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• Many revisions, fine-grained historical data
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Important!
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Techniques 
implemented 

in LISA

Your 
favourite
analysis 
features

Pick what you like!



#1: Avoid Checkouts
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#2: Use a multi-revision representation
of your sources
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#3: Store AST nodes only if
they're needed for analysis
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#4: Use non-duplicative data structures
to store your results
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LISA also does:
#5: Parallel Parsing
#6: Asynchronous graph computation
#7: Generic graph computations
applying to ASTs from compatible
languages
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To Summarize...



The LISA Analysis Process

27

www

clone

select project



The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

select project

Language Mappings
(Grammar to Analysis)

determines which AST
nodes are loaded

ANTLRv4
Grammar used by

Generates Parser



The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

Res

select project

store
analysis

results

Analysis formulated as 
Graph Computation

Language Mappings
(Grammar to Analysis) used by

Async. compute

determines which AST
nodes are loaded

determines which
data is persisted

ANTLRv4
Grammar used by

Generates Parser

runs
on graph



The LISA Analysis Process

27

www

clone

parallel parse
into merged
graph

Res

select project

store
analysis

results

more projects?

Analysis formulated as 
Graph Computation

Language Mappings
(Grammar to Analysis) used by

Async. compute

determines which AST
nodes are loaded

determines which
data is persisted

ANTLRv4
Grammar used by

Generates Parser

runs
on graph



How well does it work, then?



Marginal cost for +1 revision
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Overall Performance Stats
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Language Java C# JavScript

#Projects 100 100 100

#Revisions 646'261 489'764 204'301

#Files (parsed!) 3'235'852 3'234'178 507'612

#Lines (parsed!) 1'370'998'072 961'974'773 194'758'719

Total Runtime (RT)¹ 18:43h 52:12h 29:09h

Median RT¹ 2:15min 4:54min 3:43min

Tot. Avg. RT per Rev.² 84ms 401ms 531ms

Med. Avg. RT per Rev.² 30ms 116ms 166ms

¹ Including cloning and persisting results
² Excluding cloning and persisting results



What's the catch?
(There are a few...)
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The (not so) minor stuff

• Must implement analyses from scratch

• No help from a compiler

• Non-file-local analyses need some effort

• Moved files/methods etc. add overhead

• Uniquely identifying files/entities is hard

• (No impact on results, though)
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Language matters
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Javascript C#   Java

E.g.: Javascript takes longer because:
• Larger files, less modularization
• Slower parser (automatic semicolon-insertion)



LISA is E X TREME
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Thank you for your attention

SANER ‘17, Klagenfurt, 22.02.2017

Read the paper: http://t.uzh.ch/Fj

Try the tool: http://t.uzh.ch/Fk

Get the slides: http://t.uzh.ch/Fm

Contact me: alexandru@ifi.uzh.ch

http://t.uzh.ch/Fj
http://t.uzh.ch/Fk
http://t.uzh.ch/Fm
mailto:alexandru@ifi.uzh.ch

