
Carol V. Alexandru, Sebastiano Panichella, Harald C. Gall
Software Evolution and Architecture Lab

University of Zurich, Switzerland
{alexandru,panichella,gall}@ifi.uzh.ch

22.02.2017

SANER’17

Klagenfurt, Austria

The Problem Domain

• Static analysis (e.g. #Attr., McCabe, coupling...)

1

The Problem Domain

v0.7.0 v1.0.0 v1.3.0 v2.0.0 v3.0.0 v3.3.0 v3.5.0

2

• Static analysis (e.g. #Attr., McCabe, coupling...)

The Problem Domain

v0.7.0 v1.0.0 v1.3.0 v2.0.0 v3.0.0 v3.3.0 v3.5.0

2

• Static analysis (e.g. #Attr., McCabe, coupling...)

• Many revisions, fine-grained historical data

A Typical Analysis Process

3

www

clone

select project

A Typical Analysis Process

www

clone

checkout

select project

select revision

3

A Typical Analysis Process

www

clone

checkout analysis tool

Res

select project

select revision

apply
tool

store
analysis

results

3

A Typical Analysis Process

www

clone

checkout analysis tool

Res

select project

select revision

apply
tool

store
analysis

results

more revisions?

3

A Typical Analysis Process

www

clone

checkout analysis tool

Res

select project

select revision

apply
tool

store
analysis

results

more revisions?

more projects?

3

Redundancies all over...

4

Redundancies in
historical code analysis

Impact on Code
Study Tools

Redundancies all over...

Redundancies in
historical code analysis

Few files change

Only small parts of
a file change

Across Revisions
Impact on Code

Study Tools

4

Redundancies all over...

Redundancies in
historical code analysis

Few files change

Only small parts of
a file change

Across Revisions
Impact on Code

Study Tools

Repeated analysis
of "known" code

4

Redundancies all over...

Redundancies in
historical code analysis

Few files change

Only small parts of
a file change

Changes may not
even affect results

Across Revisions
Impact on Code

Study Tools

Repeated analysis
of "known" code

Storing redundant
results

4

Redundancies all over...

4

Redundancies in
historical code analysis

Few files change

Across Languages

Only small parts of
a file change

Changes may not
even affect results

Each language has
their own toolchain

Yet they share
many metrics

Across Revisions
Impact on Code

Study Tools

Repeated analysis
of "known" code

Storing redundant
results

Redundancies all over...

Redundancies in
historical code analysis

Few files change

Across Languages

Only small parts of
a file change

Changes may not
even affect results

Each language has
their own toolchain

Yet they share
many metrics

Across Revisions
Impact on Code

Study Tools

Repeated analysis
of "known" code

Storing redundant
results

Re-implementing
identical analyses

Generalizability is
expensive

4

Redundancies all over...

Redundancies in
historical code analysis

Few files change

Across Languages

Only small parts of
a file change

Changes may not
even affect results

Each language has
their own toolchain

Yet they share
many metrics

Across Revisions
Impact on Code

Study Tools

Repeated analysis
of "known" code

Storing redundant
results

Re-implementing
identical analyses

Generalizability is
expensive

5

Important!

6

Techniques
implemented

in LISA

Your
favourite
analysis
features

Pick what you like!

#1: Avoid Checkouts

Avoid checkouts

7

clone

Avoid checkouts

7

clone

checkout

read write

Avoid checkouts

7

clone

checkout

read

read write

analyze

Avoid checkouts

7

clone

checkout

read

For every file: 2 read ops + 1 write op
Checkout includes irrelevant files
Need 1 CWD for every revision to be analyzed in parallel

read write

analyze

Avoid checkouts

8

clone analyze

read

Avoid checkouts

8

clone analyze

Only read relevant files in a single read op
No write ops
No overhead for parallization

read

Avoid checkouts

8

clone analyze

Only read relevant files in a single read op
No write ops
No overhead for parallization

Git

Analysis Tool

File Abstraction Layer

read

Avoid checkouts

8

clone analyze

Only read relevant files in a single read op
No write ops
No overhead for parallization

Git

Analysis Tool

File Abstraction Layer

E.g. for the JDK Compiler:

class JavaSourceFromCharrArray(name: String, val code: CharBuffer)
extends SimpleJavaFileObject(URI.create("string:///" + name), Kind.SOURCE) {
override def getCharContent(): CharSequence = code

}

read

Avoid checkouts

clone analyze

Only read relevant files in a single read op
No write ops
No overhead for parallization

Git

Analysis Tool

File Abstraction Layer

E.g. for the JDK Compiler:

class JavaSourceFromCharrArray(name: String, val code: CharBuffer)
extends SimpleJavaFileObject(URI.create("string:///" + name), Kind.SOURCE) {
override def getCharContent(): CharSequence = code

}

read

9

#2: Use a multi-revision representation
of your sources

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

10

rev. 1

rev. 2

rev. 3

rev. 4

11

rev. 1

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

12

rev. 2

Merge ASTs

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

13

rev. 3

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

14

rev. 4

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

15

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4

16

rev. range [1-4]

rev. range [1-2]

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4
AspectJ (~440k LOC):

1 commit: 2.2M nodes
All >7000 commits: 6.5M nodes

17

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4
AspectJ (~440k LOC):

1 commit: 2.2M nodes
All >7000 commits: 6.5M nodes

18

Merge ASTs

rev. 1

rev. 2

rev. 3

rev. 4
AspectJ (~440k LOC):

1 commit: 2.2M nodes
All >7000 commits: 6.5M nodes

19

#3: Store AST nodes only if
they're needed for analysis

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

What's the complexity (1+#forks)
and name for each method and
class?

20

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

140 AST nodes
(using ANTLR)

parse

What's the complexity (1+#forks)
and name for each method and
class?

20

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

140 AST nodes
(using ANTLR)

parse
CompilationUnit

TypeDeclaration

Modifiers

public

Members

Method

Modifiers

public

Name

run

Name

Demo

Parameters ReturnType

PrimitiveType

VOID

Body

Statements

...

...

What's the complexity (1+#forks)
and name for each method and
class?

20

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

What's the complexity (1+#forks)
and name for each method and
class?

140 AST nodes
(using ANTLR)

parse filtered parse

TypeDeclaration

Method

Name

run

Name

DemoForStatement

IfStatement

ConditionalExpression

7 AST nodes
(using ANTLR)

21

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

What's the complexity (1+#forks)
and name for eachmethod and
class?

140 AST nodes
(using ANTLR)

parse filtered parse

TypeDeclaration

Method

Name

run

Name

DemoForStatement

IfStatement

ConditionalExpression

7 AST nodes
(using ANTLR)

22

public class Demo {

public void run() {

for (int i = 1; i< 100; i++) {

if (i % 3 == 0 || i % 5 == 0) {

System.out.println(i)

}

}

}

What's the complexity (1+#forks)
and name for eachmethod and
class?

140 AST nodes
(using ANTLR)

parse filtered parse

TypeDeclaration

Method

Name

run

Name

DemoForStatement

IfStatement

ConditionalExpression

7 AST nodes
(using ANTLR)

23

#4: Use non-duplicative data structures
to store your results

rev. 1

rev. 2

rev. 3

rev. 4

24

rev. 1

rev. 2

rev. 3

rev. 4

24

rev. 1

rev. 2

rev. 3

rev. 4

24

[1-1]

label

#attr

mcc

[4-4]

label

#attr

mcc

InnerClass

0 4

1 2 4

[2-3]

label

#attr

mcc

rev. 1

rev. 2

rev. 3

rev. 4 [1-1]

label

#attr

mcc

[4-4]

label

#attr

mcc

InnerClass

0 4

1 2 4

[2-3]

label

#attr

mcc

25

LISA also does:
#5: Parallel Parsing
#6: Asynchronous graph computation
#7: Generic graph computations
applying to ASTs from compatible
languages

26

To Summarize...

The LISA Analysis Process

27

www

clone

select project

The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

select project

Language Mappings
(Grammar to Analysis)

determines which AST
nodes are loaded

ANTLRv4
Grammar used by

Generates Parser

The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

Res

select project

store
analysis

results

Analysis formulated as
Graph Computation

Language Mappings
(Grammar to Analysis) used by

Async. compute

determines which AST
nodes are loaded

determines which
data is persisted

ANTLRv4
Grammar used by

Generates Parser

runs
on graph

The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

Res

select project

store
analysis

results

more projects?

Analysis formulated as
Graph Computation

Language Mappings
(Grammar to Analysis) used by

Async. compute

determines which AST
nodes are loaded

determines which
data is persisted

ANTLRv4
Grammar used by

Generates Parser

runs
on graph

How well does it work, then?

Marginal cost for +1 revision

41.670

4.633
0.525 0.109 0.082 0.071 0.052 0.041 0.032 0.033

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 2000 3000 4000 5000 6000 7000

Average Parsing+Computation time per Revision when
analyzing n revisions of AspectJ (10 common metrics)

Se
co

n
d

s

of revisions

28

Overall Performance Stats

29

Language Java C# JavScript

#Projects 100 100 100

#Revisions 646'261 489'764 204'301

#Files (parsed!) 3'235'852 3'234'178 507'612

#Lines (parsed!) 1'370'998'072 961'974'773 194'758'719

Total Runtime (RT)¹ 18:43h 52:12h 29:09h

Median RT¹ 2:15min 4:54min 3:43min

Tot. Avg. RT per Rev.² 84ms 401ms 531ms

Med. Avg. RT per Rev.² 30ms 116ms 166ms

¹ Including cloning and persisting results
² Excluding cloning and persisting results

What's the catch?
(There are a few...)

The (not so) minor stuff

• Must implement analyses from scratch

• No help from a compiler

• Non-file-local analyses need some effort

30

The (not so) minor stuff

• Must implement analyses from scratch

• No help from a compiler

• Non-file-local analyses need some effort

• Moved files/methods etc. add overhead

• Uniquely identifying files/entities is hard

• (No impact on results, though)

30

Language matters

31

Javascript C# Java

E.g.: Javascript takes longer because:
• Larger files, less modularization
• Slower parser (automatic semicolon-insertion)

LISA is E X TREME

32

complex
feature-rich
heavyweight

simple
generic

lightweight

Thank you for your attention

SANER ‘17, Klagenfurt, 22.02.2017

Read the paper: http://t.uzh.ch/Fj

Try the tool: http://t.uzh.ch/Fk

Get the slides: http://t.uzh.ch/Fm

Contact me: alexandru@ifi.uzh.ch

http://t.uzh.ch/Fj
http://t.uzh.ch/Fk
http://t.uzh.ch/Fm
mailto:alexandru@ifi.uzh.ch

