
Solving Software Engineering
Problems using Neural Networks

An Overview

Carol Alexandru
s.e.a.l. Softalk

21.01.2015

Motivation

Enormous corpus of
source code online

How can we leverage
this source code?

2

Motivation

Enormous corpus of
source code online

How can we leverage
this source code?

Can we create new
programs from
existing code?

2

Neural Networks can recognize...

...but they can also synthesize!

Good everybody. Thank you very much. God bless the United States of America,

and has already began with the world’s gathering their health insurance. It’s
about hard-earned for our efforts that are not continued.

We are all the assumptionion to the streets of the Americas that we are still for
everybody and destruction. We are doing a lot of this. I know that someone

would be prefered to their children to take a million insurance company. We’re
watching their people and continued to find ourselves with Republicans  — to give
up on these challenges and despite the challenges of our country. In the last two
years, we must recognise that our borders have access from the world.

Outline

Part 1

Quick Intro to Artificial Neural Networks (ANN)

Part 2

Related Work applying ANN to SE Problems

Part 3

Current Work & Avenues for further research

Part 1

Quick Intro to Artificial Neural Networks (ANN)

Neural Networks

• A type of machine learning

• Around since the 1950s

• Gained traction in the late 2000s thanks to
higher availability of computational resources

7

Neural Networks

• A type of machine learning

• Around since the 1950s

• Gained traction in the late 2000s thanks to
higher availability of computational resources

• Good at recognizing complex patterns and
dependencies in raw data

• „The“ solution for hard classification and
recognition problems

7

Neural Networks - Overview

h21

h22

h23

o1

o2

i1

i4

i3

i2

h11

h12

h13

8

Input layer

Neural Networks – Input Layer

h21

h22

h23

o1

o2

i1

i4

i3

i2

h11

h12

h13

E.g.: pixels of an image
Stock market changes during a day
Symptoms of an ill patient
Source code tokens 9

1 or more hidden layers
(more layers = „deep“ NN)

Neural Networks - Hidden Layers

h21

h22

h23

o1

o2

i1

i4

i3

i2

h11

h12

h13

Semantically undetermined
(often reverse engineered)

10

1 or more hidden layers
(more layers = „deep“ NN)

Neural Networks - Hidden Layers

h21

h22

h23

o1

o2

i1

i4

i3

i2

h11

h12

h13

Semantically undetermined
(often reverse engineered)
static activation function,
e.g. sigmoid activation

11

1 or more hidden layers
(more layers = „deep“ NN)

Neural Networks - Hidden Layers

h21

h22

h23

o1

o2

i1

i4

i3

i2

h11

h12

h13

Semantically undetermined
(often reverse engineered)
static activation function,
e.g. sigmoid activation

11

1 or more hidden layers
(more layers = „deep“ NN)

Neural Networks - Hidden Layers

o1

o2

i1

i4

i3

i2

Semantically undetermined
(often reverse engineered)
static activation function,
e.g. sigmoid activation

12

Output layer

Neural Networks – Output Layer

o1

o2

i1

i4

i3

i2

E.g.: Tags associated with an image
Changes in tomorrows stock market
Probable medical diagnoses
Tags associated with the source code

13

Neural Networks

o1

o2

i1

i4

i3

i2

Layers are fully connected
Each connections is weighted

14

Neural Networks

o1

o2

i1

i4

i3

i2

Layers are fully connected
Each connections is weighted

(weights can be negative)

This is what
we train!

14

Neural Networks

o1

o2

i1

i4

i3

i2

Layers are fully connected
Each connections is weighted

(weights can be negative)

This is what
we train!

15

Concrete Example: XOR

c

a

b

a b c

0 0 0

1 0 1

0 1 1

1 1 0

0

1

0

f =

16

Concrete Example: XOR

c

a

b

a b c

0 0 0

1 0 1

0 1 1

1 1 0

0

1

0

f =

1

1

-1

-1
1

1

An ANN would likely come up
with different weights

17

Concrete Example: XOR input [0,0]

0

0

0

0

0

a b c

0 0 0

1 0 1

0 1 1

1 1 0

1

1

-1

-1
1

1

f(0*1+0*-1) = f(0) = 0

f(0*-1+0*1) = f(0) = 0

0

1

0

f =

simplified

18

Concrete Example: XOR input [1,0]

1

1

0

1

0

a b c

0 0 0

1 0 1

0 1 1

1 1 0

1

1

f(1*1+0*-1) = f(1) = 1

f(1*-1+0*1) = f(-1) = 0

0

1

0

f =

1

1

-1

-1

19

Concrete Example: XOR input [0,1]

1

0

1

0

1

a b c

0 0 0

1 0 1

0 1 1

1 1 0

1

1

f(0*1+1*-1) = f(-1) = 0

f(0*-1+1*1) = f(1) = 1

0

1

0

f =

1

1

-1

-1

20

Concrete Example: XOR input [1,1]

0

1

1

0

0

a b c

0 0 0

1 0 1

0 1 1

1 1 0

1

1

f(1*1+1*-1) = f(0) = 0

f(1*-1+1*1) = f(0) = 0

0

1

0

f =

1

1

-1

-1

21

Concrete Example: XOR

c

a

b

a b c

0 0 0

1 0 1

0 1 1

1 1 0

0

1

0

f =

1

1

-1

-1
1

1

22

Basic Neural Networks - Summary

• Any number of inputs and outputs

• Any number of hidden layers (even just 1)

• Activation function (often sigmoid + bias)

• Training happens on the weights of the links

• There is no real „signaling“, the entire network
can be represented as a single math function

• Can be used for both regression and
classification problems

23

Part 2
Related Work applying ANN to SE

Software Reliability Lab (ETHZ)

SLANG (PLDI 14):

Code Completion (gap filling) using n-grams and ANN
with regard to API usage

25

Software Reliability Lab (ETHZ)

JSNice (POPL 15):

Predicting variable names and inferring types in
obfuscated JavaScript code using Conditional
Random Fields (CRF)

Special kind of classifier that
takes neighboring output nodes

into account when making
output predictions

26

Software Reliability Lab (ETHZ)

JSNice (POPL 15):

Predicting variable names and inferring types in
obfuscated JavaScript code using Conditional
Random Fields (CRF)

27

Other Related Work

Arar et al.: “Software defect prediction using cost-sensitive
neural network” (ASC 2015)

ANN + Artifical Beehive Colony algorithm, Similar performance to existing bug
prediction approaches

Corley et al.: “Exploring the Use of Deep Learning for Feature
Location” (ICSME15)

Preliminary Study using Latent Dirichlet Allocation (LDA) vs. Document Vectors
(DV). DV are very fast - could be used for IDE-based search functionality

White et al.: „Toward Deep Learning Software Repositories“
(MSR15)

ANN better than n-gram model at predicting the next token (code suggestion)

28

Part 3
Current Work & Avenues for further research

Models vs. ANN

30

Models vs. ANN

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

30

Models vs. ANN

Tooling, hand-
picked projects

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

30

Models vs. ANN

Feature
catalogue

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Tooling, hand-
picked projects

30

Models vs. ANN

Feature
catalogue

Rule catalogue

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Tooling, hand-
picked projects

30

Models vs. ANN

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Tooling, hand-
picked projects

30

Models vs. ANN

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

e.g. SOFAS, LISA, FindBugs, ...

Tooling, hand-
picked projects

30

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Tooling, hand-
picked projects

31

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Easier data
collection

Tooling, hand-
picked projects

31

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Easier data
collection

Tooling, hand-
picked projects

Inputs & outcomes
based in reality

31

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Easier data
collection

Resource
intensive

Tooling, hand-
picked projects

Inputs & outcomes
based in reality

31

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Easier data
collection

Resource
intensive

Suprisingly
useful results

Tooling, hand-
picked projects

Inputs & outcomes
based in reality

31

ANN is a „black
box“

Models vs. ANN

Plain Data +
Outcomes

Machine
Learning

Results
Reverse-

Engineering
of Features

Feature
catalogue

Rule catalogue
Actionable results

are elusive

Parsing Compilation
Feature

Extraction

Rule-Based
Decision or

ML
Results

Easier data
collection

Inputs & outcomes
based in reality

Resource
intensive

Suprisingly
useful results

Tooling, hand-
picked projects

31

Models vs. ANN

Instead of trying to model the complexity of
source code, let the machine figure out what

matters to make useful predictions

32

First Steps...
Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Clone
693 Apache Projects

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'

8 parallel jobs, ~15min

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'

Dump
-not -regex '.*[tT]ests?.*'

8 parallel jobs, ~15min

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'

Dump
-not -regex '.*[tT]ests?.*'

8 parallel jobs, ~15min

= 1.8GB Java Code

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code

33

First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

Parameters 46 776 232

Compute time

34

First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

Parameters 46 776 232

Compute time 315 days

34

First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

Parameters 46 776 232

Compute time 315 days

34

First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

Parameters 46 776 232

Compute time 315 days

Input file size 64 MB

Characters 64 042 220

rnn_size 1500

Parameters 46 776 232

Compute time 60 days

Input file size 24 MB

Characters 24 014 894

rnn_size 1024

Parameters 21 503 075

Compute time 1.6 days

Input file size 6.8 MB

Characters 7 034 943

rnn_size 580

Parameters 7 026 218

Compute time 6.8 hours

34

First Steps...

Input file size 6.8 MB

Characters 7 034 943

rnn_size 580

Parameters 7 026 218

Compute time 6.8 hours

• RNN Training performed using

– Torch (Lua Scientific Computing Framework)

– Nvidia GeForce GTX 970 GPU

• Torch supports CUDA

• 15x faster than using
CPU (i7-3770)!

35

demo

Next Steps

• RNN:
– Larger/Longer training (2 weeks)

– Adapt Character-based RNN for AST tokens

– Predict next n tokens instead of just one

– Allow „backtracking“ and „cycling“ in the
predictions (using different

• Code completion using RNN has been
evaluated but not demonstrated (I think...)

• This is simply a feasible starting point

37

ANN solutions for SE problems

• Code completion, deobfuscation, synthesis

• Translation

• Classification (concept/feature location)

• Prediction (bugs, changes, effort)

• Detection (memory leaks, antipatterns)

38

Concept/Feature location

Problem Feature/Concept location is a hard problem in SE and
encompasses many issues, e.g. finding relevant
search results during code search, giving useful code
suggestions, linking code to bugs/reviews and many
more

Goal Enrich and tag code snippets with relevant
information.

Approach Use convolutional recurrent networks and use
attention steering to tag varying-size snippets in
existing code.

39

Directing „Attention“

40

Directing „Attention“

• Teaching a NN to
sequentially direct attention

• Example: Reading house
numbers left to right

• For code: read code in order
of execution/control flow?

41

Programming Language Translation

Java Haskell

42

Programming Language Translation

Java Haskell

Train on:
Rosetta Code

Project Euler Solutions
Multi-Platform Projects

42

Programming Language Translation

Java Haskell

Train on:
Rosetta Code

Project Euler Solutions
Multi-Platform Projects

Use for:
Low-level Migration & Porting
Learning & Education
„Adaptive“ Rosetta Code

42

Programming Language Translation

Java Haskell

Train on:
Rosetta Code

Project Euler Solutions
Multi-Platform Projects

Use for:
Low-level Migration & Porting
Learning & Education
„Adaptive“ Rosetta Code

Also consider: Pseudo-Code ↔ Source Code
Natural Language ↔ Source Code

42

Guided Code Synthesis

Problem When writing Code, developers frequently access
SO, Google or other source code within the project,
causing a large number of context switches

...

43

Guided Code Synthesis

Problem When writing Code, developers frequently access
SO, Google or other source code within the project,
causing a large number of context switches

Goal Keep the developer in the IDE.
Use intent to steer the provided suggestions.

44

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(

}

45

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(public static void main(String[] args) {

}

46

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list

}

}

47

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new listArrayList list = new ArrayList<>();

}

}

48

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list stringArrayList<String> list = new ArrayList<>();

}

}

49

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

}

}

50

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV file

}

}

51

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV fileCSVWriter writer = new CSVWriter(new

FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

}

52

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

}

53

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

}

writer.writeNext(entries);

writer.close();

}

}

54

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}

55

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}

56

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}

Plain-Text
Code Context

Code
Suggestion

Island Parsing
& Cleanup

Local
Resolution &
Navigation

57

Specifics of SE-Problems

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

• We don‘t want to generate superfluous code

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

• We don‘t want to generate superfluous code

• Source code does not necessarily have a fixed
„ordering“ in the data

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

• We don‘t want to generate superfluous code

• Source code does not necessarily have a fixed
„ordering“ in the data

• Source code is almost „noise free“ and highly
structured (more than natural language)

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

• We don‘t want to generate superfluous code

• Source code does not necessarily have a fixed
„ordering“ in the data

• Source code is almost „noise free“ and highly
structured (more than natural language)

• Source code is richer (we can use parsers &
compilers to enrich input data)

58

Specifics of SE-Problems

• Code is not just data (like an image) but a data
transformer

• We don‘t want to generate superfluous code

• Source code does not necessarily have a fixed
„ordering“ in the data

• Source code is almost „noise free“ and highly
structured (more than natural language)

• Source code is richer (we can use parsers &
compilers to enrich input data)

• We can automatically rate generated output
58

Summary

Thank you

Recurrent Neural Networks

• Output does not
only depend on
given Input, but
also on the entire
history of inputs

• E.g. Long Short-
Term Memory
(LSTM) Networks

Recurrent Neural Networks

• Output does not
only depend on
given Input, but
also on the entire
history of inputs

• E.g. Long Short-
Term Memory
(LSTM) Networks

ANN work on numerical values

o1

o2

i1

i4

i3

i2

[255,125,0]

[188,110,4]

[5,15,212]

[125,25,25]

...

... ...

0.19491

0.95121

o1 [1,0,...]

o2 [0,1,...]

... ...

...

Classes:
*„dog“, „frog“,...+

Guided Code Synthesis

Problem When writing Code, developers frequently access
SO, Google or other source code within the project,
causing a large number of context switches

Goal Keep the developer in the IDE by continously
providing appropriate feedback and code
suggestions. The developer should be able to input
intent to steer the provided suggestions.

Approach Use multi-layer recurrent networks that draw on
multiple sources, i.e. user-provided code tokens, tags
and task context. Use existing tool (Adapt) for
translating user input to intent.

Concept tagging

Problem Feature/Concept location is a hard problem in SE and
encompasses many issues, e.g. finding relevant
search results during code search, giving useful code
suggestions, linking code to bugs/reviews and many
more

Goal Enrich and tag code snippets with relevant
information.

Approach Use convolutional recurrent networks and use
attention steering to tag varying-size snippets in
existing code.

Co-Change suggestions

Problem Developers often need to change related code that is
not connected explicitely (especially true in weak
typed languages)

Goal When the developer changes some code, suggest
other locations and maybe even the required code

Approach Pair-wise training on patches: Given one patch as
input, expect another patch as output – either
coarse (file and location within file) or fine (file,
location and code suggestion). Take temporal
distance into account (same commit == very close).
Maybe include commit message in output.

„Neural Linter“

Problem Linters & tools like findbugs are useful but often give
too many results that are ignored. Also, different
development teams have different priorities and
coding styles.

Goal Give only actionable, relevant and tailored
information to developers

Approach Train an ANN on existing data regarding proposed
fixes and performed fixes to be used as a filter over
new predictions. The system could learn over time
for a single user as well.

Programming language translation

Problem Upgrading legacy systems and writing the same code
for different platforms can be difficult

Goal Create template source code to serve as a starting
point for manual translation

Approach Use rosetta code problem solutions and multi-
platform projects to train one model per language
pair.

Existing? Mostly rule based, i.e. compilers

Source Code from Pseudocode

Problem Writing code is time consuming and difficult

Goal Create valid source code from pseudo code
definitions

Approach Create a corpus of pseudo code to source code
translations and train an ANN in order to create new
translations

Existing? Again, mostly rule-based with many restriction on
the input syntax

Source Code from natural language

Problem Writing code is time consuming and difficult

Goal Create valid source code from human natural
language.

Approach Add a speech recognition tool to guided code
synthesis.

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(

}

User inputs:
main(

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(public static void main(String[] args) {

}

User inputs:
main(

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list

}

}

User inputs:
main(<TAB>
new list

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new listArrayList list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list stringArrayList<String> list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string<TAB>

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV file

}

}

User inputs:
main(<TAB>
new list string<TAB>
write CSV file

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV fileCSVWriter writer = new CSVWriter(new

FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

} User inputs:
main(<TAB>
new list string<TAB>
write CSV file

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

writer.writeNext(entries);

writer.close();

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

}

writer.writeNext(entries);

writer.close();

}

} User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2
loop over args

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

writer.writeNext(s);

writer.close();

}

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2
loop over args<SHIFT-M-I-2>

Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

writer.close();

}

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2
loop over args<SHIFT-M-I-2><TAB>

