Image Processing and Data Visualization
with MATLAB

Introduction to MATLAB

(based on MATLAB Help)

Hansrudi Noser
June 28-29, 2010

UZH, Multimedia and Robotics Summer
School

Contents

Overview of MATLAB System

Matrices and Arrays

Programming

Report Generation

Overview: What is MATLAB?

* MATLAB® is a high-performance language for
technical computing

* |t integrates computation, visualization, and
programming in an easy-to-use environment

* Problems and solutions are expressed in
familiar mathematical notation.

Overview: Use of MATLAB

e Math and computation

e Algorithm development

* Data acquisition

* Modeling, simulation, and prototyping

e Data analysis, exploration, and visualization
» Scientific and engineering graphics

* Application development, including graphical
user interface building

Overview: Features

MATLAB is an interactive system

The basic data element is an array that does
not require dimensioning

It allows you to solve many technical
computing problems, especially those with
matrix and vector formulations

High level language for efficient computation

Overview: History

MATLAB stands for matrix laboratory

MATLAB was originally written to provide easy access to matrix
software developed by the LINPACK and EISPACK projects

Today, MATLAB incorporates the LAPACK and BLAS libraries,
embedding the state of the art in software for matrix computation
MATLAB has evolved over a period of years with input from many
users

In university environments, it is the standard instructional tool for
introductory and advanced courses in mathematics, engineering,
and science

In industry, MATLAB is the tool of choice for high-productivity
research, development, and analysis.

Overview: Toolboxes

MATLAB features a family of add-on application-
specific solutions called toolboxes.

Toolboxes allow you to learn and apply
specialized technology.

Toolboxes are comprehensive collections of
MATLAB functions that extend the MATLAB
environment to solve particular classes of
problems.

You can add on toolboxes for signal processing,
control systems, neural networks, fuzzy logic,
wavelets, simulation, and many other areas.

Toolboxes 1

* Math and Optimization
— Optimization
— Symbolic Math
— Partial Differential Equation
— Global Optimization

 Statistics and Data Analysis
— Statistics
— Neural Network
— Curve Fitting
— Spline
— Model-Based Calibration

Toolboxes 2

e Control System Design and Analysis
— Control System
— System Identification
— Fuzzy Logic
— Robust Control
— Model Predictive Control
— Aerospace
¢ Signal Processing and Communications
— Signal Processing
— Communications
— Filter Design
— Wavelet
— Fixed-Point
— RF

Toolboxes 3

* Image and Video Processing
— Image Processing
— Video and Image Processing Blockset
— Image Acquisition
— Mapping
* Test and Measurement
— Data Acquisition
— Instrument Control
— Image Acquisition
— System Test
— OPC
— Vehicle Network

Toolboxes 4

* Computational Biology
— Bioinformatics
— SimBiology
e Computational Finance
— Financial
— Financial Derivatives
— Datafeed
— Fixed-Income
— Econometrics

Toolboxes 5

* Application Deployment
— MATLAB Compiler
— Spreadsheet Link Ex (MS Excel)
* Application Deployment Targets
— MATLAB Builder EX (MS Excel)
— MATLAB Builder NE (MS .NET Framework)
— MATLAB Builder JA (Java)
* Database Connectivity and Reporting
— Database Toolbox
— MATLAB Report Generator

Simulink Product Family

Simulink® is an environment for multidomain
simulation and Model-Based Design for dynamic and
embedded systems

It provides an interactive graphical environment and a
customizable set of block libraries that let you design,
simulate, implement, and test a variety of time-varying
systems

It includes communications, controls, signal
processing, video processing, and image processing.

Is not treated in this course

http://www.mathworks.com/products/simulink/

The MATLAB System consists of

Desktop Tools and Development Environment

— Set of tools and facilities that help you use and become more
productive with MATLAB functions and files
— Graphical user interfaces for
* MATLAB desktop and Command Window
¢ an editor and debugger
* acode analyzer
* browsers for viewing help, the workspace, and folders

Mathematical Function Library

— vast collection of computational algorithms ranging from
elementary functions, like sum, sine, cosine, and complex
arithmetic, to more sophisticated functions like matrix inverse,
matrix eigenvalues, Bessel functions, and fast Fourier
transforms.

The MATLAB System consists of

* The Language

— High-level matrix/array language with control flow
statements, functions, data structures,
input/output, and object-oriented programming
features

— It allows "programming in the small" to rapidly
create quick programs you do not intend to reuse.

— You can also do "programming in the large" to

create complex application programs intended for
reuse.

The MATLAB System consists of

* Graphics

— Facilities for displaying vectors and matrices as
graphs, as well as annotating and printing these
graphs

— It includes high-level functions for two-dimensional
and three-dimensional data visualization, image
processing, animation, and presentation graphics.

— It also includes low-level functions that allow you to
fully customize the appearance of graphics as well as
to build complete graphical user interfaces on your
MATLAB applications.

The MATLAB System consists of

e External Interfaces

— The external interfaces library allows you to write
C and Fortran programs that interact with
MATLAB.

— It includes facilities for calling routines from
MATLAB (dynamic linking), for calling MATLAB as

a computational engine, and for reading and
writing MAT-files.

Documentation

* The MATLAB program provides extensive
documentation, in both printable and HTML format, to
help you learn about and use all of its features

* Help menu for
— Getting Started
— User guides
— Function references
— Online (web) documentation
— Printable documentation (pdf)

— Examples / Demos / Movies

e Excellent Training Services

The Desktop of MATLAB

A\ MATLAB 7.5.0 (R2009E)

File Edit Debug Desitop Window Help

=i e]]

Shortcuts & How to Add & What's New

Current Fol

- -poeox

i E @ Cllsers\noser Documents\ MATLAB

- = MATLAE * -8 o
1 Mame «

L Paramaterisierung

GUI creation example

@) coloralettelvaranging

4 > A= [163213; 510 11 8 9 6 7 12; 4 15 14 1
1 makeBresenhamCircleListm

o makeCircleListas N
£ makeCircleListm e
&) meinTestm

test 16 3 2
= testgif 5 10 11

5 7
v 4 15 14 1

Vigep, see Demas, o read Getting Stagted. ®

MATLAB desktop keyboard shortcuts,

such as Strg+3
addition, many keyboard ShoECcuts have
across the desktop.
To cust

cmize keyboard shortcuts,
re previous defa

use

Praf

Wiorkspace
o R | Stace
Name ~

Ha

Value

<dnd double>

“O e x
[setectaa =

Min

5 10

11 8

Max
16

Contents

e Overview of MATLAB System

Matrices and

Programming

Arrays

Report Generation

Matrices

MATLAB = Matrix laboratory

A matrix is a rectangular array of numbers —
the basic data structure in MATLAB

1-by-1 matrices are scalars

Matrices with only one row or column are
vectors

The operations in MATLAB are designed to be
as natural as possible

MATLAB allows you to work with entire
matrices quickly and easily

mathematician Albrecht Durer.

Entering Matrices

Enter an explicit list of elements A=

— A=[163213;510118;96712;415 14 1] 16 3 213
Load matrices from external data files S Lo Lo
— load magik.dat
— Data text file

¢ lines with numbers, separated by blanks, correspond to
rows of matrix

— The file name corresponds to variable name (without Z=zeros(2,4)
.dat extension Z=

Generate matrices using built-in functions 0000
— zeros : all zeros 0000
— ones:all ones
— rand : Uniformly distributed random elements
— randn: Normaly distributed random elements R = randn(4,4)
Create matrices with your own functions in M-files 5%
— Text files containing MATLAB code 0.6353 0.0860 -0.3210 -1.2316

9 6 712
415141

-0.6014 -2.0046 1.2366 1.0556
0.5512 -0.4931 -0.6313 -0.1132
-1.0998 0.4620 -2.3252 0.3792

P —

16 3 2 13

Matrix Operation: sum 510 11 8

9 6 7 12

4 15 14 1

e sum(A) sum(A)

— Summation along first index : Result s
is row vector 34 34 34 34
e sum(A,2)

— Summation along the second index:
Result is column vector

sum(A,2)

ans =
34
34
34
34

Matrix Operation:
transpose

* Two transpose operators: “and .’
e ‘operator (A’)

: . B=[1 2 3+3i];
— complex conjugate transposition. It
flips a matrix about its main diagonal, B
and also changes the sign of the ans =
imaginary component of any complex 1.0000

elements of the matrix 2.0000
, , 3.0000 - 3.0000i
» . operator (A)

— transposition without affecting the sign 38
of complex elements. For matrices an1so_ooo
containing all real elements, the two '

2.0000
operators return the same result 3.0000 + 3.0000i

Matrix Operations:
diag, fliplr

sum(diag(A))

* diag(A) returns the main diagonal Ei5= fliplr(A)
34 ans =
vector of A = 5 3 1
e sum(diag(A)) returns the sum of 8 11 10 5

12 7 6 9

the diagonal elements of A: the
114 15 4

trace of A

o fliplr(A) flips the matrix from left Z‘:S“idiag(f“p'rmm
to right 34

e sum(diag(fliplr(A))) returns the SR
sum of the antidiagonal of A)

e diag(diag(A)) returns a diagonal
matrix

Subscripts

e Theelementinrowiand columnj AlLA4)+A(24) +A(3,4) +A(4,4)

of A is denoted by A(i,j) s
* Numbering starts from 1 not 0! 34
¢ Asingle subscript is the usual way

of referencing row and column

vectors A=

— However, it can also apply to a fully 11165/ 3 | 2 13
two-dimensional matrix, in which 25 10111 |8
case the array is regarded as one
long column vector formed fromthe 3|9 |6 | 7 2
columns of the original matrix av 48 1416V 1

— So, for the magic square, A(8) is
another way of referring to the A(8)
value 15 stored in A(4,2)

Subscripts

e The access of an element -
OUtSide Of the matrix Index éxceeds matrix dimensions.
prOduceS an error

e Conversely, if you store a X = A,
value in an element outside
of the matrix, its size
increases to accommodate
the newcomer

X(4,5) =17

The Colon Operator :

* The colon, :, is one of the most
important MATLAB operators. It
occurs in several different forms

e 1:5 c1=15
cl=
— is a row vector containing the 1 2 3 45
integers from1to 5
e 100:-11:50 €2 =100:-11:50
) . . . =
— To obtain nonunit spacing, specify ‘ 100 89 78 67 56
an increment

Opl/4p| 0:pi/4:pi

ans =
0 0.7854 1.5708 2.3562 3.1416

The Colon Operator

o A(1:k,j)
— the first k elements of the jth column of A
— For example: sum(A(1:4,4)) computes the sum of
the fourth column
e The colon by itself refers to all the elements in
a row or column of a matrix and the keyword
end refers to the /last row or column

— sum(A(:,end)) computes the sum of the elements
in the last column of A

M a gl C B = magic(4)
B=
L. L . 16 2 3 13
e Magic is a built-in function 5 11 10 8
. 9 7 6 12
that creates magic squares of i

almost any size

A=B(;[1324])

e swap the two middle columns

— This subscript indicates that— A=

for each of the rows of matrix 16 3 2 13
. 5 10 11 8
B—reorder the elements in the B

orderl,3,2,4 4 15 14 1

Variables in MATLAB

MATLAB does not require any type
declarations or dimension statements

When MATLAB encounters a new variable
name, it automatically creates the variable
and allocates the appropriate amount of
storage

If the variable already exists, MATLAB changes
its contents and, if necessary, allocates new
storage.

Numbers in MATLAB

MATLAB uses conventional decimal
notation, with an optional decimal point ,

and leading plus or minus sign, for ans =
numbers 0 + 1.0000i
Scientific notation uses the letter e to
specify a power-of-ten scale factor

Imaginary numbers use eitheriorjasa
suffix

— Attention: i or j can be redefined
(i=2)

3-990.0001 9.6397238 1.60210e-20

Examples
6.02252e23 1i -3.14159] 3e5i

Operators

* Expressions use familiar arithmetic operators
and precedence rules.

Addition

Subtraction

Multiplication

Division

Left division

Power

Complex conjugate transpose
Specify evaluation order

+

S S NN %)

—_
~

Functions

* MATLAB provides a large number of standard
elementary mathematical functions, including abs,
sin, cos, sqrt, ...

» Several special functions provide values of useful
constants

pi 3.14159265...

i Imaginary unit,

j Same as i

eps Floating-point relative precision
realmin Smallest floating-point number
Realmax Largest floating-point number
Inf Infinity

NaN Not-a-number

Generating Matrices

e Four functions that generate basic matrices

Z = zeros(2,4) F = 5*ones(3,3) R =randn(4,4)

Z= F= R=

0 -1.3499 0.7147 1.4090

0 3.0349 -0.2050 1.4172
0.7254 -0.1241 0.6715
-0.0631 1.4897 -1.2075

0 0 O
0 0 O

N = fix(10*rand(1,10))
N =
8 91 9 6 0 2 5 9 9

Concatenation

* the process of joining small matrices to make
bigger ones

A=[16.0 3.0 2.0 13.0 B =[A A+32; A+48 A+16]

5.0 10.0 11.0 8.0 B=

9.0 6.0 7.0 12.0 16 3 2 13 48 35 34 45

4.0 15.0 140 1.0]; 10 11 8 37 42 43 40
6 7 12 41 38 39 44
15 14 1 36 47 46 33
51 50 61 32 19 18 29
58 59 56 21 26 27 24
54 55 60 25 22 23 28
63 62 49 20 31 30 17

sum(B)

ans =
260 260 260 260 260 260 260 260

Deleting Row and Columns

* You can delete rows and columns from a
matrix using just a pair of square brackets

X(2:2:10) =[]
X =

16 9 2 7 13 12

Deletes sequence of elements,
and reshapes the remaining elements
into a row vector.

Deletes second column

X(1,2) =]

??? Subscripted assignment dimension mismatch.

Linear Algebra

* Informally, the terms matrix and array are
often used interchangeably

* A matrix is a two-dimensional numeric array
that represents a linear transformation

* The mathematical operations defined on 6 3 2 13
matrices are the subject of linear algebra 5 10 11 8
. - Lo 9 6 7 12
Addition of two matrices: + R
C=A+B
G =a+h, i=L.m j=1.n

Both matrices must have the same dimensions
Element by element addition

Ex: The addition of a matrix to its transpose
produces a symmetric matrix

Matrix Multiplication

e The multiplication symbol, *, denotes the
matrix multiplication involving inner products
between rows and columns

A mxp
B, pxn
C, mxn
C=A*B

P
G =kz:;a1.k*l:>kj, i=4..m j=1..,n

Matrix Multiplication: Examples i
16 3 2 13
5 10 11 8
9 6 7 12
* Multiplying the S
transpose of a matrix a=[123]
by the original matrix a=
produces a symmetric t 23
matrix b=[4; 5; 6]
* Matrix multiplication b=4
is not commutativ 5
e Some more examples 6

with vectors

a'*b
??? Error using ==> mtimes

Inner matrix dimensions must agree.

Arrays

* When they are taken away from N Addition
the world of linear algebra, B SUbtraction
matrices become two-dimensional * Element-by-element mult.
numeric arrays J Element-by-element div
e Arithmetic operations on arrays are | .\ Element-by-element left div.
done element by element A Element-by-element power
* This means that addition and J Unconjugated array transpose
subtraction are the same for arrays
and matrices
¢ However multiplicative operations
are different. MATLAB uses a dot,
or decimal point, as part of the A*A
notation for multiplicative array ans =
operations A= 256 9 4 169
155 13 121 1: 25 100 121 64
s 6 7 1 81 36 49 144
Foar o g 16 225 196 1

Building Tables

e Array operations are useful for building tables

* The elementary math functions operate on arrays element by
element

format short g
5> pows = [n N.A2 2.An] X i (1:0.1:2)" logs = [x log10(x)]
X = logs =
= pPOwWsS = 1 1 0
(1’ (1’ 11 11 0.041393
; ; 12 12 0.079181
: : 1.3 13 0.11394
. . 1.4 14 0.14613
15 15 0.17609
5 5 16 16 0.20412
g g 1.7 1.7 0.23045
1.8 18 0.25527
3 3 1.9 1.9 027875
2 2 030103

Multivariate Data

e MATLAB uses column- heart rate / weight / hours of exercise
oriented analysis for >D=[Z
multivariate statistical -

data 82

H 75
* Each column in a data
set represents a variable

and eaCh- row an Mean and standard deviation

Observatlon >>mu = mean(D), sigma = std(D)
* The (i,j)th element is the mu =

ith observation of the jin e e 8

variable 5.6303 25499 2.2107

. A_16 3 2 13
Scalar Expansion ST
4 15 14 1
* Matrices and scalars can >>B=A-85
be combined in several B=
different ways. For "
example, a scalar is 05 -2 , :
subtracted from a matrix _4s 65 5o 7

by subtracting it from
each element

* With scalar expansion, P
MATLAB assigns a B=
specified scalar to all 75 0
indices in a range

-3.5 0
0.5 -2.5
-4.5 6.5

Logical Subscripting

* The logical vectors created from logical and relational
operations can be used to reference subarrays

e Suppose X is an ordinary matrix and L is a matrix of the
same size that is the result of some logical operation
— Then X(L) specifies the elements of X where the elements of L
are nonzero.
e Example: Remove the missing observation (marked with
NaN) in a data vector

>>x=[21171615NaN191815511814221.61.8];

>> L=isfinite(x)
L=

x=2117 16 151918 15 51181422 1618

A=
16 3 2 13
Logical Subscripting: Example 3 © = 2

* For another example, highlight the location of the prime
numbers in Dlrer's magic square by using logical indexing
and scalar expansion to set the nonprimes to 0

>> A(~isprime(A)) =0 >> isprime(A) >> ~isprime(A)
ans = ans =
0 1 1 1 1 0 0 O
1 0 1 0 0 1 0 1
0 0 1 0 1 1 0 1
0 0 0 O 11 1 1

Logical Subscripting: Example 2

e Remove outliers from data vector

>> data = 10*rand(10,1) >> L =(data>1) & (data<9) | >> data(L)

data = L= ans =
1.5761
9.7059
9.5717
4.8538
8.0028
1.4189
42176
9.1574
7.9221
9.5949

1.5761
4.8538
8.0028
1.4189
4.2176
7.9221

ORORRRELRRLROOLR

data((data > 1) & (data < 9));

A=
16 3 2 13

The find function S e

4 15 14 1

* The find function determines the indices of array
elements that meet a given logical condition

* Inits simplest form, find returns a column vector of
indices
— Transpose that vector to obtain a row vector of indices
>> A(k) = NaN
>> k = find(isprime(A))
A=
k =

NaN NaN
2 5 9 10 11 13 5 3 2 11 NaN 8
NaN 12
14 1

When you use k as a left-hand-side
Index in an assignment statement,
the matrix structure is preserved

Application: Circle Fit

* Given
— A set of 2D data points lying more or less on a circle
* Problem

— Find center and radius of circle which best fits to the
data points (least squares method)

e Solution
— Get data
— Develop method for best circle fit of data
— Compute and visualize result

Application: Get Data

% Generation of data points

t=(0:0.3:pi)’
. Norma”y’ data come o r = rand(size(t,1),1)+10
... Parametric circle X = r.*cos(t)
from acquisition, but | [Cos(t)} v = rsin(t)
. circle=r-|
in our case they are SLORI plot(xy, ™)
t=0,...,27 title('Data points','FontSize',16)
computed
Data points
t= r= X = y= 2 ! ' ’
0 10.2963 10.2963 0

0.3000 10.7447 10.2648 3.1753 "
0.6000 10.1890 8.4093 5.7531

0.9000 10.6868 6.6430 83712 °
1.2000 10.1835 3.6901 9.4914 *
1.5000 10.3685 0.7334 10.3425
1.8000 10.6256 -2.4142 10.3477
2.1000 10.7802 -5.4424 9.3056
24000 10.0811 -7.4338 6.8094
2.7000 10.9294 -9.8810 46710 "
3.0000 10.7757 -10.6679 1.5207

Application: Method

Basic equation of a circle ’ Can be rewritten as ‘ ‘ System of equations
2 o
(X—Cx)2+(y—cy) —r2 | ax+by+c=-x*-y®| (x vy) daapointi
X +y’ +ax+by+c=0 = C=-al2 AX=b
2 2
a=—20x Cy=—b/2 %1 =X =Y
% ¥, Lfal |-x"-y)’
b=—2CX 2 2 _ 2 2
r=4C°+c —cC X Yo 1|bi=l %y
c=c’+c’-r? v e le
X Yo 1 =X =Yy

(x,y) 2D datapoint

(C c) center of circle Solve the overdetermined
system of equations

in the least squares sense!

%X =A\b

r radius of circle
a,b,c unknown variables

Application: Computation of the solution

MATLAB code Result
% Compute the solution >> X
abc = [x y ones(length(x),1)] \ -(x.A2 + y.A2); cx =
a =abc(1); b = abc(2); ¢ = abc(3); 0.0281
cx =-a/2;
cy =-b/2; >> cy
rad grt((cxA2 + cy”2) - ¢); cy =
>>[x y ones(length(x),1)] | >>-(x.A2 +y.A2) | >>abc =
ans = ans = -0.0562 >>radius
10.81 O 1.00 -116.96 0.3830 radius =
10.42 3.22 1.00 -118.94 -114.4976 10.7021
836 5.72 1.00 -102.56 S
6.78 8.55 1.00 -119.10
3.85 9.91 1.00 -113.05
0.71 10.07 1.00 -101.96
-2.34 10.01 1.00 -105.65
e LR « Intermediate results
-8.08 7.40 1.00 -120.07
991 4.69 1.00 -120.23

-10.06 1.43 1.00 -103.18

Application: Visualization of the result
Pata p:oints \r.»vith ci(rcle ﬂt.

% visualization of the result 1of

tt = (0:0.01:2*pi); il
xx = radius*cos(tt);

yy = radius*sin(tt);
figure,plot(x,y,'*',cx,cy,'ro',xx,yy, 'LineWidth',2) i
axis square

title('Data points with circle fit','FontSize',16) 10

=15 =10 -5 0 E 10 1%

Contents

Overview of MATLAB System

Matrices and Arrays

Programming

Report Generation

Programming (1)

* Flow control
— Conditional control
— Loop control
— Error control
— Program termination

* Other data structures
— Multidimensional arrays
— Cell arrays
— Characters and text
— Structures

Programming (2)

e Scripts and functions
— Scripts
— Functions
— Types of functions
— Global variables
— Passing string arguments
— The eval function
— Function handles
— Function function
— Vectorization
— Preallocation
* Object-oriented programming
— Not treated in this course

Flow Control: if, else, elseif, end

The if statement evaluates a logical expression
and executes a group of statements when the
expression is true (or not false (0))

The optional elseif and else keywords provide for
the execution of alternate groups of statements

An end keyword, which matches the if,
terminates the last group of statements

It is important to understand how relational
operators and if statements work with matrices.
Use the functions

— isequal, isempty, all, any

Relational Operators

. >>A=[12 3]; >> if A==B
* The relational operators are [ESN res = 1;
<, >, <=,>=, == and ~= >> A==B else
* Relational operators perform &S : rdes=°;
element-by-element)
comparisons between two >> isequal(A,B) >>res
arrays ans = res =

* They return a logical array of ! !

the same size, with elements SRS
set to logical 1 (true) where ans =
the relation is true, and 0
elements set to logical 0
(false) where it is not

>> true
ans =
1

Logical Operators

 MATLAB offers three types of logical
operators and functions:

— Element-wise — operate on corresponding
elements of logical arrays (& | ~ xor)

— Bit-wise — operate on corresponding bits of
integer values or arrays (bitand bitor ...)

— Short-circuit — operate on scalar, logical
expressions (&& | |)

e See user guide for detailed information

Flow Control: switch

e The switch statement

>> a=0;
executes groups of statements
based on the value of a >> switch a
variable or expression case 0
* The keywords case and splzero)
otherwise delineate the disp('positive’)
groups case a<0
« Only the first matching case is disp(’negative’)
otherwise
executed. There must always

disp('otherwise')

be an end to match the switch End

— No fall through, break not
necessary zero

Loop control: for

e The for loop repeats a « :1:32;;
group of statements a g
fixed, predetermined)),
number of times end
e A matching end delineates .
the statements n
e Nested loops are possible 0.5000 0.3333 0.2500

0.3333 0.2500 0.2000

Loop Control: while >>a0;fa =-In;

b =3; fb = Inf;
while b-a > eps*b
x = (a+b)/2;

e The while loop repeats a group of fx = xA3-2%x5:

statements an indefinite number of times

if sign(fx) == sign(fa
under control of a logical condition 3 E X(f; _ fx.g bl
¢ A matching end delineates the statements else
e Example: Interval bisection to find zero of b=x; fb=fx;
polynomial end

End

Bisection ilustration

X =

A 2.0946

/A >> x=0:0.01:3;

) | >> fx = x.A3 -2.*x -5;

S ¢m >>plot(x,fx)

sb P] >> plot(x,fx,2.09,0,'or")

>> title('Bisection illustration')

Loop Control: continue

¢ The continue statement passes

control to the next iteration of fid = fopen('magic.m’,'r');
the for loop or while loop in count = 0;
which it appears, skipping any
remaining statements in the while ~feof(fid)
body of the loop line = fgetl(fid);

¢ The same holds true for if isempty(line) ||...
continue statements in nested strncmp(line,'%',1)...
loops || ~ischar(line)

¢ That s, execution continues at continue
the beginning of the loop in end
which the continue statement count = count + 1;
was encountered End

e Example: counts the lines of e .
code in the file magic.m, fprintf(,%d lines\n',count);
skipping all blank lines and felose(fid);
comments

Loop Control: break

>>a =0; fa = -Inf;

e The break statement b=3;fb=Inf;
lets you exit early L
from a for loop or fx = x"3-2%:5;
while loop. In nested S
loops, break exits e':ezifxs;f:(}f)x;== Ll
from the innermost else
loop only DR

End

e Example: Improved
bisection algorithm

Flow Control: Try and return

e tryis used for error handling control

* return terminates the current sequence of commands
and returns control to the invoking function or to the
keyboard

— return is also used to terminate keyboard mode (useful for
debugging of M-files)

— A called function normally transfers control to the function
that invoked it when it reaches the end of the function.

— You can insert a return statement within the called
function to force an early termination and to transfer
control to the invoking function

— Return is also useful for debugging

>>ones(2,3,2)

ans(:,:;,1) =
Data Structures 77T
ans(:,:,2) =
. - . 1 1 1
* Multidimensional 11 1
arrays
— More than 2 subscripts [SSNEY}
— Uniform data >> C = {A sum(A) prod(prod(A))}
C:
e Cell arrays [4x4 double] [1x4 double] [2.0923e+013]
— Cell arrays in MATLAB FSSEH
are multidimensional ans =
arrays whose elements [EEEERES
. 5 11 10 8
are copies of other 9 7 6 12
arrays (curly braces{}) 4 14 15 1

>> C{2}
ans =
34 34 34 34

>> s ='Hello'
S =
Hello

>> char(F)
ans =
I"HS%&' ()*+,-./

Data Structures

0123456789:;<=>?

>>a = double(s) @ABCDEFGHIJKLMNO
a= PQRSTUVWXYZ[\]A_
72 101 108 108 111 “abcdefghijkimno

parstuvwxyz{| }*&
e Characters and text
— Single quotes for text

— Character — Ascii code conversations: char,

double
7

>> char(F+128)
ans =

iCEHY | §O2«—~-®"
oiZBIuﬂ‘,19))%1/l%f'.
AAARAAZCEEEEIT

— Example: show printable characters

1

39
55

.....

>> F = reshape(32:127,16,6)"

Bs
32
48
64
t{0]
96
112

33
49
65
81 82
97 98
113 114

34
50
66

35
51
67

36
52
68

37
53

38
54
69 70 71 72 73 74 75
83 8 85 86 87 88 89 90 91 92 93 94 95

99 100 101 102 103 104 105 106 107 108 109 110 111
115 116 117 118 119 120 121 122 123 124 125 126 127

40
56

41
57

42
58

43
59

44
60
76

45
61

46
62

47
63

77 78 79

Data Structures

e Structures are multidimensional MATLAB
arrays with elements accessed by textual field
designators, such as

>>S.name = 'Ed Plum’;

S.score = 83;
S.grade = 'B+'

>>S(2).name = 'Miller’;
S(2).score = 91;
S(2).grade = 'A-';

>> S(3) = struct('name’','Garcia’,...
'score',70,'grade’,'C")

1x3 struct array with fields:
name
score
grade

name: 'Ed Plum'
score: 83
grade: 'B+'

Data Structure: Dynamic Field Names

* Normally, access the data in a structure by
specifying the name of the field that you want to

reference.

* Another means of accessing structure data is to
use dynamic field names.

* These names express the field as a variable
expression that MATLAB evaluates at run-time.
The dot-parentheses syntax shown here makes
expression a dynamic field name:

— structName.(expression)

Example of Dynamic Field Names

Define M-file
avgscore.m with a
dynamic field name

Create data with
corresponding
field names

Evaluate function

function avg = avgscore(testscores, student, first, last)
for k = first:last
scores(k) = testscores.(student).week(k);
end
avg = sum(scores)/(last - first + 1);

>> testscores.Ann_Lane.week(1:25) = ...
[9589 76 82 799294928981 7593 ...
85 84 83 86 85 90 82 82 84 79 96 88 98];

>> testscores.William_King.week(1:25) = ...
[87 8091 8499 8793 87 97 87 82 89 ...
86 829098 75 79 92 84 90 93 84 78 81];

>> avgscore(testscores, 'Ann_Lane', 7, 22)
ans =
85.2500

>> avgscore(testscores, 'William_King', 7, 22)
ans =
87.7500

Scripts and Functions

Powerful programming language

and interactive computational environment
Files with MATLAB code are called M-files (x.m)
M-files can be created with text editors

Two kinds of M-files

— Scripts without input or output arguments. They
operate on data in the workspace

— Functions with input arguments and returning output
arguments. Internal variables are local to the function

Scripts: Example

In the current directory write an M-file
called cosPlot.m

In the Command Window type cosPlot
MATLAB executes the commands
Variables used remain in the Workspace

Existing variables in the Workspace can be
used

Currant Foldar 0.
AL A SR
0O Name -
T resizet Hectsm
1 rgbColorCubam
#1 rgbColorsExample._.
B ratationpng
W sequence.png
W sequence? png
W sigmaBalLpng
*lsinBigtm

& skeletonl png

plots the sinus function

ARt oy E| @
x| .Command.Window

—.
" Editor - CAUsers\noser Documents\fro,, il o

File Edit Teat Go Cell Tools
A=) JE S R

+Lol g

Scripts: Example

s

Shortouts 8 How to Add 2 What's New

U \Doct

AniZVORLESUNGEN\summerSchool2010

wooe X

[ed|-u

3 pletit,sinit))

script

startad,

Debug > Wrx

9 - | M- 20 .

changed for improve:

Workspace

Name

s Stry+S, are now customizal Bt

=S

a o)l B N W Seacke B~

Value

< Lx126 doubly

+111 |x |0

| :tuo‘s Deskiop Window Heip
I 0P d L Q08 D

=

PN
In1l Coll F foy

06 ."l \ ."II
02 f | /

D2t
04f \
06 \

-08

B 8

Functions

e Functions are M-files that can accept input
arguments and return output arguments

* The names of the M-file and of the function
should be the same

* Functions operate on variables within their
own workspace, separate from the workspace
at the MATLAB command prompt.

Example: rank function

>> type rank

First line:
- keyword ‘function’
- output argument r
- name of function
- input arguments

Followed by comments
that provide Help text

Function code
- variable number of input
and output arguments
given by variables
nargin and nargout

function r = rank(A,tol)
%RANK Matrix rank.

%
%
%
%
%
%
%
%

%
%

RANK(A) provides an estimate of the number of linearly
independent rows or columns of a matrix A.

RANK(A,tol) is the number of singular values of A

that are larger than tol.

RANK(A) uses the default tol = max(size(A)) * eps(norm(A)).

Class support for input A:
float: double, single

Copyright 1984-2007 The MathWorks, Inc.
SRevision: 5.11.4.5 $ SDate: 2007/08/03 21:26:23 $

s = svd(A);
if nargin==1
tol = max(size(A)) * eps(max(s));
end
r =sum(s > tol);

>>sqr = @(x) x.A2;

Types of Functions >>a=sar()

* Anonymous functions

Primary and subfunctions

a=
25

>>b =sqr(1:3)
— Can be defined without M-files b=

— Primary: first function in the M-file

— Subfunctions: further functions in M-file but only
visible to functions in M-file

Private functions (see Help)
Nested functions

— Function in function

Function overloading (see Help)

Global Variables

M-file: falling.m
e More than one function function h = falling(t)
global GRAVITY
and the workspace can h = 1/2*GRAVITY*t.A2;
share a single copy of a
variable >> global GRAVITY
>> GRAVITY = 32;
* The global variable has >>y = falling((0:1:5))
to be declared by the y=
keyword global and 0 16 64 144 256 400

must be set before used

The eval function

« Powerful text macro facility that can execute MATLAB code in text
variables
e Example: Construction of text variables with MATLAB code in a for
loop and executing it
— loading of files Augustl.dat August2.dat ...

ford=1:31
s = ['load August' int2str(d) '.dat'];

eval(s)
% Process the contents of the d-th file
end

Function Handles

>> fhandle = @sin;
>> fhandle(pi/2)

* Handles can be created to any MATLAB ans =
function with the at sign @ / 1
e Example: Handle to sin function "

¢ Function handles can also be passed to
functions by input arguments

* Example: general plot functions

M-file: plotFunctionHandle.m —

function x = plotFunctionHandle(fhandle, data)
plot(data, fhandle(data))
end

>> plotFunctionHandle(@sin, -pi:0.01:pi)
>> plotFunctionHandle(@cos, -pi:0.01:pi)

Function Functions
e A class of functions called "function functions"
works with nonlinear functions of a scalar
variable
* One function works on another function

e The function functions include
— Zero finding
— Optimization
— Quadrature
— Ordinary differential equations

Example: Zero Finding

M-file: humps.m

function y = humps(x)
y =1./((x-.3).72 +.01) + 1./((x-.9).A2 + .04) - 6;

e Demo function:

— humps .
* Problem: Find zero of |FSEXEY .
. -h ; 2
function humps el -
>> p = fminsearch(@humps,.5) 1:: ' N '
p= N [
0.6370 H*.,I
|
>>y = humps(p) . J."IK
y = 40 ."III
11.2528 o/
>> hold on m / N /, —
>> plot(p,y,'or") 0
Vectorization

* One way to make your MATLAB programs run
faster is to vectorize the algorithms you use in
constructing the programs

Good, vectorized, fast

x=.01; x=.01:.01:10;
for k =1:1001 y = log10(x);
y(k) = 1og10(x);

x=x+.01;
end

Preallocation

* You can make your for loops go faster by
preallocating any vectors or arrays in which
output results are stored

Good, fast,
space for r preallocated

Bad, slow,
space for r dynamically allocated

forn=1:32

r = zeros(32,1);
forn=1:32

r(n) = rank(magic(n));
end

r(n) = rank(magic(n));
end

Contents

Overview of MATLAB System

Matrices and Arrays

Programming

Report Generation

Report Generation with MATLAB

* Two possibilities to generate reports with
MATLAB

— Publishing M-files to various output formats
e Html, xml, latex, pdf
* Doc and ppt on PConly
— Publishing to MS Word with Notebook
* On Windows with MS Word installed only
* Notebook has to be configured

* Notebook creates M-books

— MS Word documents containing text, MATLAB commands and
MATLAB output

Applications of Report Generation

* Repeated evaluation of many different input data
sets

* Repeated application of complex procedures on
input data set by changing parameters and
comparing results

e Advantages
* Can dramatically increase productivity of people
¢ Uniform representation of results
* lesserrors

e Less resistance to re-evaluate data with slightly changed
conditions

Publishing M-files

* Share your MATLAB code and its results with
others

e Published M-files include
— Formatted text, numbered lists, Tex equations ...
— MATLAB code
— Results of code evaluation such as figures and output

of command window

e Structure an existing M-file with cells and
comments using text markup and publish it in
your preferred format

Elements of Publishing M-files

* Cell: Section of code to be presented as
titled subsection in the published document

— The double percent signs (%%) indicate the
start of a new cell. The text behind is the title

— A single percent sign indicates the beginning of
a comment line

", \
%% Square Waves from Sine Waves y =y + sin(k * t)

% The Fourier series expansion for a square-wave is k

% made up of a sum of odd harmonics, as shown here | ¢,mment with Tex equation

% using MATLAB(R).

%
% $Sy =y + \frac{sin(k*t){k} $S
%

Examples of Report Generation

* With Notebook: Demo
— Computation of sacroiliac corridors in CT-data of
the pelvis
— MS Word document with Principal Components
Analysis
* With M-files: Exercise

— MATLAB / User Guide / Desktop Tools and
Development Environment / Publishing M-Files /
Overview of Publishing M-Files / Example of a
Published M-File

