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Motivation
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Neural Networks can recognize...



...but they can also synthesize!

Good everybody. Thank you very much. God bless the United States of America, 

and has already began with the world’s gathering their health insurance. It’s 
about hard-earned for our efforts that are not continued.

We are all the assumptionion to the streets of the Americas that we are still for 
everybody and destruction. We are doing a lot of this. I know that someone 

would be prefered to their children to take a million insurance company. We’re 
watching their people and continued to find ourselves with Republicans  — to give 
up on these challenges and despite the challenges of our country. In the last two 
years, we must recognise that our borders have access from the world.
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Quick Intro to Artificial Neural Networks (ANN)



Neural Networks

• A type of machine learning

• Around since the 1950s

• Gained traction in the late 2000s thanks to 
higher availability of computational resources
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Neural Networks

• A type of machine learning

• Around since the 1950s

• Gained traction in the late 2000s thanks to 
higher availability of computational resources

• Good at recognizing complex patterns and 
dependencies in raw data

• „The“ solution for hard classification and 
recognition problems
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Neural Networks - Overview
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Input layer

Neural Networks – Input Layer
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E.g.: pixels of an image
Stock market changes during a day
Symptoms of an ill patient 
Source code tokens 9



1 or more hidden layers
(more layers = „deep“ NN)
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Output layer

Neural Networks – Output Layer
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E.g.: Tags associated with an image
Changes in tomorrows stock market
Probable medical diagnoses
Tags associated with the source code
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Neural Networks
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Concrete Example: XOR
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Concrete Example: XOR
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Concrete Example: XOR input [0,0]
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Concrete Example: XOR input [1,0]
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Concrete Example: XOR input [0,1]
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Basic Neural Networks - Summary

• Any number of inputs and outputs

• Any number of hidden layers (even just 1)

• Activation function (often sigmoid + bias)

• Training happens on the weights of the links

• There is no real „signaling“, the entire network 
can be represented as a single math function

• Can be used for both regression and 
classification problems
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Part 2
Related Work applying ANN to SE



Software Reliability Lab (ETHZ)

SLANG (PLDI 14):

Code Completion (gap filling) using n-grams and ANN 
with regard to API usage
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Software Reliability Lab (ETHZ)

JSNice (POPL 15):

Predicting variable names and inferring types in 
obfuscated JavaScript code using Conditional 
Random Fields (CRF)

Special kind of classifier that 
takes neighboring output nodes 

into account when making 
output predictions
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Software Reliability Lab (ETHZ)

JSNice (POPL 15):

Predicting variable names and inferring types in 
obfuscated JavaScript code using Conditional 
Random Fields (CRF)
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Other Related Work

Arar et al.: “Software defect prediction using cost-sensitive 
neural network” (ASC 2015)

ANN + Artifical Beehive Colony algorithm, Similar performance to existing bug 
prediction approaches

Corley et al.: “Exploring the Use of Deep Learning for Feature 
Location” (ICSME15)

Preliminary Study  using Latent Dirichlet Allocation (LDA) vs. Document Vectors 
(DV). DV are very fast - could be used for IDE-based search functionality

White et al.: „Toward Deep Learning Software Repositories“ 
(MSR15)

ANN better than n-gram model at predicting the next token (code suggestion)
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Part 3
Current Work & Avenues for further research



Models vs. ANN
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Models vs. ANN

Feature 
catalogue
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Tooling, hand-
picked projects

30



Models vs. ANN

Plain Data + 
Outcomes

Machine 
Learning

Results
Reverse-

Engineering 
of Features

Feature 
catalogue

Rule catalogue
Actionable results 

are elusive

Parsing Compilation
Feature 

Extraction

Rule-Based 
Decision or 

ML
Results

Tooling, hand-
picked projects

31



Models vs. ANN

Plain Data + 
Outcomes

Machine 
Learning

Results
Reverse-

Engineering 
of Features

Feature 
catalogue

Rule catalogue
Actionable results 

are elusive

Parsing Compilation
Feature 

Extraction

Rule-Based 
Decision or 

ML
Results

Easier data 
collection

Tooling, hand-
picked projects

31



Models vs. ANN

Plain Data + 
Outcomes

Machine 
Learning

Results
Reverse-

Engineering 
of Features

Feature 
catalogue

Rule catalogue
Actionable results 

are elusive

Parsing Compilation
Feature 

Extraction

Rule-Based 
Decision or 

ML
Results

Easier data 
collection

Tooling, hand-
picked projects

Inputs & outcomes 
based in reality

31



Models vs. ANN

Plain Data + 
Outcomes

Machine 
Learning

Results
Reverse-

Engineering 
of Features

Feature 
catalogue

Rule catalogue
Actionable results 

are elusive

Parsing Compilation
Feature 

Extraction

Rule-Based 
Decision or 

ML
Results

Easier data 
collection

Resource 
intensive

Tooling, hand-
picked projects

Inputs & outcomes 
based in reality

31



Models vs. ANN

Plain Data + 
Outcomes

Machine 
Learning

Results
Reverse-

Engineering 
of Features

Feature 
catalogue

Rule catalogue
Actionable results 

are elusive

Parsing Compilation
Feature 

Extraction

Rule-Based 
Decision or 

ML
Results

Easier data 
collection

Resource 
intensive

Suprisingly 
useful results

Tooling, hand-
picked projects

Inputs & outcomes 
based in reality

31



ANN is a „black 
box“
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Models vs. ANN

Instead of trying to model the complexity of 
source code, let the machine figure out what 

matters to make useful predictions
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First Steps...
Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code
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First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'
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-not -regex '.*[tT]ests?.*'

8 parallel jobs, ~15min

Based on work by Andrej Karpathy (http://karpathy.github.io):
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in a sequence of Java code
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First Steps...

Clone
693 Apache Projects

Filter
-not -regex '.*\.java'

Dump
-not -regex '.*[tT]ests?.*'

8 parallel jobs, ~15min

= 1.8GB Java Code

Based on work by Andrej Karpathy (http://karpathy.github.io):

train an RNN to predict the next character
in a sequence of Java code
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First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

# Parameters 46 776 232

Compute time
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First Steps...

Input file size 1.8 GB

Characters 1 860 428 381

rnn_size 1500

# Parameters 46 776 232

Compute time 315 days

Input file size 64 MB

Characters 64 042 220

rnn_size 1500

# Parameters 46 776 232

Compute time 60 days

Input file size 24 MB

Characters 24 014 894

rnn_size 1024

# Parameters 21 503 075

Compute time 1.6 days

Input file size 6.8 MB

Characters 7 034 943

rnn_size 580

# Parameters 7 026 218

Compute time 6.8 hours
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First Steps...

Input file size 6.8 MB

Characters 7 034 943

rnn_size 580

# Parameters 7 026 218

Compute time 6.8 hours

• RNN Training performed using

– Torch (Lua Scientific Computing Framework)

– Nvidia GeForce GTX 970 GPU

• Torch supports CUDA

• 15x faster than using                                                                            
CPU (i7-3770)!
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Next Steps

• RNN:
– Larger/Longer training (2 weeks)

– Adapt Character-based RNN for AST tokens

– Predict next n tokens instead of just one

– Allow „backtracking“ and „cycling“ in the 
predictions (using different

• Code completion using RNN has been 
evaluated but not demonstrated (I think...)

• This is simply a feasible starting point
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ANN solutions for SE problems

• Code completion, deobfuscation, synthesis

• Translation

• Classification (concept/feature location)

• Prediction (bugs, changes, effort)

• Detection (memory leaks, antipatterns)

38



Concept/Feature location

Problem Feature/Concept location is a hard problem in SE and 
encompasses many issues, e.g. finding relevant 
search results during code search, giving useful code 
suggestions, linking code to bugs/reviews and many 
more

Goal Enrich and tag code snippets with relevant 
information.

Approach Use convolutional recurrent networks and use 
attention steering to tag varying-size snippets in 
existing code.

39



Directing „Attention“
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Directing „Attention“

• Teaching a NN to 
sequentially direct attention

• Example: Reading house 
numbers left to right

• For code: read code in order 
of execution/control flow?

41



Programming Language Translation

Java Haskell
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Programming Language Translation

Java Haskell

Train on:
Rosetta Code

Project Euler Solutions
Multi-Platform Projects

Use for:
Low-level Migration & Porting
Learning & Education
„Adaptive“ Rosetta Code

Also consider: Pseudo-Code ↔ Source Code
Natural Language ↔ Source Code
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Guided Code Synthesis

Problem When writing Code, developers frequently access 
SO, Google or other source code within the project, 
causing a large number of context switches

...
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Guided Code Synthesis

Problem When writing Code, developers frequently access 
SO, Google or other source code within the project, 
causing a large number of context switches

Goal Keep the developer in the IDE.
Use intent to steer the provided suggestions.
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Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV fileCSVWriter writer = new CSVWriter(new 

FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

}
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Guided Code Synthesis
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Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

}

writer.writeNext(entries);

writer.close();

}

}
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Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}
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Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}
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Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

}

writer.close();

}

}

Plain-Text 
Code Context

Code 
Suggestion

Island Parsing 
& Cleanup

Local 
Resolution & 
Navigation
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Specifics of SE-Problems

• Code is not just data (like an image) but a data 
transformer

• We don‘t want to generate superfluous code

• Source code does not necessarily have a fixed 
„ordering“ in the data

• Source code is almost „noise free“ and highly 
structured (more than natural language)

• Source code is richer (we can use parsers & 
compilers to enrich input data)

• We can automatically rate generated output
58



Summary



Thank you
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ANN work on numerical values

o1

o2

i1

i4

i3

i2

[255,125,0]

[188,110,4]

[5,15,212]

[125,25,25]

...

... ...

0.19491

0.95121

o1 [1,0,...]

o2 [0,1,...]

... ...

...

Classes:
*„dog“, „frog“,...+



Guided Code Synthesis

Problem When writing Code, developers frequently access 
SO, Google or other source code within the project, 
causing a large number of context switches

Goal Keep the developer in the IDE by continously 
providing appropriate feedback and code 
suggestions. The developer should be able to input 
intent to steer the provided suggestions.

Approach Use multi-layer recurrent networks that draw on 
multiple sources, i.e. user-provided code tokens, tags 
and task context. Use existing tool (Adapt) for 
translating user input to intent.



Concept tagging

Problem Feature/Concept location is a hard problem in SE and 
encompasses many issues, e.g. finding relevant 
search results during code search, giving useful code 
suggestions, linking code to bugs/reviews and many 
more

Goal Enrich and tag code snippets with relevant 
information.

Approach Use convolutional recurrent networks and use 
attention steering to tag varying-size snippets in 
existing code.



Co-Change suggestions

Problem Developers often need to change related code that is 
not connected explicitely (especially true in weak
typed languages)

Goal When the developer changes some code, suggest 
other locations and maybe even the required code

Approach Pair-wise training on patches: Given one patch as 
input, expect another patch as output – either 
coarse (file and location within file) or fine (file, 
location and code suggestion). Take temporal 
distance into account (same commit == very close). 
Maybe include commit message in output.



„Neural Linter“

Problem Linters & tools like findbugs are useful but often give 
too many results that are ignored. Also, different 
development teams have different priorities and 
coding styles.

Goal Give only actionable, relevant and tailored 
information to developers

Approach Train an ANN on existing data regarding proposed 
fixes and performed fixes to be used as a filter over 
new predictions. The system could learn over time 
for a single user as well.



Programming language translation

Problem Upgrading legacy systems and writing the same code 
for different platforms can be difficult

Goal Create template source code to serve as a starting 
point for manual translation

Approach Use rosetta code problem solutions and multi-
platform projects to train one model per language 
pair.

Existing? Mostly rule based, i.e. compilers



Source Code from Pseudocode

Problem Writing code is time consuming and difficult

Goal Create valid source code from pseudo code 
definitions

Approach Create a corpus of pseudo code to source code 
translations and train an ANN in order to create new 
translations

Existing? Again, mostly rule-based with many restriction on 
the input syntax



Source Code from natural language

Problem Writing code is time consuming and difficult

Goal Create valid source code from human natural 
language.

Approach Add a speech recognition tool to guided code 
synthesis.



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(

}

User inputs:
main(



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

main(public static void main(String[] args) {

}

User inputs:
main(



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list

}

}

User inputs:
main(<TAB>
new list



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new listArrayList list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

new list stringArrayList<String> list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

}

}

User inputs:
main(<TAB>
new list string<TAB>



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV file

}

}

User inputs:
main(<TAB>
new list string<TAB>
write CSV file



Guided Code Synthesis
import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

write CSV fileCSVWriter writer = new CSVWriter(new 

FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

} User inputs:
main(<TAB>
new list string<TAB>
write CSV file



Guided Code Synthesis
import java.util.ArrayList;
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public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

// feed in your array (or convert your data to an array)

String[] entries = "first#second#third".split("#");

writer.writeNext(entries);

writer.close();

}

}
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new list string<TAB>
write CSV file<TAB>
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import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

writer.writeNext(entries);

writer.close();

}

}
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write CSV file<TAB>
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import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

}

writer.writeNext(entries);

writer.close();

}
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import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

loop over argsfor (String s : args) {

writer.writeNext(s);

writer.close();

}

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2
loop over args<SHIFT-M-I-2>
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import java.util.ArrayList;

public class Test {

public static void main(String[] args) {

ArrayList<String> list = new ArrayList<>();

CSVWriter writer = new CSVWriter(new FileWriter("file.csv"), '\t');

for (String s : args) {

writer.writeNext(s);

writer.close();

} 

}

}
User inputs:
main(<TAB>
new list string<TAB>
write CSV file<TAB>
SHIFT-ALT-D-J-2
loop over args<SHIFT-M-I-2><TAB>


