the scene into a set of convex

polyhedral cells, which are then arranged into a cell complex based on their adja-

cency relations.

Room detection A visibility-based clustering is applied to a subset of the cells

of the complex to find the approximate location of the individual rooms.

Room reconstruction The final room models are reconstructed by applying a

multi-label energy minimization approach to the whole cell complex and by per-

forming the volumetric union of the sets of cells with the same label.

4.3 Graph-based Detection of Permanent
Components

As highlighted in Section 3.3, the input graph G
adj

contains many rectangles that

correspond to furniture and other non-permanent objects. Not only these rectan-

gles are not relevant to an architectural modeling of the environment, but they

also significantly increase the complexity of the reconstruction, in particular of

the space partitioning step. This is especially true in the 3D case, for which the

construction of a space subdivision structure can represent a significant bottle-

neck [Verdie et al., 2015]. For this reason, it is fundamental to separate the com-

ponents that belong to the permanent architecture from clutter early on in the

pipeline.

In the absence of a prior on the orientation of the wall structures, we consider

the adjacency relations between parts of the scene encoded in G
adj

and reason on
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Detection of 
Permanent Components

Construction of 
Space Partitioning

Room Detection

Room Reconstruction

Adjacency Graph of
Bounding Rectangles

  Room Polyhedra

INPUT

OUTPUT

3D Point Clouds3D Point Clouds

Figure 4.1: Overview of our full-3D modeling pipeline. The computation strictly follows
the general scheme outlined in Figure 2.1.
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Figure 4.2: The six structural patterns for pairs of neighboring bounding rectangles that
are used in our structural region growing algorithm.

the structural soundness of the environment. In particular, we observe that build-

ing interiors are composed of three main structural elements, namely ceilings,

walls and floor, which are arranged from top to bottom in a consistent fashion, i.e.

ceilings (on top) unload their weight onto the floor (bottom), typically transition-

ing through walls.

To exploit this intuition for the reconstruction, we introduce the concept of

structural paths in the adjacency graph G
adj

. A structural path is a sequence

W
S

= ( v
1

, v
2

, . . . , v
n�1

, v
n

), where v
i

2 G
adj

, v
1

corresponds to a rectangle in

the ceiling, v
n

to a rectangle on the floor and every edge ( v
i

, v
i+1

) is an edge in

G
adj

that is structurally valid. An edge ( v
i

, v
i+1

) is considered to be structurally
valid if the two bounding rectangles r

i

and r
i+1

corresponding to the nodes v
i

and v
i+1

express a transition that is coherent with the top-bottom arrangement

described above.

Valid transitions are encoded using a set of six spatial configurations, denoted

as structural patterns and depicted in Figure 4.2. Patterns 1-4 capture the tran-

sition from the ceiling downwards to the floor (patterns TopDown1 and Top-
Down2), including the special case of large alcoves that jut out of the main room

structure (Alcove1 and Alcove2). Patterns 5-6 (Side1 and Side2) encode lateral
adjacencies between walls. In particular, the mutual rectangle positions for these

patterns can be described as follows.

1. TopDown1: at least one of r
i

and r
i+1

is not vertical and there exists a pair

of edges s0
i

, s0
i+1

that are spatially close (i.e. their minimum distance is



4.3 Graph-based Detection of Permanent Components 55

< ✓
adj

/2) and parallel to a same line; additionally, the projections of s0
i

and

s0
i+1

onto said line overlap;

2. TopDown2: r
i

rests on r
i+1

, i.e., the top edge of r
i+1

lies on the plane of r
i

and its projection onto such plane is contained in r
i

;

3. Alcove1: the top edge of r
i+1

(any if r
i+1

is horizontal) lies on r
i

and the

opposite edge lies on the negative half space of ⇧

i

; note that ⇧

i

has the

same normal as r
i

, which points towards the inside of the environment (as

described in Section 2.2.2);

4. Alcove2: the bottom edge and either the left or the right edge of r
i+1

intersect

r
i

;

5. Side1: r
i

and r
i+1

are both non-horizontal and have the same vertical slant

(i.e., are either both vertical or are parallel); additionally, the left edge of r
i

and the right edge of r
i+1

(or vice-versa, the left edge of r
i+1

and the right

edge of r
i

) are adjacent in the sense of TopDown1;

6. Side2: the intersection of the planes of r
i

and r
i+1

crosses the left edge of r
i

and the right edge of r
i+1

(or vice-versa, the left edge of r
i+1

and the right

edge of r
i

).

To find structural paths in the contact graph, we apply the following base al-

gorithm, described in pseudocode in Algorithm 3. For every ceiling node v
ceil

(corresponding to a rectangle on a ceiling) we perform a region growing in G
adj

,

using v
ceil

as starting node and only expanding along edges that are structurally

valid in the sense of patterns 1-4 (line 12). If one or more ground patches are

reached, we backtrack from each of them until v
ceil

to extract the structural paths

found.

Figure 4.3 shows a typical structural path that reaches the floor from a ceiling

node, crossing edges that conform to TopDown1. In the same picture, the fixtures

on the ceiling are not connected to the floor and are thus marked as clutter. Simi-

larly, the cabinet represents an orthogonal extrusion from the nearby wall and does

not represent structural support for the ceiling elements (TopDown1-2), hence it

is not part of any structural path.

While this procedure works well when the whole extent of the structures of

interest is visible, in practice furniture placed along the line of sight of the ac-

quisition device often projects large shadows onto the scene, especially onto the

lower parts of the walls. This means that the nodes in G
adj

corresponding to such

walls may have no edge connecting them to the floor. We therefore perform a

second selection step (shown in Figure 4.4), starting the region growing from the

structural patches found in the first pass and considering the lateral adjacencies
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vfloorvfloor

vceil

v1

v3

v2

Figure 4.3: Node v
1

belongs to a structural path (( v
ceil

, v
1

, v
floor

), in green) in the
adjacency graph and is therefore marked as permanent. Nodes v

2

and v
3

, reachable from
the ceiling but not on a valid path to the floor, are classified as clutter.

of Side1 and Side2. Note that objects like cupboards and cabinets (see also Fig-

ure 4.3) are not wrongly added to a structural path by the side relations, as they do

not follow a sequence of side-based adjacencies between structural elements (e.g.

walls), but rather constitute blocks that protrude out of them.

This algorithm yields a set of bounding rectangles R
struct

that correspond to

the detected structural components of the environment. Although it does not make

use of any assumption on the orientation of the wall surfaces, this approach is

highly effective in separating permanent structures from clutter. Compared to

the 2.5D approach presented in Chapter 3, the structural region growing achieves

comparable or better results, as shown in the example in Figure 4.5.

Note that, although this procedure consistently separates the main permanent

elements from the clutter, it is not meant to perform a completely error-free extrac-

tion of the architectural structure of the environment. Its main goal is to simplify

the problem for the subsequent stages, in particular for the final optimization-

based reconstruction, which recovers the globally optimal room models.

Detection of floor and ceiling rectangles The extraction of the struc-

tural paths is guided by the sets R
ceil

and R
floor

of rectangles that lie on the ceilings

and on the floors, respectively. It is therefore necessary to detect these two groups

of rectangles before the structural region growing can be applied.
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Input : Contact graph G
adj

= (V 0, E 0
) of a scene

Set R
ceil

of rectangles on the ceiling

Set R
floor

of rectangles on the ground

Output: Set R
struct

of rectangles of permanent structures

1 StructuralRegionGrowing (G
adj

, R
ceil

, R
floor

)

2 R
struct

 ;
3 foreach v

ceil

2 R
ceil

do
4 Q {v

ceil

}
5 mark v

ceil

as visited

6 F  ;
7 E

crossed

 ;
8 while Q 6= ; do
9 v

curr

 Q .pop()

10 N  nn query (G
adj

, v
curr

, ✓
adj

)

11 foreach v
n

2 N do
12 if ( v

curr

, v
n

) is structurally valid then
13 add ( v

curr

, v
n

) to E
crossed

14 if v
n

not visited then
15 if v

n

2 R
floor

then
16 add v

n

to F
17 end
18 else
19 Q Q [ {v

n

}
20 mark v

n

as visited

21 end
22 end
23 end
24 end
25 end
26 end
27 if F 6= ; then
28 R

struct

 R
struct

[ Backtrack(F ,E
crossed

)

29 end
30 return R

struct

31 end
Algorithm 3: Structural region growing for permanent components detection.
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vfloor

vceil

v1

(a)

v1
v2

v3

vfloor

vceil

(b)

Figure 4.4: The rectangle corresponding to node v
1

is adjacent to a ceiling rectangle, but,
due to viewpoint occlusions, it is not connected to the floor (a). However, using structural
pattern Side1, v

1

can correctly be classified as structural, as it is connected by a lateral
adjacency path between v

2

and v
3

that both belong to a structural path (b).

Following other state-of-the-art approaches [Turner and Zakhor, 2012; Oe-

sau et al., 2014], horizontal floors and ceilings are detected by analyzing the

z-histogram of the scene. However, since we also target buildings with non-

horizontal roofs, we also analyze the rectangles that are non-horizontal. A non-

horizontal rectangle is marked as belonging to a ceiling if the vertical projection

of all the rectangles above it do not intersect it; here a rectangle r
i

is considered

to be above rectangle r
j

if the vertices if r
i

lie in the upper half-space defined by

the plane of r
j

.

4.3.1 Interactive Refinement

Ambiguous rectangles configurations caused by missing data can lead to un-

wanted results in the detection of the permanent components. For this reason,

we provide the option to use interactive operations to correct such errors and to

enforce specific completions of occluded regions.

Unlike full-fledged semi-automatic modeling pipelines [Arikan et al., 2013],

the number of primitives affected by manual refinements is assumed to be negligi-

ble compared to the model complexity. For instance, to produce the reconstruction

of ‘Building D’ shown in Section 4.7 only 21 rectangles were altered, representing

only 4% of the total number of rectangles discovered in the model.

Throughout this process, all bounding rectangles are shown in color-coding

according to their current label (permanent structures are visualized in green, clut-
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(a) (b) (c)

Figure 4.5: Results of the permanent component detection on dataset ‘Office 3’ (a) using
the approach based on structural paths in 3D (c) and the 2.5D technique described in the
previous chapter (b). The result shown in (c) was obtained without any user refinement.

ter is shown in red). The user can intervene using the following three operations

(shown in Figure 4.6).

(a) Label flip. Selecting a rectangle and inverting its label. A rectangle marked

as permanent becomes clutter and vice-versa.

(b) Extension. Sketching a line that starts from one permanent rectangle and ends

on another green rectangle. The two rectangles are extended to the intersection of

their planes.

(c) Orthogonal extension. Sketching a line that starts from one permanent rectan-

gle r
i

and ends on another green rectangle r
i+1

, crossing a boundary line segment

s0
i

of r
i

. A new rectangle orthogonal to the plane of r
i

and extending from s0
i

until

the plane of r
i+1

is added as a new permanent component, while r
i+1

is extended

until reaching such extension.

4.4 Construction of 3D Space Partitioning

Differently from the 2.5D pipeline of Chapter 3, the space partitioning structure

used in this approach is fully three-dimensional and consists in a 3D BSP tree,

similar to that used in related methods [Chauve et al., 2010; Boulch et al., 2014].

We use as splitting planes for the construction of the BSP the dominant planes
of the environment, that is, the unbounded planes that describe its main archi-

tectural shape. The procedure used to compute the dominant planes follows the

one presented in the 2.5D case 3.4.1: we use the mean-shift algorithm [Comani-

ciu and Meer, 2002] to cluster the permanent rectangles according to their normal
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(a) (b) (c)

Figure 4.6: Examples of interactive refinement of the automatic results: label flip (a);
extension (b); orthogonal extension (c).

direction and to their offset along that direction (see Figure 4.7). To avoid aver-

aging effects inherent to the mean-shift procedure, we additionally perform for

each cluster obtained a least-median of squares (LMS) fit [Rousseeuw and Leroy,

1987] on the points associated to its rectangles.

A BSP tree of the scene is then built by intersecting its bounding box (ex-

panded by a small factor) with all the dominant planes extracted. It is well

known [Wang, 2011] that every internal node of this tree corresponds to a split

of the input volume into two half-spaces, and that every node in the tree is asso-

ciated to a convex region obtained by the intersection of all half-spaces from that

node to the root of the tree.

The set of polyhedral cells C (shown in Figure 4.8(a)) associated to the leaves

of this tree corresponds to the partitioning of the space induced by the domi-

nant planes. We assemble such cells according to their adjacency relationships

N = {(c, c0)|c, c0 2 C ^ c, c0are adjacent} into a 3D cell complex (C,N ). An ad-

jacency (c, c0) 2 N corresponds to a polygonal facet f
c,c

0
shared by the polyhedra

corresponding to c and c0. During the construction of the complex we associate

to each such facet the ID of the dominant plane that generates it and the coverage
of the facet (denoted by cov(f

c,c

0
)), which corresponds to the fraction of its area

covered by scanned points. It is worth mentioning that the coverage of a facet can

be used as a measure of dissimilarity between its two adjacent cells, since a facet

with high coverage is likely to lie on the surface of a permanent structure (e.g. a

wall) and thus separate cells that belong to different environments.
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(a) (b) (c)

Figure 4.7: Extraction of dominant planes by clustering of the structural rectangles. The
rectangles output by the structural region growing (a) are first clustered according to their
direction (b); the rectangles in each cluster obtained are further clustered based on their
offset along their direction (c).

(a) (b) (c)

Figure 4.8: Wireframe visualization of the polyhedral cells of the 3D cell complex (a);
the positions of the acquisition device during the scanning fall inside the viewpoint cells
(b), which can be clustered according to their visible surface overlap to obtain a set of
clusters corresponding to the rooms in the environment (c).

As in the case of the 2D cell complex described in Section 3.4.2, the use of

unbounded primitives in the construction of the space partitioning contributes to

making the overall pipeline robust to occlusions. This is because even if a part of

a permanent structure is missing due to a viewpoint occlusion, the region of space

surrounding that missing part will still be cut along the actual wall surface. In that

region, the facets of the polyhedral cells will adhere to the real-world boundary

corresponding to the wall, thus allowing the optimization-based reconstruction

(Section 4.6) to extract the correct room shape.

4.5 Room Detection

In accordance with the general pipeline described in Section 2.1, the shape of

each room is obtained as the volumetric union of a subset of regions of the com-

plex (C,N ). In this full-3D approach, the reconstruction is cast as a multi-label
optimization problem [Boykov and Kolmogorov, 2004], in which each cell is as-
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signed one out of n
labels

= n
rooms

+ 1 labels, that is, n
rooms

labels for the rooms,

plus an additional one for the outer space and the space occupied by walls.

To reliably estimate n
rooms

, we adapted the technique initially proposed by

DiBenedetto and colleagues. [Di Benedetto et al., 2014]. In their method, aimed at

generating panoramas for image-based rendering, multiple view probes are clus-

tered using a Markov cluster algorithm (MCL) [Van Dongen, 2008] driven by the

amount of visible surface overlap. We adapt their approach by considering as view

probes the polyhedral cells Cvp

= { cvp
1

, . . . , cvp
nvp

} of the complex that contain a

scan position (Figure 4.8(b)). As stated in Section 4.2, we assume that every room

contains at least one scan position, which implies that the number of rooms in the

environment can be obtained by correctly clustering the set Cvp

.

In the absence of an exact mathematical definition of a room [Turner and Za-

khor, 2014], we define it as a sub-space of an environment mostly separated from

the rest of the space by permanent components. From this it follows that two loca-

tions placed in different rooms should see very different parts of the scene, while

the visibility from positions within the same room is very similar. We define the

amount of visible surface overlap between two cells in terms of the visible struc-

tural bounding rectangles R
struct

(see Section 4.3). In particular, let visr
i

denote

the visible area of r 2 R
struct

as seen from cell c
i

and let overlap

r

(c
i

, c
j

) be the

visibility overlap between cells c
i

and c
j

relative to rectangle r, defined as:

overlap

r

(c
i

, c
j

) = 1�
max(visr

i

, visr
j

)�min(visr
i

, visr
j

)

max(visr
i

, visr
j

)

(4.1)

We then define the visibility overlap overlap(c
i

, c
j

) between the viewpoint cells

c
i

and c
j

as follows:

overlap(c
i

, c
j

) =

P
r2R

struct

wr

i,j

· overlapr

(c
i

, c
j

)

P
r2R

struct

wr

i,j

(4.2)

Here wr

i,j

is a term that balances the importance of each rectangle taking into

account all rectangles as seen from every viewpoint cell:

wr

i,j

=

max(visr
i

, visr
j

)

max

r2R
struct

,i=1...nvp vis
r

i

(4.3)

Given this definition of visibility overlap, we construct a weighted graph G
vp

that

contains one node n
i

for every viewpoint cell cvp
i

. This graph is undirected and

complete; each edge (n
i

, n
j

) is assigned the weight g( overlap(cvp
i

, cvp
j

) ), where

g(x) is a monotonically increasing concave function that suppresses the contribu-

tion of low values. We defined it as g(x) = 1� e�(x/0.5)

2

, as this function proved

to work well in all our test cases.
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Applying the Markov clustering [Van Dongen, 2008] to G
vp

yields a set of

clusters � = {�
1

, . . . ,�
n

rooms

} (shown in Figure 4.8(c)), grouping the viewpoint

cells according to their visibility overlap. The algorithm automatically selects the

number of room clusters, which, thanks to the similarity measure chosen, corre-

sponds to the number of rooms n
rooms

of the environment. In all our experiments,

the MCL clustering was used with inflation 1.1 and thresholding the links with

weight < 0.1; setting these two parameters and using the default values for all the

others allowed to obtain consistently good results.

It is worth stressing that this clustering step is only applied to the cells that

contain a viewpoint (the viewpoint cells). While this process could be applied to

all cells in C to obtain the shapes of the rooms, the resulting reconstruction would

only be based on visibility information and lack geometric and structural regu-

larity. For this reason, we extract the final room models using a more expressive

multi-label energy minimization approach.

4.6 Room Reconstruction

The previous steps of the pipeline yield a polyhedral cell complex (C,N ) and

n
rooms

clusters �

1

, . . . ,�
n

rooms

, each corresponding to a room of the environ-

ment and containing the viewpoint cells located inside that room. In this fi-

nal step, we assign each polyhedral cell of the complex one label from the set

L = {l
1

, . . . , l
n

rooms

, l
out

}, which includes one label for each room plus the addi-

tional label l
out

for the outer space. The problem can be modeled naturally as a

multi-label Markov random field (MRF) [Boykov et al., 2001]; in particular, we

seek the optimal label assignment L⇤
= { L⇤

c

| L⇤
c

2 L , c 2 C } that minimizes

an energy function of this kind:

E
label

(L) = E
data

(L) + E
smooth

(L) . (4.4)

These two terms (denoted in the literature as data and smoothness terms) corre-

spond to the energy associated, respectively, to an initial, coarse labeling of the

cells and to the coherency of the label assignments to pairs of adjacent cells.

4.6.1 Data Term

E
data

consists of a sum of unary functions, each representing a penalty for assign-

ing label L
c

2 L to a cell c 2 C:

E
data

(L) =
X

c2C

D
c

(L
c

) (4.5)

To derive the data terms, we treat the viewpoint cells c0 2 �

i

of a room cluster

�

i

as representatives of the visibility for that room; we then compute the penalty
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for assigning a label l
i

to any cell c in terms of the visibility overlap with the

viewpoint cells in �

i

(using Equation 4.2). Since the notion of viewpoint cell does

not apply to the cluster of outer space, the penalty for labeling a cell c as l
out

is

defined as the area O(c) of the rendered scene (as seen from the center of c) that

corresponds to empty space (i.e., not occupied by any structural rectangle). The

term D
c

(L
c

) can therefore be expressed as follows:

D
c

(L
c

) =

(
1�max

c

02�Lc
overlap(c, c0) if L

c

6= l
out

O(c) otherwise

(4.6)

4.6.2 Smoothness Term

The effect of E
data

is balanced by the smoothness energy E
smooth

, which aims

at regularizing the labeling by penalizing the assignment of different labels to

adjacent cells. We express this term as a sum of four sub-terms, which enforce not

only fidelity to the measured data, but also geometric simplicity of the resulting

model, structural coherency of the rooms and separation between rooms:

E
smooth

(L) = �
cov

E
cov

+ �
A

E
A

+ �
G

E
G

+ �
sep

E
sep

(4.7)

Here the dependency of the energy sub-terms on the labeling L has been omitted

for brevity. Each of these energies is defined as a sum of pairwise potentials in-

volving the pairs (c, c0) 2 N of adjacent cells in the complex and has the following

general form:

E
...

(L) =
X

(c,c

0
)2N

V ...

c,c

0(L
c

, L
c

0
) (4.8)

The individual terms are defined as follows:

• Coverage term E
cov

: penalizes assigning the same label to a pair (c, c0) if

the facet f
c,c

0
is densely covered by scanned points; its potential is defined

as follows:

V cov

c,c

0 (L
c

, L
c

0
) = 1(L

c

6= L
c

0
) · cov(f

c,c

0
) (4.9)

where cov(f
c,c

0
) is the coverage defined in Section 4.4;

• Area term E
A

: favors geometric simplicity by penalizing the total area of

the interface surface between two rooms; its potential is defined as:

V A

c,c

0(L
c

, L
c

0
) = 1(L

c

6= L
c

0
) · area(f

c,c

0
) (4.10)

where area(f
c,c

0
) is the surface area of the facet f

c,c

0
between cells c and c0;
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• Gravity term E
G

: penalizes label assignments to a pair (c, c0) that leave

one cell “floating”, i.e. without a cell below to sustain its weight (see Fig-

ure 4.9); this condition is formulated with the following potential:

V G

c,c

0(L
c

, L
c

0
) = 1(L

c

6= L
c

0
) · (v

G

· N
c,c

0
) · u(f

c,c

0
) · s(c, c0, L

c

, L
c

0
) (4.11)

Nc,c� vG

c�

c

where v
G

is the vector (0, 0,�1), N
c,c

0
is the nor-

mal of f
c,c

0
, u(f

c,c

0
) is a function that takes value

0 if the facet f
c,c

0
lies on the floor (and 1 other-

wise) and s(c, c0, L
c

, L
c

0
) is a function that takes

value 1 if the bottom cell in the pair (c, c0) is la-

beled l
out

and the upper cell has a label 6= l
out

, and

0 otherwise (see inset, which describes the case

s(c, c0, L
c

, L
c

0
) = 1 );

• Room separation term E
sep

: enforces the presence of thick walls between

the clusters of any two rooms, by penalizing the assignment of different

labels to adjacent cells unless one of the two labels is L
outer

; the corre-

sponding potential is as follows:

V sep

c,c

0 (L
c

, L
c

0
) =

(
1 if L

c

= L
outer

_ L
c

0
= L

outer

0 otherwise

(4.12)

The relative importance of the data term and of the smoothness sub-terms can

be adjusted by varying the values of �
cov

, �
A

, �
G

, �
sep

in Equation 4.7 in the

range [0 . . . 1]. In all our tests, we set �
cov

= 0.2, �
A

= 0.05, �
G

= 0.1,

�
sep

= 0.2. Since all the pairwise potentials used satisfy by definition the sub-

modularity property and are semi-metrics, the energy function of Equation 4.4

can be minimized using the ↵ � � swap algorithm [Boykov et al., 2001]. The

minimum energy is associated to the optimal labeling L⇤
and the shape of the

individual rooms can be reconstructed by volumetric union of the cells with the

same label.

4.7 Results

The effectiveness of our modeling pipeline was evaluated on a test suite composed

of 8 datasets. Three of these correspond to 2.5D environments and were used to

compare our novel pipeline against more constrained state-of-the-art approaches,

including the one presented in Chapter 3; the remaining models clearly violate

the 2.5D and Manhattan-World assumptions and highlight the capabilities of the

proposed full-3D approach. All the relevant information about the reconstruction
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(a) (b)

Figure 4.9: Effects of gravity and room separation terms. Our gravity term helps ob-
tain plausible reconstructions by favoring stable cells configurations (a), while our room
separation term ensures that rooms are separated by empty space (b).

results are provided in Table 4.1; a description of the datasets used can be found

in Appendix A.

Implementation Our prototype implementation of the approach is written in

C++ and uses the publicly available implementations of the MCL [Van Dongen,

2008] and ↵ � � swap [Boykov and Kolmogorov, 2004] algorithms. All tests

were performed on a MacBook Pro with an Intel Core i7 (2.5GHz), 16GB DDR3

RAM and an NVIDIA GeForce GT 750M. The processing times (listed in column

‘Time’ of Table 4.1) vary from about 20 seconds (for dataset ‘Cottage’) to about 5

minutes (for ‘House’). As in the case of our 2.5D method, the timings include the

initial planar segmentation and construction of the adjacency graph of bounding

rectangles.

To allow for a re-implementation of the approach, we provide here some de-

tails on the computation of the coverage of a facet and of the visible area of a

rectangle. The coverage cov(f
c,c

0
) of a facet f

c,c

0
(introduced in Section 4.4) is

estimated by rasterizing the projection of the corresponding point splats onto the

facet and by evaluating the difference between the area of the facet and the area
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Dataset #Rooms #Rect. (perm./clut.) #Alt. #Planes #BSP cells Time

Office 2 6 629 (121/508) 25 53 4958 79.9s

Apartment 1 5 377 (143/234) 27 71 9634 177.5s

Building D 27 501 (252/249) 21 68 8317 304.0s

Penthouse 5 332 (93/239) 17 51 7188 66.5s

Maisonnette 5 296 (115/181) 8 63 12202 112.9s

Cottage 7 159 (51/108) 6 29 836 19.3s

House 9 519 (153/336) 13 66 11784 317.7s

Modern 3 266 (57/209) 0 49 5717 70.6s

Table 4.1: Relevant statistics on the reconstruction process. From left to right: number
of rooms detected; number of bounding rectangles extracted automatically (in brackets:
structural rectangles/clutter rectangles); number of rectangles altered during interactive
refinement; number of dominant planes; size of the BSP complex (i.e., number of cells);
overall computation time.

covered by the splats. The visible area visr
i

of rectangle r as seen from cell c
i

(defined in Section 4.5) is estimated by rendering r from the center of mass of c
i

and by then evaluating the area of its rasterization. In both cases, the screen-space

areas are computed using occlusion queries. We have empirically found that the

viewport size used has little or no influence on the outcome of the reconstruction.

Finally, we note here that input adjacency graph is obtained using ✓
o↵

= 0.5cm

and ✓
ang

= 0.975 in the planar decomposition and by considering two bounding

rectangles as adjacent if their minimum distance ✓
adj

is less than 20cm; note that

we pruned the rectangles with a diagonal < 20cm and a ratio between smaller and

greater side < 0.001.

Correctness of reconstruction (2.5D case) The tests on the models of

2.5D interiors (Figure 4.10) confirm that the full-3D method proposed, although

designed to capture more general 3D structures, is able to process this type of

environments with results comparable to those of more constraint methods. In

particular, the reconstructions of ‘Office 2’ and ‘Apartment 1’ show that ceilings

of different heights can be detected without requiring any ad-hoc steps, which is

not possible with the method proposed in Chapter 3. Although less rich in fine-

grained geometric detail, the reconstruction of ‘Apartment 1’ obtained with our

3D pipeline is similar to that output by the method of Ikehata and colleagues [Ike-

hata et al., 2015]. Moreover, even for environments with a high room count such

as ‘Building D’ (27 rooms) the proposed approach can produce a correct recon-
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Figure 4.10: Reconstruction results for 2.5D datasets and comparison with state-of-the-
art. From top to bottom: input 2.5D models (TOP ROW), reconstruction obtained with
our proposed full-3D pipeline (MIDDLE) and reconstruction obtained with state-of-the-
art 2.5D methods (BOTTOM).

struction. The output of the visibility-based room detection algorithm is consistent

with that of other 2.5D approaches [Ikehata et al., 2015; Ochmann et al., 2016];

only minor differences occur in ambiguous cases, such as in the presence of wide

passages between rooms and corridors.

In Figure 4.11 we show a direct comparison with the approach introduced in

Chapter 3 on the first floor of ‘Maisonnette’, which exhibits several features that

can not be described in 2.5D. While the 2.5D method can reconstruct an approx-

imate floorplan, many large wall structures, as well as entire sub-spaces (e.g. the

alcove in the green room) are lost. On the other hand, the 3D approach achieves

a relatively faithful reconstruction fully automatically, which can be further im-

proved with a few operations of the proposed interactive refinement. Note that the

complete dataset with fine details highlighted is shown in Figure 4.12. In addition

to this, we run the 2.5D method on building models with more irregularities like

‘Modern’, but the results produced barely reflected the actual shapes of the rooms.

This is due to errors in the occlusion-aware detection of permanent components,

which is meant to work on environments with vertical walls and with a clearly

identifiable ceiling height.
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Mura et al. [MMJV*14]

Ours (no refinement) Ours (with refinement)

Input point clouds

Figure 4.11: Comparison between the results obtained with our 2.5D modeling pipeline
(Chapter 3) and those produced by our full-3D method without and with user intervention
for the first floor of ‘Maisonnette’.

Correctness of reconstruction (full-3D case) Reconstruction results

for a set of more general models are shown in Figure 4.12. All environments are

composed of multiple rooms and exhibit many slanted ceilings and wall surfaces,

which makes them well-suited to evaluate the capabilities of our pipeline. ‘Cot-

tage’ represents an environment with a traditional gable roof and consisting of two

large rooms (each with a bedroom, a bathroom and a small passage) and a corri-

dor in relatively regular arrangements. ‘Penthouse’ is a more challenging model,

with less regular room shapes, more structural detail (e.g. window alcoves) and

high levels of clutter. The reconstruction results show that our method can cor-

rectly capture the architectural shape of this kind of environments. The proposed

method can also handle more complex environments with multiple stories such

as ‘Maisonnette’ and ‘House’. ‘House’ (synthetic dataset) corresponds to a 3-

story house containing many rooms and interior details (as shown in the inset).

‘Maisonnette’ contains many structures that violate both the Manhattan-World

and the 2.5D assumption, exhibits irregular room shapes and is rich in geometric

detail. In particular, the large window alcove in the green room has a roof with

several different orientations; as shown in the inset in Figure 4.12, these are pre-

served in the final reconstruction. The ability to capture fine-grained orientations

is also demonstrated by ‘Modern’, a synthetic dataset containing many complex

wall arrangements and configurations, all captured correctly in our reconstruction.
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Cottage

Modern

Maisonnette

House

Penthouse

Figure 4.12: Reconstruction results for general 3D datasets. For each dataset, we show
the input point cloud (LEFT), the classification into structural (green) and clutter (red)
rectangles (MIDDLE) and the reconstructed room polyhedra (RIGHT). Insets show either
details of the complexity of the planar components or of the final reconstruction.

Interactive refinement We evaluated the number of operations and the

time needed in the interactive refinement to complete a typical model with high

levels of clutter, using the first floor of ‘Maisonnette’ as shown in Figure 4.11.

In this case, the user intervention helps reconstruct the correct boundaries for the

blue room in almost complete absence of scanned evidence for a wall surface. We
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asked 1 expert and 2 novice users to complete the task. The expert user completed

the refinement in 43 seconds performing 6 operations, while the 2 novice users

(who received a complete introduction and training to the system) performed,

respectively, 12 and 11 operations in 360 and 339 seconds. Note that the inex-

perienced users produced results comparable to those obtained by the expert and

shown in Figure 4.11. In addition to this evaluation, we report in Table 4.1 the

number of operations performed on each test model.

Rectangles classification The first floor of ‘Maisonnette’ was also used

to evaluate the detection step (Section 4.3) in terms of precision and recall. The

values obtained, respectively 97% and 93%, show that the approach is effective

in selecting the main architectural features of the environment. Note that the rel-

atively lower recall value is due to the almost complete lack of input data on a

specific wall surface: the few rectangles on that wall could not be reached by any

structural path and were therefore classified as non-permanent. As explained in

the previous paragraph, a few interactive operations were sufficient to fix these

issues and obtain an optimal reconstruction.

We also quantitatively compared our classification step with that of the 2.5D

approach of Chapter 3 using ‘Office 3’, thus complementing the visual compari-

son in Figure 4.5. The full-3D method obtained a precision of 85% and a recall of

77%, whereas the 2.5D approach scored, respectively, 90% and 48%. The lower

precision value of the structural region growing is due to false positives corre-

sponding to spurious ceiling rectangles caused by window reflection artifacts; as

these are scattered and isolated by nature, they do not affect the reconstruction.

Both methods attain fairly low recall values on this dataset. In the case of the

full-3D approach, this is due to an issue similar to the one already described for

the first floor of ‘Maisonnette’: due to occlusions, some isolated rectangles cor-

responding to the lower parts of many walls are not included in any structural

path, which significantly lowers the recall. However, the larger, unoccluded upper

parts of the same walls are correctly classified as structural, thus ensuring that the

correct room boundaries appear in the final reconstruction.

Robustness We analyzed the robustness of our approach by corrupting the

synthetic model ‘Modern’ with increasing levels of noise. In our first test, we

varied the noise level while keeping all parameters of our pipeline fixed; the input

planar decomposition was obtained by adapting the threshold ✓
o↵

of the region

growing to the noise level of the input dataset. As shown in Figure 4.13, our

method is fairly robust for noise levels corresponding to �
noise

 5cm.

We also evaluated the robustness with respect to the adjacency threshold ✓
adj

used to construct the adjacency graph G
adj

. We did this for every noise level con-
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�noise = 5cm�noise = 1cm �noise = 2.5cm

Figure 4.13: Robustness with respect to increased measurement noise. The progressive
decrease in reconstruction accuracy is shown by the details in the insets.

sidered, but for �
noise

= 1cm, 2.5cm we did not detect meaningful differences

with the results in Figure 4.12; we therefore show in Figure 4.14 only the re-

sults obtained at the highest noise level (�
noise

= 5cm). Decreasing ✓
adj

from the

default value (20cm) to 10cm leads to an incorrect classification of some struc-

tural rectangles and eventually to an erroneous reconstruction of the blue room.

For ✓
adj

= 5cm even more rectangles are misclassified, resulting in the green

room being attached to the central space. Notice, however, that in this case the

adjacency threshold ✓
adj

corresponds to the noise level considered and that the

boundaries of the patches produced in the pre-processing (Section 2.2.2) can ex-

hibit inaccuracies proportional to the noise level in the input point cloud. Under

these conditions, a failure of the classification step is bound to happen.

Besides studying the influence of �
noise

and ✓
adj

on the final reconstruction, we

analyzed how they influence the precision and recall values for the detection of the

permanent components. For �
noise

= 1cm, 2.5cm both measures attain at 100%,

whereas for �
noise

= 5cm we obtained a precision of 94% and a recall of 88%.

The influence of ✓
adj

is stronger: for ✓
adj

= 20cm, 10cm, 5cm, the precision/recall

pairs are, respectively, 94%/88%, 96%/85%, 94%/60%. These numbers show

that our pipeline is relatively robust to measurement noise, but is more sensitive

to variations in the adjacency threshold; in particular, the recall values show that

the number of correctly classified rectangles steadily decreases when making the

requirements for adjacency between rectangles stricter. When dealing with data

of real-world scenes, which are heavily affected by viewpoint occlusions and thus

missing regions, such a behavior is to be expected.
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�adj = 5cm�adj = 10cm�adj = 20cm

Figure 4.14: Robustness to varying adjacency threshold in the graph. The model shown
is ‘Modern’, corrupted with Gaussian noise of �

noise

= 5cm (see Figure 4.13).

4.8 Discussion and Outlook

The approach presented in this chapter represents the first pipeline for architec-

tural reconstruction of multi-room building interiors that goes beyond the 2.5D

and Manhattan-World assumptions. It allows to reconstruct the individual room

polyhedra in fairly complex 3D environments with arbitrary wall orientations;

nevertheless, it is robust to clutter and missing data and is capable of detecting the

separate rooms of the environment.

Our evaluation has proven the method to work very well on a wide array of

real-world cases. Nevertheless, the approach has some limitations. First of all,

while most round surfaces in practice are approximated well by our approach, in

presence of occlusions the proposed piecewise-planar approach can not guaran-

tee that non-flat surfaces are recovered in a uniformly smooth manner (see Fig-

ure 4.15(a)). Secondly, very high levels of clutter can make the reconstruction

problem ill-posed. Due to the presence of built-in bookshelves or cabinets, some

boundary walls are almost entirely missing in the scanned model (see detail of

‘Maisonnette’ in Figure 4.15(b)) and can only be recovered with user interac-

tion. In addition to this, due to the generality of building shapes targeted, some

reconstruction solutions are intrinsically ambiguous without additional prior in-

formation. For instance, the chimney in Figure 4.6(a) could be considered not to

be part of the main architectural shape of the environment, but its rectangles are

detected as structural by the automatic classification. User input is needed to dis-

ambiguate these cases. Moreover, similar to what already mentioned for the 2.5D

method in Section 3.7, the use of the scan positions in the room detection process
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(a) (b)

Figure 4.15: Some limitations of our full-3D method. Using a piecewise-planar ap-
proach, curved surfaces may not be smoothly approximated (a). If a surface is almost
entirely missing in the input model, the automatic reconstruction can be incomplete (b).

results in two restrictions. First, a room is detected only if it was acquired from

at least one location inside it. Second, if two scans corresponding to the same

(very large) room do not have enough overlap, the visibility-based clustering may

assign them to different clusters, leading to over-segmentation. However, these

issues only occur if the input scans do not cover the scene in an adequate way; the

problem did not happen in any of the real-world datasets.

Thanks to its increased expressiveness, which allows to model a significantly

larger array of real-world building interiors compared to other approaches, our

method significantly advances the state-of-the-art in the field and represents a step

forward towards the creation of a flexible and effective pipeline for the scan-to-
BIM problem. There are however various aspects that can be further improved.

Among the other, it would be interesting to explore a data-driven approach to ex-

tract a larger set of configurations for the structural components. In this context,

the addition of higher-level primitives would be a straightforward extension. An

even more important question is how to extend this work to process efficiently

very large-scale and multi-story datasets. In particular, it would be useful to re-

duce the complexity of the 3D space partitioning structure created to support the

reconstruction.

The approach presented in Chapter 5 focuses on this aspect, proposing a scal-

able solution to this problem based on detecting the individual rooms early on in

the pipeline and on performing the reconstruction separately for each of them.
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The previous chapter introduced a full-3D method capable of modeling envi-

ronments with arbitrary orientations of its (planar) architectural surfaces. While

capable of describing a significantly larger array of environments compared to the

approach of Chapter 3, it relies on a global 3D space partitioning whose construc-

tion becomes prohibitively expensive when dealing with large environments. To

cope with this problem, this chapter introduces a scalable pipeline that exploits

the room structure of the environment to reconstruct each room separately, which

allows to drastically reduce the complexity of the space partitioning built in the

modeling.

5.1 Motivation and Background

The recent improvements in 3D scanning technologies have resulted in acquisi-

tion devices that are not only more accurate, but also extremely fast and capable

of acquiring hundreds of thousands of samples per second. This makes it possible

to digitize entire floors of buildings in a matter of hours, as we recently reported

in the context of object classification [Mattausch et al., 2014]. As a result, practi-

tioners working in the Architecture, Engineering and Construction (AEC) domain

are faced more and more often with the problem of processing large-scale models

of buildings. In this context, the sheer number of digital samples that compose the

model is neither the only nor the biggest challenge to be addressed. In fact, much

of the complexity of state-of-the-art scan-to-BIM pipelines does not arise from

the number of samples in the input model, but rather from the architectural com-

plexity of the environment to be reconstructed. This is strongly connected to the

number and arrangement of the permanent structures that make up the building, as

well as to the amount of furniture and other movable objects in the environment.

In particular, many modern modeling pipelines (including those previously

presented in this thesis) rely on constructing a space partitioning structure around

the input model. This allows to represent the space surrounding the target envi-

ronment as a set of convex cells and to reconstruct it by detecting and merging

the cells that represent the inner space. In the state-of-the-art, a single, global

space partitioning structure is built for the whole environment, using the surfaces

of the geometric primitives detected in the entire input model. When the input

model represents a large building with dozens of rooms, the construction of this

structure becomes prohibitively expensive and can represent a significant bottle-

neck for the whole modeling pipeline [Verdie et al., 2015]. This is especially true

in the case of large buildings with many different wall orientations and irregular

room arrangements, which leads to the detection of many distinct primitives, thus

further increasing the cost of creating the space subdivision. Furthermore, an in-

creased complexity in the space partitioning structure also makes the subsequent
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steps of a reconstruction pipeline less efficient.

It is therefore necessary not only to have a scalable and efficient implementa-

tion for the construction of the space subdivision, but also to devise a pipeline that

scales well with respect to the complexity of the input environment.

State-of-the-art So far, none of the indoor modeling approaches proposed

has focused on scalability to large environments. Many pipelines incorporate spe-

cific steps to reduce the amount of input data to be considered; for instance, meth-

ods that work on 2D projections of the input model often discard samples whose

neighborhood does not have one clear dominant direction, as they can not belong

to the (vertical) wall structures of the environment [Turner and Zakhor, 2012;

Oesau et al., 2014]. However, the problem of scalable processing is particularly

pressing for the methods that consider the full 3D nature of the problem. Some

researchers who propose using three-dimensional space partitionings for the re-

construction explicitly limit the applicability of their approach to small environ-

ments [Boulch and Marlet, 2014]. A number of pipelines adopt clever strategies

to reduce the complexity of the data structures built for the reconstruction. These

include techniques for discarding primitives that can not belong to the perma-

nent structures to be recovered (as done also in this thesis, see Section 4.3) or

specific heuristics that reduce the complexity of the data structures by restricting

the spatial influence of the primitives used to build it [Chauve et al., 2010]. In

the context of urban reconstruction, some researchers have proposed building a

coarse approximation of the exact partitioning, deferring much of the complex-

ity of the construction process to a later reconstruction step [Verdie et al., 2015].

Such strategies allow to greatly reduce the complexity of many large buildings.

Nevertheless, since they are combined with the use of global space partitionings

that cover the entire input model, their effectiveness eventually vanishes when its

complexity exceeds a certain level.

Contribution This chapter describes an approach that exploits the room-based

structure of building interiors to reduce the complexity of the computations and

make the modeling process scalable – and parallelizable – with respect to the

number of rooms in the environment. Like the approaches of Chapters 3 and 4,

this method is robust to artifacts and occlusions and delivers an output reconstruc-

tion that is focused on the permanent components of the environments. However,

differently from the two previous pipelines, the detection of the individual rooms

is performed early on in the pipeline: this allows to construct a separate space

partitioning structure for each room, using the sole geometric primitives that are

relevant to the reconstruction of that room. As a result, large indoor environments

can be processed efficiently and in a scalable manner. Moreover, since each space
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partitioning is built using a limited set of primitives, it is possible to apply more

conservative strategies for the detection of the architectural structures and for re-

constructing the shape of each room from its associated space partitioning, thus

leading to a more fine-grained final reconstruction.

5.2 Method Overview

The room-based modeling pipeline described in this chapter (illustrated in Fig-

ure 5.1) is based on the general scheme presented in Section 2.2.2, although there

are some minor yet notable differences that should be explicitly highlighted.

First, while the input still consists in the adjacency graph of bounding rectan-

gles G
adj

, the underlying point-based model of the environment is represented as

an unorganized point cloud (Equation 2.1). With respect to the formats used in

the approaches of the previous chapters (Chapters 3 and 4), this representation is

more generic, as it does not require that any information about the position and

orientation of the scanning device at acquisition time (e.g. subdivision into in-

dividual scans, positions of the device) be preserved in the final model. Second,

the order of the four main computation steps is altered by moving the detection

of the individual rooms earlier in the pipeline. This allows to reconstruct each

sub-environment separately and in parallel, thus greatly reducing the complexity

of the space partitioning and allowing to cast the surface reconstruction task as a

simpler binary segmentation.

The individual steps of the pipeline are shortly introduced in the remaining of

this paragraph and more thoroughly described in the next sections.

Room detection by clustering of view probes A set of view probes are gener-

ated in the region of space surrounding the input model. Using the parts of the

scene visible from each view probe, the probes are first classified as being either

inside or outside the environment; then, those that are inside are clustered accord-

ing to their visible surface overlap, so that probes that are in the same room are

assigned to the same cluster. Finally, the rectangles of G
adj

(i.e. the planar regions

in the environment) are assigned to the clusters of view probes in a fuzzy manner.

Detection of candidate permanent components For each cluster of rectangles

obtained by fuzzy assignment, the rectangles that are good candidates for rep-

resenting permanent structures of the environment are selected. The approach

follows the idea of the structural paths introduced in Section 4.3, but is more con-

servative in the pruning performed. Additionally, the rectangles corresponding to

ceiling and floor regions are detected.

Construction of 3D space partitioning The permanent rectangles in each clus-

ter are grouped based on their normal direction and on their offset along that di-
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rection, using a variant of the PEARL algorithm [Isack and Boykov, 2012]. This

procedure yields, for each cluster of permanent rectangles, the set of dominant

planes of the corresponding room. Each set of dominant planes is used to con-

struct a separate 3D space partitioning, one for each detected room.

Room reconstruction The regions of each space partitioning structure are clas-

sified into inner and outer space; the shape of each room is obtained by volumetric

union of the inner regions. Since the large-scale environments targeted by this

method can contain very large rooms, the initial clustering of the view probes can

result in over-segmented rooms. For this reason, after the separate reconstruction

of each room, a further step is applied to iteratively merge the rooms that should

belong to the same environment.

It is important to notice that the last three of these steps (with the exception

of the room merging computation during room reconstruction) can be performed

independently and in parallel for each cluster discovered in the first step.

5.3 Room Detection by Clustering of View Probes

The goal of this step is to obtain a grouping of the rectangles of G
adj

according to

the room to which they belong. In order to achieve this, the detection of the rooms

is performed early on in the pipeline. We follow the idea, already presented in

Section 4.5, that clustering a set of locations inside the environment according

to their visible surface overlap yields an indication of the spatial extent of the

individual rooms. This approach does not assume that a set of inner positions (the

scan positions) is given as part of the input data; instead, the very first step of

the pipeline consists in extracting a set of locations that are likely to be inside the

environment considered.

5.3.1 View Probes Generation

The positions at which the scanning device was placed during the acquisition pro-

cess, often included in the input model (see Section 2.2), represent some samples

of the space that is with certainty inside the environment. In fact, they are often op-

timal locations, chosen empirically when producing the input model to maximize

the surfaces visible by the camera while ensuring the necessary overlap between

different scans. When such locations can not be obtained from the input model

(as in the case considered in this chapter), it is possible to generate a set of sample

positions – denoted in the following as view probes – around the input model and

to determine which are inside the environment by analyzing the properties of the

surrounding scene.
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Adjacency Graph of
Bounding Rectangles

  Room Polyhedra

INPUT

OUTPUT
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Probe-based Room Detection
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Figure 5.1: Overview of our room-based modeling pipeline. Compared to the general
pipeline of Figure 2.1, the room detection is performed first and the remaining steps are
perform separately and in parallel for each room detected.
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Many techniques for optimal viewpoint placement have been proposed through-

out the years [Fleishman et al., 2000; Scott et al., 2003; Wenhardt et al., 2006]. For

the approach proposed in this thesis, it is only important to ensure that the probes

generated cover each sub-space of the environment and that there is sufficient vis-

ibility overlap between the probes. A straightforward approach to generate said

probes is to build an axis-oriented regular grid on the bounding box of the input

model and to use as view-probes the centers of the cells generated. The only pa-

rameter in this construction is the cell size s
cell

, which controls the density of the

view probes and could be adjusted depending on the expected minimum size of

the rooms.

However, to avoid generating an overly-large number of probes in regions

that correspond to outer space, we build instead an adaptive octree, locally re-

fining it in the proximity of the bounding rectangles of G
adj

(as shown in Fig-

ures 5.2(a), 5.2(b)). In particular, we consider two cell size values s
cell

and m ·s
cell

(with m 2 N) that correspond respectively to levels l and l0 of the octree, with

l0 < l. We refine the octree until level l, but extract the view probes only in

the regions of space corresponding to the nodes N l

0
= {N l

0
1

, . . . , N l

0
m

} at level l0

that contain at least one bounding rectangle. This ensures that the only regions

considered for the generation of the probes are near the scanned surfaces of the

environment.

To generate the final set of view probes, we consider the centers C of the

children at level l of the nodes in N l

0
. The children nodes that actually contain

a rectangle (that is, the actual leaf nodes of the adaptive octree) are discarded in

this procedure, so as to avoid generating view probes that are close to a surface

and therefore are not good representatives of the visible parts of a room. The view

probes are extracted as a subset of C by using a sampling procedure, in which the

nodes N l

0
1

, . . . , N l

0
m

are used as buckets. One sample is drawn from each bucket

in a round-robin fashion, until the number of positions extracted matches a user-

defined target number of probes N
probes

. The results of this procedure for one of

the test models used are shown in Figure 5.2(c). In our implementation, N
probes

is

set by default to 5% of the number of nodes at level l that are children of a node

in N l

0
and not empty.

5.3.2 Selection of Interior Probes

The probes generated in the previous step are placed in the vicinity of the bound-

ing rectangles of G
adj

. To select the probes that lie inside the environment we

move from the fact that, in the ideal case, any location within a closed, man-made

environment is bound completely by walls and other structures. In other words,

such structures block the visibility from an inner location and are therefore the

only elements that are visible.
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(a) (b)

(c) (d)

Figure 5.2: Generation of interior view probes for an input model. The input bounding
rectangles (a) are embedded in an octree and the non-empty cells at a prescribed level
(derived from the octree resolution) are selected (b). A set of view probes is extracted
from each cell (c) by sampling the center positions of its leaf nodes. Finally, the view
probes that are inside the environment (as represented by the bounding rectangles) are
selected (d).

To determine if a view probe lies inside the environment we therefore render

the bounding rectangles (acting as proxies for the structures of the scene) around

it and compute the fraction of the field-of-view that is occupied by the projections
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of such rectangles. Due to occlusions and missing regions in the input data, some

real-world bounding structures might not be represented by any rectangles, lead-

ing to gaps in the rendered scene that result in empty space or that make structures

in other rooms visible. To ensure that only the relevant surfaces are considered

in this process, only the projections of the rectangles that are front-facing with

respect to the view probe are rendered. In this process, the back-facing rectan-

gles are only used to ensure that the projected areas of the front-facing ones are

blocked or reduced according to real-world occlusions; however, their projections

do not appear in the renderings of the scene.

Using mathematical notation, denoting as Ap

view

FF

the visible area of the front-

facing rectangles seen by a probe p
view

, we classify p
view

as an interior probe if

Ap

view

FF

> ✓
FF

· Ap

view

vis

, where Ap

view

vis

is the total area of the field-of-view of p
view

and ✓
FF

is a user-defined threshold that we conservatively set to 0.75. Applying

this criterion to the set of view probes yields a set of locations that lie inside the

environment and cover all of its sub-spaces (see Figure 5.2(d)).

5.3.3 Room Detection using Interior Probes

The view probes classified as interior can be used to compute the approximate

locations of the rooms in the environment. This can be achieved by clustering

the interior probes according to their visible surface overlap, using the technique

already introduced in Section 4.5. Note that, in this context, the visible over-

lap overlap(p
i

, p
j

) (see Equation 4.2 ) between two probes p
i

and p
j

is defined

in terms of all bounding rectangles R of G
adj

, thus without restriction to those

corresponding to permanent structures.

This visibility-based clustering produces a set of clusters of view probes

�

probes

= {�probes

1

, . . . ,�probes

n

0
rooms

} (see Figure 5.3(a)). Depending on the amount of

outliers and artifacts in the input data, some clusters might not correspond to real

rooms, but rather to dense groups of points located outside the actual environment.

For this reason, the number of view probes clusters n0
rooms

is a provisional estimate

of the number of rooms. Spurious rooms will be pruned at the reconstruction stage

(see Section 5.6), resulting in the correct number of rooms n
rooms

.

5.3.4 Fuzzy Assignment of Bounding Rectangles

The visible area of the bounding rectangles has been used in the previous step

to cluster the view probes based on the common parts of the environment they

see. Conversely, the visible area values visr
i

for a given r 2 R can be used to

determine how likely it is for r to be relevant to the reconstruction of each room.

In particular, let us define the visible area of a rectangle from a cluster of view

probes �

probes

k

as visr
�

probes

k

= max

pi2�probes

k
visr

i

, that is, as the maximum visible
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(a) (b)

Figure 5.3: Room detection by clustering of interior view probes. The view probes that
are selected as being inside the environment (see Figure 5.2(d)) are clustered according
to their visibility overlap (a), which highlights the location of the individual rooms. Then,
the bounding rectangles are assigned to the clusters of view probes in a fuzzy manner (b).

area from all its view probes. Then, we define the probability P
r

(�

probes

k

) that a

rectangle r belongs to a cluster of view probes �

probes

k

as follows:

P
r

(�

probes

k

) =

visr
�

probes

kP
n

0
rooms

i=1

visr
�

probes

i

(5.1)

Based on such probability values it is possible to assign each bounding rect-

angle to one or more room clusters. Since the same rectangle can represent a

permanent structure that spans several rooms, we perform a fuzzy assignment, al-

lowing a rectangle r to be associated to more than one room. In particular, r is

assigned to all clusters �

probes

j

such that P
r

(�

probes

j

) > ✓
fuzzy

. The value of ✓
fuzzy

controls the number of rectangles that are potentially used to reconstruct each

room and represents a tradeoff between computational efficiency and safety. We

used a value of 0.25 in our tests, thus considering a rectangle in the reconstruction

of a room if the probability of it being relevant is higher than 25%.

The fuzzy assignment described above results in n0
rooms

non-disjoint sets of

bounding rectangles R1, . . . ,Rn

0
rooms

, each contributing to the reconstruction of a

room of the environment. An exemplar result of the fuzzy assignment can be seen

in Figure 5.3(b).
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5.4 Detection of Candidate Permanent Compo-
nents

In this stage of the pipeline, each set Ri

is analyzed to discard the rectangles that

do not belong to permanent components of the environments. This follows the

principle (introduced in Section 4.3) that the structural elements of building interi-

ors are arranged in a consistent top-to-bottom arrangement, with ceiling structures

unloading their weight onto the floor, transitioning through walls. However, with

respect to the method based on structural paths (Chapter 4), we adopt here a more

conservative approach that discards fewer rectangles.

As a first step, we detect in each cluster Ri

the set of rectangles Ri

ceil

that

correspond to regions on the ceiling. This is done by first selecting the rectangles

whose normals face downwards (up to an angular tolerance of 45

�
) and then ex-

tracting the connected components among the selected rectangles. In this process,

it is useful to discard connected regions whose area is too small, as they typically

correspond to artifacts in the input data. Once the ceiling rectangles have been

identified, we apply a simple region growing to the subgraph of G
adj

correspond-

ing to room i (denoted in the following as Gi

adj

) that starts from the rectangles in

Ri

ceil

and only transitions from one node to another if the two nodes are adjacent

in Gi

adj

. The set of rectangles Ri

struct

that are found in this process are regarded

as good candidates for permanent components and are brought forward into the

pipeline, while the others are discarded.

Compared to the more aggressive approach of Section 4.3, the number of prim-

itives that are brought forward into the pipeline is significantly higher. However,

thanks to the fact that each room is reconstructed separately, the computational

complexity of the subsequent steps remains limited, thus allowing for a more

conservative detection strategy. This reduces the chances of incurring in a mis-

classification error, which would prevent a structural surface to be represented

in the spatial decomposition, and defers to the later global optimization step the

selection of the true architectural surfaces of the environment.

Detection of floor levels Although only the ceiling rectangles are used to

detect the candidate permanent components, the location of the floors can be used

to guide the optimization-based reconstruction of the room shapes (Section 5.6).

The set Ri

floor

of the floor rectangles of room i can be detected by applying a

strategy similar to that adopted for the ceiling rectangles; in this case, only the

horizontal and up-facing rectangles are considered in the region growing.

Many of the regions found in this way do not correspond to real floor regions,

but originate from pieces of furniture that have large horizontal surfaces, such as

tables, beds or sofas. At this stage, we do not discard such rectangles and rather
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opt for a soft detection of the floor levels. We move from the rationale that furni-

ture always lies on the floor; for this reason, the rectangles in a horizontal region

corresponding to an object, when orthogonally projected downwards, will over-

lap with the rectangles of an actual floor region. We therefore sort the horizontal

regions detected according to their increasing height level; then, the rectangles in

each region are projected onto the floor levels of the regions below. The regions

that exhibit a significant projected area (at least 10% of their surface area) are con-

sidered as originating from furniture, while the others are marked as floor regions

and their rectangles are added to Ri

floor

.

Detection of stairs In the same room, floor regions of different height are

normally connected by stairs. This is obviously the case for staircases connect-

ing separate rooms across different stories, but also happens for large halls. We

recover the steps between the detected floor levels by performing a constraint re-

gion growing in Gi

adj

, starting from each connected component in Ri

floor

and only

expanding towards valid adjacent rectangles. The rules for growing the region

mimic those defined by Boulch and colleagues in their grammar-based semantic

analysis of buildings [Boulch et al., 2013]. In particular, we consider a step as

composed by a vertical (the riser) and a horizontal (the tread) rectangle, arranged

in a sequence that spatially expands upwards. Since stairs are typically empty and

not cluttered with objects, the rectangles that are considered in this process can

only belong to actual steps, to walls, or to other floor levels. We terminate the

growing when another floor level is reached and we distinguish between a riser

and a vertical wall by means of their height (which for a riser can not exceed a

threshold of h
riser

= 0.25m [Boulch et al., 2013]).

Due to missing data, some steps in a staircase might be missing, thus breaking

the expected sequence of steps. To add robustness with respect to this issue, we

modify the plain scheme described above in two ways. First, we consider for

each level not only the ascending, but also the descending sequences of steps

(discarding possible duplicates). Second, we relax the requirement that a step

must be composed of a riser and a tread and continue the growing even in the

presence of only one of these elements. Since we heuristically discovered that

the regions corresponding to risers are more often missing in real-world point

clouds (in particular, in those obtained by static laser scanning), for each tread

detected we explicitly look for a corresponding adjacent vertical riser. If this is

not found in Gi

adj

, we generate one by extruding downwards the edge of the tread

rectangle that is spatially furthest from the previous steps in the detected sequence.

Such ghost primitives, which represent hypotheses about plausible structures not

detected during the acquisition, are used also in previous work [Chauve et al.,

2010] and help obtain a plausible reconstruction in the presence of missing data.



5.5 Construction of Space Partitionings 87

The rectangles corresponding to treads and risers are added to Ri

struct

, thus

contributing to the construction of the space partitioning for room i. Moreover,

the tread rectangles are added to Ri

floor

and contribute to defining the levels of the

floors later used in the room reconstruction.

5.5 Construction of Space Partitionings

Each cluster of rectangles Ri

struct

extracted in the previous step contains planar

primitives that are likely to lie on the permanent structures of a room. In this stage

of the modeling pipeline, a set of dominant planes is extracted from each cluster

and is used to build a subdivision of the space into volumetric cells. This mimics

the approach described in Section 4.4. However, since each set of rectangles is

relative to a single room of the environment, the number of primitives in each

cluster Ri

struct

is significantly lower than the total number of bounding rectangles

R 2 G
adj

. This allows to apply a less aggressive strategy for the computation of

the dominant planes, thus allowing to recover even more fine-grained orientations

of the architectural surfaces of the building.

5.5.1 Computation of Dominant Planes

The goal of the extraction of the dominant planes is to group together the rect-

angles in the adjacency graph G
adj

that originate from the same architectural sur-

faces, corresponding to unbounded 3D planes. As explained in Sections 3.4.1

and 4.4, they can be computed from the structural rectangles in each cluster Ri

struct

by first clustering them based on their orientation (i.e., on their normal direction)

and then clustering each cluster obtained according to the offset along that direc-

tion.

Compared to the technique used in the previous two chapters, we propose here

a more conservative approach in which both clustering steps are cast as optimal

labeling problems, following the general scheme of the PEARL algorithm [Isack

and Boykov, 2012]. In particular, we seek to assign each rectangle the label of a

model that is optimal with respect to a data term E
data

(which measures how well

the model fits the rectangle) and to a regularization term E
reg

based on label costs

(which aims to reduce the number of models used to explain the set of input rect-

angles). After the optimal labeling has been computed, the clusters are composed

of the groups of rectangles that have been assigned the same label.

In our formulation, we consider a set of input bounding rectangles R
in

=

{ri
1

, . . . , ri
n

input

} and seek to assign each of them the label of the model that best

describes it. The set of models M = {M
1

, . . . ,M
n

input} is initialized with the

models corresponding to the input rectangles R
in

; moreover, each rectangle r
j
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is initially assigned a label l
Mj corresponding to its model M

j

. The optimal as-

signment of models to the rectangles is obtained with an optimization-based pro-

cedure, in which two steps are repeated until convergence: computation of the

optimal label assignment; re-estimation of the set of models M.

At each step, the optimal labeling X⇤
= { x⇤

1

, . . . , x⇤
n

input

| x⇤
i

2 {l
Mj |Mj

2
M} } is obtained using the alpha-expansion algorithm with label costs [Delong

et al., 2012] to minimize the following energy function:

E(X) = E
data

(X) + �
reg

· E
reg

(X) . (5.2)

The data term E
data

(X) is expressed as a sum of individual sub-terms, each

measuring the error of fitting a model to a rectangle:

Edata

(X) =

X

ri2Rin

D
err

(r
i

, x
i

) . (5.3)

The regularization term E
reg

(X) is also defined as a sum of sub-terms:

E
reg

(X) =

X

l2{lMj
|Mj2M}

c
l

· �
l

(X) . (5.4)

Here, �
l

(X) is an indicator function that equals 1 if l appears in the label

assignment X and 0 otherwise, while c
l

is a penalty factor for using a label l 2
{l

Mj |Mj

2 M}. We defined c
lMj

as the inverse of the number of points in the

input point cloud that are explained by model M
j

, that is, the number of points

that represent the inliers of the rectangles associated with label l
Mj . This ensures

that the labels corresponding to models that explain many of the input points are

not penalized and appear in the assignment X .

As a first step in the extraction of the dominant planes, the procedure sketched

above is applied to the entire set of rectangles Ri

struct

(i.e. R
in

= Ri

struct

). To

cluster the rectangles according to their orientation, each model M
j

2 M in

this step corresponds to a three-dimensional vector d
Mj 2 R3

(representing the

normal of a 3D plane). The set of models M is initialized with the normals of the

rectangles Ri

struct

. To evaluate the error of assigning a model M
j

to a rectangle r
i

with normal n
ri , we define D

err

(r
i

, x
i

) as follows:

Ddir

err

(r
i

, x
i

) = 1� n
ri · d

Mj x
i

= l
Mj (5.5)

The directional clustering yields a set of clusters that contain rectangles with a

coherent orientation. The items in each cluster undergo a second clustering step,

to extract the offsets along the common direction at which the dominant planes

are located. In this case, each model M
j

2 M is a scalar value o
Mj 2 R that

corresponds to an offset from the origin of the reference system. The function
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D
err

is defined simply as the distance between o
Mj and the distance from the

origin of the plane of r
i

:

Do↵

err

(r
i

, x
i

) = |o
Mj � o↵set(r

i

)| x
i

= l
Mj (5.6)

where o↵set(r) denotes the distance between the plane of r and the origin.

In each iteration of the clustering, the computation of the optimal label assign-

ment is followed by the update of the set of models. For each group of primitives

assigned to a same label, the updated model is computed by performing an itera-

tive weighted sum of the parameters of the primitives’ models. An initial model is

computed by using as weight the number of inlier points of each primitive; then,

in each iteration, this weight is further scaled by the distance between the current

model and the model of the primitive, using the distance definitions presented in

Equations 5.5 and 5.6. To increase the robustness of the procedure, each distance

is further weighted to reduce the influence of clear outliers. To this purpose, we

used a simple monotonically decreasing function defined as f(x) = 1� x4

.

Each group of rectangles computed with the offset clustering stems from a

dominant plane of the environment. Its parameters (i.e. the normal vector and

an anchor point) are obtained using the same procedure employed to compute the

initial model during the models update step. We heuristically discovered that this

basic approach does not result in significant averaging effects. This is because,

in our implementation, we assign a low importance to the regularization term,

resulting in final clusters that contain only rectangles lying on very similar planes.

The set of 3D planes computed with this procedure form the dominant planes

⇧

i

= {⇧i

1

, . . . ,⇧i

n

0
rooms

} of room i and are used to compute the space partitioning

for that room.

Note that, thanks to the early room detection and to the fuzzy, room-based

assignment of the bounding rectangles, the computation of the dominant planes

can be applied separately to each Ri

struct

, without having to consider the whole

set of bounding rectangles R of G
adj

. This makes the processing of even large

environments tractable. Moreover, thanks to the limited number of primitives in

each input set Ri

struct

, it is possible to perform a conservative grouping of the

rectangles, which allows for a more fine-grained computation of the dominant

planes. This means, for instance, that the weight �
reg

of the regularization term

can be set to a low value (e.g. 0.05 in our experiments) to avoid merging distinct

dominant planes into a single one.

5.5.2 Construction of Space Partitioning Structures

Each set of dominant planes ⇧

i

= {⇧i

1

, . . . ,⇧i

n

0
rooms

} is used to construct a sep-

arate 3D cell complex (Ci,N i

) for each room of the environment. The type of
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space partitioning structure, as well as the construction process, follow closely

the scheme already presented in the previous chapter (see Section 4.4). It is im-

portant to stress here that each facet f
c,c

0
that lies on the boundary of polyhedral

cells c, c0 2 Ci

is associated with the ID of the dominant plane that generated it

and with a measure of the coverage of the facet. This quantity, which corresponds

to the fraction of the area of f
c,c

0
that is covered by scanned points, is used as a

regularizer in the subsequent optimization-based room reconstruction.

5.6 Room Reconstruction

In the previous computation stage, the space surrounding each detected room is

partitioned into a set of convex polyhedral cells, arranged in a 3D cell complex.

The goal of the room reconstruction step is to extract from each cell complex the

(connected) set of cells that correspond to the volume inside the boundaries of

the room. Thanks to the early room detection, in this approach the room recon-

struction can be cast as a classical inside/outside partitioning problem (typical of

urban reconstruction settings [Musialski et al., 2013]), for which fast and exact

global optimization techniques exist. This differs from the multi-label formula-

tion used in the full-3D modeling pipeline in Chapter 4, which is solved using an

approximate optimization algorithm.

The binary segmentation of each room cell complex (Ci,N i

) is performed

by assigning each cell c 2 Ci

one of the two labels {0, 1}, which correspond,

respectively, to the outer space and to the space inside the room. The optimal

labels assignment L⇤
= { L⇤

c

| L⇤
c

2 {0, 1} , c 2 Ci } is obtained by minimizing

the following energy function:

E
label

(L) = E
data

(L) + E
smooth

(L) . (5.7)

Note that Equation 5.7 has the same general form of Equation 4.4, but is defined

over binary variables and hence differs in the definition of the specific terms.

5.6.1 Data Term

The data term E
data

(L) consists in a sum of unary functions D
c

(L
c

), one for each

cell c 2 Ci

:

E
data

(L) =
X

c2Ci

D
c

(L
c

) (5.8)

With respect to the formulation of Section 4.6, the difference lies in the definition

of the potentials D
c

(L
c

). Since in this context we perform a binary labeling, each

potential can be defined simply in terms of the quantity Apc
FF

, already introduced in

the context of the selection of interior view probes (see Section 5.3.2) and denoting
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the fraction of the scene (as seen from the center of c) that is occupied by the

projection of front-facing structural rectangles:

D
c

(L
c

) =

(
Apc

FF

if L
c

= 0

1� Apc
FF

if L
c

= 1

(5.9)

This definition increases the energy when Apc
FF

is close to 1 and the cell c is

given the label 0, that is, it penalizes labeling a cell as outside if most of the space

surrounding the center of c (denoted by p
c

) is occupied by bounding rectangles.

Conversely, when Apc
FF

is high, assigning c the label 1 does not increase the energy

significantly; this labeling is therefore favored. Similar arguments, with reversed

label values, hold for low values of Apc
FF

.

5.6.2 Smoothness Term

The goal of this term is to regularize the initial guesses represented by the values

in the data term, favoring room shapes that are geometrically simple and that

adhere to common structural characteristics of real-world buildings. Similarly to

the original full-3D approach of Chapter 4, this is achieved by including several

regularizing sub-terms in the smoothness term E
smooth

(L):

E
smooth

(L) = �
cov

E
cov

(L) + �
A

E
A

(L) + �
G

E
G

(L) (5.10)

Each term contributes to the regularization of the reconstruction in different

ways. In particular, the coverage term E
cov

and the area term E
A

favor, respec-

tively, room models with boundary walls densely covered by scanned point sam-

ples and that are geometrically simple, whereas the gravity term E
G

penalizes

label assignments that leave a cell without adequate support from an underlying

cell. In our experiments, we balanced the contribution of these three regularizers

by setting �
cov

= 0.2, �
A

= 0.05 and �
G

= 0.4. It is worth noting that, compared

to the formulation of Chapter 4, we increased the weight of �
G

; this has the effect

of removing surfaces corresponding to many cluttering objects (e.g. beds, desks)

within the optimization, thus compensating for the absence of the filtering step

based on structural analysis (see Section 4.3).

More details on the definition of these terms are given in Section 4.6, where

they were first introduced. Note, however, that in this formulation the function

u(f
c,c

0
) (used in E

G

to only restrict the action of the gravity term to facets that do

not lie on a floor and are therefore potentially unstable), takes into account all the

floor levels found using the approach of Section 5.4, including those correspond-

ing to the treads of the steps.

The optimal inside/outside labeling of the cells Ci

is obtained by minimiz-

ing the energy function described in Equation 5.7 using a formulation based on
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graph-cuts [Kolmogorov and Zabin, 2004]. The 3D surface model of the room

considered is then given by the facets that separate adjacent cells with different

labels.

It is worth noticing here that the reconstruction (as well as the selection of can-

didate permanent rectangles and the construction of the space partitioning struc-

ture) is performed separately for each room detected in the first stage of the algo-

rithm (i.e. room detection by clustering of view probes). As mentioned in Sec-

tion 5.3.3), some of the clusters of view probes found at that stage can correspond

to fake rooms and originate from spurious primitives. The reconstruction handles

these cases indirectly, since it consistently produces an empty room model when

applied to a candidate room that stems from a spurious cluster of view probes. By

discarding such invalid reconstruction results we obtain the set of n
rooms

actual

sub-spaces of the input environment.

5.6.3 Merging of Reconstructed Rooms

Large-scale building interiors often contain sub-environments like corridors and

staircases with complex shapes and often spanning multiple stories. Since the

definition of room adopted in this work is based on the consistency of the visible

scene, it can happen that such connecting sub-environments are split into multiple

rooms. Given the n
rooms

reconstructed room models, we apply a simple post-

processing strategy to iteratively merge adjacent and overlapping room models.

We encode the possible adjacency relationships between the rooms using a

complete undirected graph, in which the nodes represent the reconstructed room

models and the edges connect spatially adjacent rooms. We sparsify this complete

graph by considering the bounding boxes of the room models and by removing

the edges that connect two rooms whose bounding boxes do not overlap. We

sequentially consider each edge of the graph and verify if the corresponding room

models intersect. If not, the edge is removed from the graph; otherwise, the edge

is contracted and the new node is associated with the union of the two models

corresponding to the nodes removed.

This process is repeated until all edges in the graph have been removed. The

models corresponding to the remaining nodes represent the final result of the re-

construction.

5.7 Results

Since the main advantage of this pipeline over the one of Chapter 4 lies in the

scalability to large and complex environments, the test suite used in the evalua-

tion is restricted to 2 real-world models specifically chosen to highlight its main
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capabilities. In particular, one model (‘Building D’) includes a high number of

rooms in relatively regular arrangement, while the other (‘Tower’) consists of a

long staircase attached to several rooms and spanning multiple floor levels with

a highly irregular structure. Table 5.1 provides detailed information about the

reconstruction process, while additional details on the datasets can be found in

Appendix A.

Implementation The proposed pipeline was implemented in C++, using the

threading API included in the Standard Template Library (STL) for the parallel

computations. The software uses the publicly available implementations of the

MCL algorithm [Van Dongen, 2008], of the multi-label optimization with label

costs [Delong et al., 2012] and of the graph-cut-based energy minimization frame-

work [Kolmogorov and Zabin, 2004]. The tests were performed on a MacBook

Pro with an Intel Core i7 (2.5GHz), 16GB DDR3 RAM and an NVIDIA GeForce

GT 750M. For the sake of practicality, we used the GPU for visibility-based com-

putations (similarly to what described in Section 4.7.) and to compute the visible

surface overlap between interior view probes (see Sections 5.3.3 and 4.5). As

shown in column ‘Time’ of Table 5.1, the overall processing times for the two

models ‘Tower’ and ‘Building D’ are about 2 and 6 minutes, respectively; these

timings include the computation of the planar abstraction (see 2.2.2). It should

be noted that in the case of ‘Building D’ the timings are dominated by the room

detection step. This is due to the specific implementation used for the visibility-

based computations and to the high number of interior view probes generated with

our conservative and unoptimized approach; as mentioned in Section 5.3.1, more

specialized state-of-the-art methods can be used to generate a reduced set of opti-

mal view locations. This, however, lies outside the scope of this thesis.

Since the test machine used has 4 individual cores and supports the concurrent

execution of up to 8 threads (with hyperthreading), exactly 8 threads were used in

the steps involved in the reconstruction of the individual rooms (Sections 5.4, 5.4

and 5.6, except 5.6.3), which can be performed in parallel on each detected room.

Note that, since the computation of the data terms (Section 5.6.1) is based on the

graphics pipeline, we serialize the execution of this section.

Finally, we report the parameter values used in the planar abstraction, which

were set to ✓
o↵

= 1.0cm, ✓
ang

= 0.925 and ✓
adj

= 20cm.

Correctness of reconstruction The reconstruction results for the two test

models are shown in Figure 5.4. The model ‘Tower’ represents a multi-story

building composed of a single staircase that develops across all stories and con-

nects several separate rooms. This building is a particularly interesting test case

because of its architectural complexity: first of all, the vertical extent of the rooms
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Dataset #Rect #VP Clusters #Rooms Time (abstr./detect./merg.)

Tower 827 14 7 (13) 125.6s (26.1s/45.2s/3.0s)

Building D 1180 26 25 (26) 367.8s (12.9s/299.0s/5.8s)

Table 5.1: Main statistics for the room-based reconstruction. From left to right: no. of
bounding rectangles in the adjacency graph; no. of view probes clusters; no. of rooms
after and, in brackets, before merging; overall computation time and, in brackets, par-
tial timings for planar abstraction, room detection (Section 5.3) and room merging (Sec-
tion 5.6.3)

is overlapping, which makes the detection of the individual floor levels ambigu-

ous; secondly, the (planar) wall surfaces have irregular orientations, thus clearly

violating the 2.5D assumption; finally, it includes a large subspace with a highly

irregular structure, consisting of a staircase with attached small halls and extend-

ing vertically across several floors. Despite this complexity, all the rooms in the

environment are detected and successfully reconstructed, also preserving geomet-

ric details such as individual steps and fine-grained ceiling orientations. It should

be noted that the central space containing the staircase is first reconstructed as a

set of 7 separate rooms and then correctly merged into a single one. This is co-

herent with the fact that a room is considered to be an environment with a similar

visibility (see Section 4.5) and is functional to the goal of reducing the complexity

of the reconstruction process. As a secondary detail, note that the cyan room on

the top floor represents a partial reconstruction of the actual room of the building.

In fact, that room was skipped during the acquisition and the only evidence of it in

the input data consists in sparse measurements acquired through a door opening.

In this case, the pipeline produces the best reconstruction that is coherent with

the incomplete input data. Note that sparser groups of points (e.g. mirrorings of

actual room structures) might be identified as a separate room cluster in the room

detection step (Section 5.3), but originate an empty model at the reconstruction

stage (Section 5.6) and are thus easily pruned.

The second model considered is an unorganized point cloud extracted from

‘Building D’ (already used to evaluate the full-3D pipeline); given the high num-

ber of rooms, this model is a good test case to evaluate the scalability of the pro-

posed approach. As shown by the final result, the room-based pipeline produces

a correct reconstruction of the environment. With respect to the model obtained

with the standard full-3D pipeline (shown in Figure 4.10), it is worth considering

the higher geometric detail obtained, noticeable in particular in the window al-

coves and in the protrusions on the corners of some rooms. The recovery of such

details is made possible by the more conservative filtering of the bounding rectan-

gles performed in the room-based pipeline. A minor difference is represented by
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Tower

Building D (unstr.)

Figure 5.4: Reconstruction results of our room-based modeling pipeline on datasets
‘Tower’ and ‘Building D’. For each dataset, we show the input point cloud (LEFT) and
the room reconstruction before (MIDDLE) and after the merging step (RIGHT).

the central corridor: in the results produced by the room-based approach, a single

room (shown in red in Figure 5.4) is obtained, corresponding to the union of two

separate rooms produced by the standard full-3D pipeline. As already noted in

Section 4.7, since the connections between this corridor and the adjacent rooms

consist in very wide passages, both solutions can be considered correct.

Scalability of space partitioning construction Since reducing the

complexity of the space partitioning is a key feature of the proposed room-based

method, we specifically evaluate this point under three aspects.

First, we consider the complexity of building the cell complexes using the

proposed room-based approach. We use the number of cells as an indicator of

the complexity of the structures and relate this to the number of dominant planes

used to build the space partitioning. The bar plots in Figure 5.5 show, for the

two models ‘Tower’ and ‘Building D’, the size (i.e. number of cells) of all the

cell complexes built (Figures 5.5(a) and 5.5(c)), as well as the number of domi-

nant planes and bounding rectangles involved in their construction (Figures 5.5(b)

and 5.5(d)). It can be easily seen that reducing the number of primitives input to

the cell complex construction process helps keep the size of the resulting struc-
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Figure 5.5: Complexity of the cell complex construction in our room-based pipeline for
the two models ‘Tower’ ((a) and (b)) and ‘Building D’ ((c) and (d)). In all figures, each
vertical bar corresponds to a different cell complex. Plots (a) and (c) indicate the number
of cells of the cell complexes; plots (b) and (d) describe the number of dominant planes
(blue) used in their construction, together with the number of bounding rectangles from
which the dominant planes are extracted (green).
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Figure 5.6: Computation time for the construction of the cell complexes for the two mod-
els ‘Tower’ (a) and ‘Building D’ (b). Each vertical bar corresponds to a different cell
complex; the order is the same as in Figure 5.5.

ture to a manageable level. In particular, it should be noted that the size of the

largest complexes is comparable to that of those built with the approach of Chap-

ter 4, which employs a less conservative strategy to select the candidate permanent

components. It would be interesting to compare the size of the cell complexes

built using the room-based partitioning strategy with that of the global complex

constructed using all dominant planes of the model; however, the construction

of such a global structure exceeded the memory capabilities of our test machine.

Nevertheless, we report the number of dominant planes input to the construction

process, which amounts to 602 for ‘Tower’ and and 624 for ‘Building D’. Note

that, in the case of ‘Tower’, the construction was aborted after the insertion of the

first 460 planes. An additional analysis of how the complexity of the cell complex

grows when increasing the number of dominant planes is shown in Figure 5.7(a).

Second, in addition to considering the size of the cell complexes built, we

measured the computing time needed for their construction. For these measure-

ments, all computations were performed using a single thread. The detailed tim-

ings (shown in Figures 5.6(a) and 5.6(b)) demonstrate that the time complexity of

the cell complex construction is aligned with that of the other steps of the pipeline

(see Table 5.1) and that, thanks to the proposed room-based approach, it does not
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Figure 5.7: Analysis of the scalability of the cell complex construction. The plot shows
the number of cells (a) and the computing time (b) for the construction of a mock cell
complex from an increasingly large set of input 3D planes.

represent a computational bottleneck. More importantly, these timings are dras-

tically lower than those needed for constructing a global space partitioning using

all dominant planes. On the user-level hardware used in our experiments, the par-

tial (up to the first 460 planes) construction of the cell complex for ‘Tower’ took

over 8 hours. Since the time complexity for the computation of the cell complex

from a set of n 3D planes is O(n3

) [Edelsbrunner et al., 1986], this strongly sug-

gests the unfeasibility of a single space partitioning for the whole environment.

To further confirm this indication, we constructed a mock cell complex by select-

ing an increasingly larger subset of the 602 dominant planes for the whole model

‘Tower’. The results, presented in Figure 5.7(b), clearly highlight that the con-

struction of the cell complex is prohibitively expensive even for a few hundreds

planes, requiring 16 minutes for as few as 300 planes.

Third, we considered the steps involved in the room reconstruction (except

the room merging) and evaluated the speed-up of the parallel execution over
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single-threaded computation. Using 8 threads on a 4-cores processor (see above),

our parallel implementation takes 51.2 and 50.0 seconds for models ‘Tower’ and

‘Building D’, respectively. This corresponds to a speed-up of 2.1x and 1.75x over

the timings of the serial execution (106.6 and 87.5 seconds).

5.8 Discussion and Outlook

This chapter described a scalable approach to modeling large-scale multi-room

building interiors that exploits the subdivision into separate rooms to drastically

reduce the complexity of the computations and to make the reconstruction of very

large environments feasible. With respect to the method introduced in Chapter 4,

this room-based approach does not rely on an aggressive pruning of the input

primitives to ensure the feasibility of the reconstruction. On the contrary, it em-

ploys a conservative approach when discarding the parts of the environments that

are not relevant to the reconstruction and when extracting the dominant planar

surfaces that explain its architectural shape. The feasibility of the computation is

achieved by exploiting a basic property of all buildings – that is, their subdivision

into separate sub-environments.

While considering each room separately effectively solves the problem of han-

dling large building interiors with many different rooms, this approach also has

some limitations. First of all, since we rely on the subdivision into rooms to re-

duce the complexity of the reconstruction, the proposed strategy will not result

in any improvement of performance for interiors consisting of a single, large and

complex environment (identified by the room detection step as a single room).

Secondly, since the optimization-based reconstruction is performed separately for

each room, the action of the regularizing terms is restricted to the 3D model of that

room and does not have any effect on the model resulting from the final merging

(see Figure 5.8(a)). A further optimization step that uses the original point cloud

could be added to the pipeline to improve the final output. Finally, the room merg-

ing approach proposed can fail if two reconstructed rooms that should be joined

do not have enough overlap. These cases could be handled effectively and simply

with an interactive, post-processing step, in which a user can trigger the fusion of

two adjacent rooms by drawing a sketch that connects their boundaries. Finally,

the pipeline proposed in this chapter employs a very conservative approach to

remove non-permanent elements and relies on the action of the gravity term to en-

sure that they do not affect the final reconstruction. In some borderline cases (e.g.

in the presence of very tall cabinets, as shown in Figure 5.8(b)), this approach

might produce sub-optimal results and should be complemented by the pruning

based on structural paths (Section 4.3).

Despite such disadvantages, the proposed pipeline represents the first solution
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(a) (b)

Figure 5.8: Some limitations of our room-based approach. Since the regularization acts
on each reconstructed room separately, seams may arise after the room merging at the
boundaries between rooms (a). Ambiguous furniture configurations such as the presence
of a very tall cabinet leaning on a wall can affect the reconstruction ((b), TOP); in such
cases, the selection of candidate permanent components based on structural paths (used
in Chapter 4) allows to obtain the expected results ((b), BOTTOM).

to the problem of handling in a scalable manner large-scale indoor environment

and paves the way to further developments in the context of indoor modeling.

First and foremost, since it drastically reduces the complexity of the space sub-

division structures created, it allows to use more complex (and computationally

expensive) optimization techniques to extract the final surface model. These in-

clude the regularization terms based on edges and corners, initially proposed by

Boulch and colleagues [Boulch et al., 2014] and capable of delivering superior re-

construction quality. Moreover, the cell complexes generated are of a manageable

size despite the fact that they include subdivisions that arise from non-permanent

structures; this allows to explore new formulations that integrate the separation be-

tween permanent components and furniture directly in the final optimization step,

potentially leading to improved reconstruction results. Another interesting avenue

for future work is to combine the room-based approach presented in this chapter

with optimized construction techniques for the space partitioning structure, along

the lines of what already suggested in Section 4.8.
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6.1 Summary

Fostered by the widespread diffusion of 3D acquisition devices, the modeling

of building interiors has become an increasingly researched problem, with many

applications that promise to revolutionize the way we explore and organize indoor

environments.

This thesis addresses some of the most pressing challenges that are left open

by state-of-the-art methods. In particular, our work focuses on five research goals:

achieving robustness to artifacts and occlusions in the raw input data; extracting

the shape of an indoor environment as defined by the permanent components; de-

tecting the individual rooms of the environment and integrating this computation

in the reconstruction pipeline; correctly modeling environments with general wall

orientations (that is, not conforming to the Manhattan-World and 2.5D assump-

tions); processing large-scale environments composed of multiple rooms in an

efficient and scalable manner.

These specific research objectives are achieved with three research contribu-

tions, presented in this thesis in order of increasing complexity and generality.

Each of them is focused on a processing pipeline that extracts an accurate, room-

aware 3D description of an indoor environment from its input representation.

In the context of this thesis, 3D point clouds are considered as the initial in-

put representation for the environments to be modeled, since this data type is

widespread in the computer graphics and vision domains and because it is a com-

mon output format of the 3D acquisition systems commonly used by practitioners.

As described in Chapter 2, we convert this low-level and highly redundant repre-

sentation into a more compact and higher-level adjacency graph, which encodes

the planar regions of the scene as bounding rectangles and arranges them accord-

ing to their adjacency relations. Such a structure allows for efficient processing

and simplifies reasoning on the architectural properties of the environment that

are relevant to the modeling task. For this reason, it is provided as input alongside

the original 3D point clouds to all the proposed pipelines.

As a first research contribution, this thesis introduces an indoor modeling ap-

proach that incorporates the recognition of individual rooms into the reconstruc-

tion. The approach (described in Chapter 3) lifts the Manhattan-World assump-

tion, used by a large number of state-of-the-art methods, and only assumes that

the target environment has a 2.5D structure (that is, that walls are vertical and that

ceilings and floors are horizontal). Starting from the initial adjacency graph of

bounding rectangles, the method first selects rectangles that are likely to belong

to walls using an occlusion-aware computation, which is able to detect rectangles

corresponding to wall surfaces even if a significant amount of their vertical extent

is occluded by other objects. The candidate wall rectangles selected in this way

are then projected vertically onto the plane of the ground and the room detection
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problem is cast as the task of partitioning a 2D cell complex built on the floorplan

of the environment. An iterative binary clustering driven by diffusion distances

is used to simultaneously detect the individual rooms and to extract their floor-

plans, from which the 3D polyhedra describing the shapes of the rooms are finally

reconstructed.

The 2.5D modeling is then extended to handle the more general case of envi-

ronments with a piecewise-planar shape but with arbitrary orientations of the wall

structures, thus performing a full-3D reconstruction (Chapter 4). This requires sig-

nificant modifications to the previous pipeline and entails the use of more general

algorithms and data structures, first and foremost of a three-dimensional space

partitioning structure to represent the input scene. The initial detection of can-

didate permanent components – which in the 2.5D case could be performed by

considering the unoccluded vertical extent of the rectangles – is replaced with a

more general algorithm inspired by structural analysis that can detect permanent

components with arbitrary orientations. A clustering of the planes of the perma-

nent components yields the dominant planes of the environment, from which a

three-dimensional cell complex is built. The complex represents a partitioning of

the space surrounding the input scene into convex volumetric regions. The room

shapes are extracted by appropriately grouping these regions with a multi-label

energy minimization algorithm. Compared to the diffusion-based clustering used

in the 2.5D case, this formulation includes several regularization terms that allow

to cope more effectively with the increased geometrical and topological complex-

ity arising from the 3D nature of the problem. To compute the labels required

by the multi-label optimization, this thesis proposes the use of a visibility-based

clustering procedure that detects the presence of the rooms prior to the final re-

construction of their shapes.

The visibility-based room detection algorithm is further extended to make the

modeling process scalable to large environments composed of multiple rooms. In

fact, the complexity of a three-dimensional space partitioning structure (necessary

to capture permanent structures of arbitrary orientations) represents the biggest

potential bottleneck in a reconstruction pipeline. In the case of the BSP-based

structure used in this thesis and in other related approaches, the complexity of the

structure grows cubically with the number of (dominant) planes used to construct

it. Since each room is an enclosed space and does not intersect with other rooms

in the environment, this thesis proposes performing an early visibility-based room

detection that allows to extract clusters of dominant planes separately for each

room and to build a separate 3D structure from each cluster of dominant planes.

This decreases the overall complexity of the structure used and additionally allows

to cast the multi-room reconstruction as a sequence of single-room reconstruction

problems, for which simpler and more effective formulations can be employed.
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6.2 General Discussion

Specific remarks on each of the three main approaches introduced in this thesis

are provided in the concluding sections of the relevant chapters (Sections 3.7,4.8

and 5.8). We include in this section some final considerations on the intended ap-

plication scenarios of each method and a discussion on the role of the parameters

used in our pipelines.

6.2.1 Scope of Application of the Proposed Pipelines

The three research contributions of this thesis (see Section 1.5) correspond to a

sequence of pipelines of increasing complexity, each of which tackles a superset of

the challenges addressed by the previous ones. Although in this sense the method

of Chapter 4.6.2 is the most generic, there are some application scenarios for

which it is advantageous to employ a less specialized solution.

In particular, the 2.5D approach of Chapter 3 is not entirely superseded by the

full-3D method of Chapter 4: thanks to its tighter starting assumptions, the 2.5D

pipeline is easier to implement and faster and can be used whenever efficiency is a

priority and at the same time there is the certainty that the input environment has

a 2.5D structure.

Similar arguments hold for the full-3D approach. While the room-based pipe-

line of Chapter 5 is more scalable and capable of recovering finer details, it lacks

by design an optimization term that takes into account the interaction between

different rooms (the room separation term E
sep

described in Section 4.6.2). The

room-based pipeline should be certainly used when the input environment is large,

but the traditional full-3D approach includes a number of features (besides the

room separation term, the detection of permanent components based on structural

paths and the interactive refinement step) that make it the method of choice when

dealing with medium-sized environment with few small-scale details. It should

be noted, however, that some of the features mentioned above (with the exception

of the room separation term) can be integrated into the room-based approach as

well.

6.2.2 Discussion on Parameters

The methods proposed depend on several parameters. While the specific values

chosen in our implementations are described in each chapter, we review here the

role of the most important ones and discuss the sensitivity of the algorithms to

their choice.



6.2 General Discussion 105

Planar Abstraction

One set of parameters shared by all pipelines is related to the planar abstraction

performed as a pre-processing of the input point clouds (Section 2.1). These are

the two thresholds ✓
ang

and ✓
o↵

used in the planar segmentation to steer the grow-

ing of the planar regions, as well as the adjacency threshold ✓
adj

used in the con-

struction of the G
adj

to determine whether two rectangles should be considered

adjacent. The choice of ✓
ang

and ✓
o↵

is influenced by the level of noise in the

input data; these values should be increased if high levels of noise values are ex-

pected, so as to allow a larger tolerance when extracting the extent of the planar

regions. While the parameters of the underlying planes can be recovered in a

fairly reliable manner by means of the robust fitting techniques used (in particu-

lar, the LMS-based fitting procedure), high levels of noise can result in shrunken

planar regions close to the intersections with adjacent patches. We empirically

discovered that setting a conservative value for ✓
adj

solves this problem for the

methods of Chapters 4 and 5. However, the issue has a more direct impact on

the occlusion-aware detection of permanent components used in the 2.5D pipe-

line (see Section 3.3): to ensure that an intersection occurs between a rectangle

and the projection of its occluder, the scaling factor 1.05 used for such projection

must be increased, possibly resulting in a higher number of false positives.

Extraction of Room Shapes

Regardless of the specific room reconstruction technique used, the parameters

involved in this step have been set to values that ensure good reconstruction results

independently of the properties of the specific input dataset used. This applies in

particular to the weights �
cov

, �
A

, �
G

(used in Chapters 4 and 5) and �
sep

(used

in Chapter 4), which are linked to the desired shape of the reconstruction rather

than to the properties of the input raw data, but also to the parameters m (number

of eigenvalues used) and t (diffusion time) used in the 2.5D approach (Chapter 3).

With respect to t, it is worth noticing once more (as already done in Section 3.5.3)

that large rooms like corridors can only be reconstructed as a single entity if a high

enough diffusion time is allowed. Instead of performing an interactive adjustment

of this parameter (a valid approach that we successfully applied in the context

of object classification [Mattausch et al., 2014]), we opted for fixing the value

of t and adding a post-processing step that automatically merges over-segmented

rooms.

Method-specific Parameters

A number of other parameters are linked to the specific computations performed

in each method and require individual comments.
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In the 2.5D approach, a candidate permanent rectangle is expected to have an

unoccluded vertical extent almost equal to the height of the environment h
rooms

; a

tolerance ⌘·h
rooms

is subtracted to account for small imprecisions in the estimation

of the extent of the planar regions. We set ⌘ = 0.05, which works well for most

environments and in the case of moderate noise. When dealing with very high

levels of noise, it can become necessary to increase the value of ⌘, causing objects

with a significant vertical extent to be misclassified as permanent components.

Note, however, that this only happens when jointly dealing with high measure-

ment noise and ambiguous furniture configurations. One additional threshold is

used in the post-processing step of Section 3.5.3, to evaluate if the boundary sep-

arating two adjacent room clusters corresponds to actual wall structures or if the

two rooms should be merged into one. As discussed in the relevant section, all

our tests showed that there is an unambiguous distinction between the two cases,

making the choice of the threshold straightforward.

Both in Chapter 4 and in Chapter 5 the individual rooms are detected by ap-

plying the Markov cluster algorithm. We set all the parameters of this algorithm

to the suggested default values, only modifying the inflation parameter and the

lower bound on the edge weights (see Section 4.5). We discovered that our de-

fault values for these parameters work well and result in consistently good recon-

structions. For the traditional full-3D pipeline, this can be explained with the low

number of viewpoints that need to be clustered and with the fact that they corre-

spond to optimal locations, chosen empirically at acquisition time. In the case of

the room-based pipeline, in which the viewpoints are generated synthetically, we

noticed that modifying the two parameters results in a different number of spu-

rious clusters. However, as explained in Section 5.6, these are removed by the

optimization-based reconstruction and therefore do not influence the final result.

The room-based pipeline of Chapter 5 introduces several additional parame-

ters that are worth further discussion. The generation of the internal view probes

(see Sections 5.3.1 and 5.3.2) is controlled by three main parameters: s
cell

(the res-

olution of the octree); m (used to define m ·s
cell

and related to the granularity used

to generate candidate view probes from the octree); N
probes

(the number of final

view probes to be generated). In general, finding optimal values for these param-

eters is a non-trivial problem. For this reason, we opted for a conservative choice

that favors reconstruction quality at the cost of higher computation times (see Sec-

tion 5.7). Similar arguments motivate our choices of the two other most important

parameters of this pipeline, namely ✓
FF

(Section 5.3.2) and ✓
fuzzy

(Section 5.3.3):

we empirically discovered that increasing the values used reduces, respectively,

the number of probes classified as interior and the number of primitives used to

reconstruct each room, but also increases the possibility of reconstruction errors.
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6.3 Directions for Future Work

This thesis significantly advances the state-of-the-art in the field of modeling of

building interiors and allows for a robust, room-based architectural modeling of

large-scale environments with arbitrary wall orientations. Nevertheless, there are

a number of important problems that remain open in this domain and that are

worth investigating in future research.

• Uniformly smooth reconstruction of curved surfaces

All methods proposed in this thesis perform a piecewise-linear reconstruction

of the geometry of the rooms. Curved surfaces can be captured through their

first-order approximation, but there is no guarantee that this is done in a reli-

able and uniform manner. It would be therefore useful to study an approach to

model these surfaces more consistently, for instance by using RANSAC-based

approaches [Schnabel et al., 2007] to fit models of curved primitives to the

facets of the reconstructed 3D polyhedra.

• Integration of openings detection into the room extraction

In this thesis, a room is detected as an enclosed space that is separated from the

rest of the environment by permanent structures and such that a set of positions

inside it see similar parts of the scene. While this leads to good results in nor-

mal settings, ambiguous cases (e.g. sub-environments separated by large, open

passages) could be handled more consistently by detecting door openings in

the scene and using these to explicitly mark a separation between two different

rooms.

• Semantic labeling of rooms based on their function

The subdivision into separate rooms represents fundamental semantic informa-

tion about the environment. For a number of real-world application scenarios,

such as automatic refurnishing of interiors, it is useful to associate each room

with a semantic label that describes its functional type (e.g. office, living room,

kitchen). This allows, for instance, to retrieve for each room coherent furniture

from a pre-existing shape database and to generate appropriate furnishing solu-

tions. The necessary semantic labels for the rooms could be obtained by means

of supervised machine learning techniques. In this context, each room could be

represented as a set of descriptors associated both to its architectural shape and

to the features of the furniture contained in it. To this purpose, the modeling

pipelines proposed in this thesis could be used to extract the required architec-

tural model of the rooms, while a model of the furniture can be obtained using

other indoor scene analysis approaches [Mattausch et al., 2014].
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• Multi-resolution modeling
State-of-the-art methods for indoor modeling (including those introduced in

this thesis) focus on reconstructing a single model of the environment, optimiz-

ing it with respect to some predefined goals. Some approaches only consider

larger architectural structures and filter out primitives that correspond to small

details (e.g. recesses in the walls), while others include such features in the

reconstructed model. However, no method has integrated the concept of level-

of-detail in the reconstruction process, thus allowing to select a desired size of

the architectural structures to be modeled. This capability, which has already

been studied for more general urban environments [Verdie et al., 2015], would

be a useful addition to the existing indoor modeling pipelines.



A

A P P E N D I X

DESCRIPTION OF DATASETS

Room 1

Description Single office room with convex shape and one large window surface

No. scans 2

No. rooms 1

No. points 5.5M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own
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Room 2

Description Single office room with concave shape and two large window surface

No. scans 3

No. rooms 1

No. points 8.3M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own

Office 1

Description Long corridor inside an office building, composed of two sub-spaces

No. scans 5

No. rooms 2

No. points 13.8M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own
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Office 2

Description Office environment composed of multiple individual rooms

No. scans 10

No. rooms 6

No. points 27.7M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own

Office 3

Description Office environment composed of multiple individual rooms

No. scans 14

No. rooms 6

No. points 38.8M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own
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Apartment 1

Description Residential environment composed of multiple individual rooms

No. scans 16

No. rooms 5

No. points 7.2M

Acquisition modality Proprietary acquisition system based on RGB-D cameras

Format Range-grid set

Source Floored Inc. (used in [Ikehata et al., 2015])

Building D

Description Office environment composed of multiple individual rooms

No. scans 36

No. rooms 27

No. points 63.1M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source DURAARK Project (used in [Ochmann et al., 2016])
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Penthouse

Description Residential environment composed of multiple individual rooms

No. scans 7

No. rooms 4

No. points 19.4M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own

Maisonnette

Description Residential environment composed of multiple individual rooms on

two floor levels

No. scans 8

No. rooms 5

No. points 22.2M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own
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Cottage

Description Residential environment composed of multiple individual rooms

No. scans 7

No. rooms 7

No. points 12.4M

Acquisition modality High-end, terrestrial laser range-scanning

Format Range-grid set

Source Own

Building D (unstr.)

Description Unstructured point cloud built by merging and resampling the indi-

vidual scans of ‘Building D’

No. scans 1

No. rooms 27

No. points 5.2M

Acquisition modality High-end, terrestrial laser range-scanning

Format Unstructured point cloud

Source DURAARK Project (used in [Ochmann et al., 2016])
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Tower

Description Residential environment composed of a single staircase spanning

multiple floor levels and connecting 5 separate rooms

No. scans 1

No. rooms 6

No. points 9.5M

Acquisition modality High-end, terrestrial laser range-scanning

Format Unstructured point cloud

Source Own

Synth 1

Description Office environment composed of multiple individual rooms

No. scans 7

No. rooms 4

No. points 19.4M

Acquisition modality Synthetic dataset

Format Range-grid set

Source Own
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Synth 2

Description Office environment composed of multiple individual rooms

No. scans 7

No. rooms 3

No. points 19.4M

Acquisition modality Synthetic dataset

Format Range-grid set

Source Own

Synth 3

Description Office environment composed of multiple individual rooms

No. scans 25

No. rooms 11

No. points 69.4M

Acquisition modality Synthetic dataset

Format Range-grid set

Source Own
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House

Description Residential environment composed of multiple individual rooms on

three floor levels

No. scans 19

No. rooms 9

No. points 52.8M

Acquisition modality Synthetic dataset

Format Range-grid set

Source Own

Modern

Description Residential environment composed of multiple individual rooms

No. scans 8

No. rooms 3

No. points 22.2M

Acquisition modality Synthetic dataset

Format Range-grid set

Source Own
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