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Abstract—Software engineering research often requires ana-
lyzing multiple revisions of several software projects, be it to
make and test predictions or to observe and identify patterns in
how software evolves. However, code analysis tools are almost
exclusively designed for the analysis of one specific version
of the code, and the time and resources requirements grow
linearly with each additional revision to be analyzed. Thus, code
studies often observe a relatively small number of revisions and
projects. Furthermore, each programming ecosystem provides
dedicated tools, hence researchers typically only analyze code of
one language, even when researching topics that should gener-
alize to other ecosystems. To alleviate these issues, frameworks
and models have been developed to combine analysis tools or
automate the analysis of multiple revisions, but little research
has gone into actually removing redundancies in multi-revision,
multi-language code analysis. We present a novel end-to-end
approach that systematically avoids redundancies every step of
the way: when reading sources from version control, during
parsing, in the internal code representation, and during the
actual analysis. We evaluate our open-source implementation,
LISA, on the full history of 300 projects, written in 3 different
programming languages, computing basic code metrics for over
1.1 million program revisions. When analyzing many revisions,
LISA requires less than a second on average to compute basic
code metrics for all files in a single revision, even for projects
consisting of millions of lines of code.

I. INTRODUCTION

Static software analysis has a broad range of applications

and is omnipresent both in software engineering research and

practice. Professionals use software analysis towards goals

such as enforcing coding guidelines, allocating resources and

estimating future effort [1]–[4]. It also aids in development,

for example by means of refactoring suggestions [3], [5]–[7]

or bug detection [8], [9]. Practitioners most often apply their

tools to the current version of their software, be it during

development in an IDE or during continuous integration. Their

tools often grow naturally out of needs within a software

ecosystem and are tailored to the peculiarities of a specific

language [10]–[13]. Practitioners also show growing interest

in multi-language analyses [14], given that an increasing

amount of software is written in multiple languages (like web

applications and multi-platform mobile apps) [15]–[17].

Conversely, researchers use code analysis to discover pat-

terns and anti-patterns in existing code [18]–[20], to learn more

about software evolution [21]–[25] and to develop methods for

change and bug prediction [3], [8], [9], [26]. In this context,

tools developed for practical application are not always ideal,

because researchers expect high generalizability [27]–[33] and

replicability [34] from their results, yet the analysis of large

samples using existing methods is hard to automate for a

number of reasons, which we discuss in the following section.

A. Challenges

In the context of software engineering and evolution re-

search, the selection of software projects suited for a particular

investigation and the collection of code metrics are important

steps toward large and replicable case studies. However, re-

searchers need to overcome several technical and practical

obstacles. First and foremost, software analysis for large

projects is costly in terms of time and resources [29], [35],

[36]. Moreover, nowadays software applications are written in

multiple programming languages [15]–[17] and several issues

with studying multi-language software have been identified

by researchers and practitioners alike [15], [17], [37]. It is

extraordinarily hard to conduct generalizable code studies

involving multiple languages and attempts at solving this

problem so far incur even higher performance penalties.

Manual effort. When the goal is to gain a broad overview

on the evolution of many projects, the effort required to set

up and run analyses for each individual project and revision

presents a major problem. Tools which run on compiled ap-

plications are largely unsuitable, because the compiled version

is rarely available for each revision and would need to be

prepared manually. Automated build approaches so far exhibit

limited effectiveness because projects tend to be unique in

terms of the build environment and dependencies needed for

compilation [35], [36], [38]–[40]. Ideally, software evolution

analysis tools should operate automatically for the most part.

Redundant analysis of unchanged source code. The

majority of existing code analysis approaches are not designed

with a multi-revision use-case in mind [15], [17], [37]. They

require one execution per revision, even if each commit makes

only minute changes to the program. Researchers may be able

to take advantage of tools that operate on the file level to

only analyze files that change, but the ratio of changed to

unchanged code within a single file is still very small and

the majority of the analysis will still be redundant. Ideally, a

software evolution analysis tool should operate on the smallest

possible delta between code revisions.

Source data duplication. Most code analysis tools operate

on files and folders [29], [35], [36]. While, even for large
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Fig. 1. Method Count and Class Count for 4 releases of the facebook-csharp-
sdk project.

projects, single revisions remain manageable, checking out

thousands of revisions hinders effective parallelization. Ideally,

analyzing code from code repositories should occur in-place.

Isolation of programming ecosystems. Many code studies

involve only one programming language (e.g., [15], [17],

[24], [28], [30], [31], [37]). Every programming ecosystem

comes with its own set of tools and any data gathering

effort is duplicated with each additional language. Several

successful approaches for performing studies on the evolution

of software projects [21], [25], [41] and bug prediction [26],

[42], [43] limit their applicability to a single programming

language. Ideally, software analysis approaches should be

easily transferable to multiple programming languages.

Mismatch of concepts in different languages. To analyze

code in multiple languages using common tooling, researchers

have devised meta-models as a common representation for

source code [15], [17], [37]. These attempt to tie language-

specific entities and structures to a common representation.

However, each language exhibits unique features, hence accu-

rate mappings are not always obvious and depend on the goals

of each individual study or approach. Ideally, code analysis

tools should genericise over arbitrary structures and cross-

or multi-language analyses should be enabled without having

to adhere to a specific, pre-defined meta-model.

Low-resolution historical data. Given all previous obsta-

cles, the majority of code evolution studies not only use a

small sample of projects in a single language, but also choose

to analyze only a limited number of releases [16], [17], [44].

Considering that modern software development typically sees

several commits per day for any given project [45], [46],

analyzing only a few releases can paint an incomplete picture.

For example, fig. 1 shows the Method Count and Class Count

computed for 4 major releases of the facebook-csharp-sdk

open source project. A preliminary interpretation of the graph

suggests a rather steady rise and fall in the metrics of the

source code as a whole. However, we cannot make any claims

on how the software project evolved on a shorter time scale.

We will revisit this example in our evaluation.

B. Goal and Contributions

To presently conduct large scale code studies over the

full history of many projects involving millions of program

revisions, researchers need to either invest in resources for par-

allelization (e.g., [29]) or spend an excessive amount of time

running analyses (e.g., [20]). Software engineering research is

yet lacking an approach that can capture the entire evolution

of many software projects in different languages quickly and

without excessive manual effort. The goal of this paper is

to provide low-level groundwork towards overcoming these

limitations. Specifically, we condense the challenges outlined

in section I-A into two main research questions:

• RQ1: How can redundancies in multi-revision program

analysis be minimized?

• RQ2: How can we abstract over different programming

languages in the context of high speed code analysis?

Even though these are two distinct problems, imposing the

restrictions of both problems onto a solution requires us to

consider overlaps and mutual exclusions between the two.

For example, performing multi-revision analyses for only one

specific language is a very different goal from constructing

a framework that accelerates code analysis for arbitrary lan-

guages, as it may allow the re-use of language-specific tools

and data structures, such as a compilers and language-specific

code representations. On the other hand, meta-models tend

to be heavy-weight under most circumstances, whereas the

high-speed requirement forces us to find a more light-weight

solution. Ultimately, we believe that a generic solution is of

greater benefit for the scientific community. That said, many

of the techniques we present could be used independently.

Our contributions can be summarized as follows:

1) We develop a novel algorithm for loading and analyzing

a large number of different revisions of a project asyn-

chronously and with minimum redundancy, enabling the

concurrent analysis of thousands of revisions at minimal

marginal cost for each additional revision.

2) We introduce light-weight entity mappings, a novel and

flexible method for easily formulating ad-hoc mappings

between language-specific entities and cross-language

semantic concepts, without the requirement for an actual

translation to a pre-defined meta-model.

3) We provide the research community with an open-source

implementation of our approach, called LISA1 (Lean

Language-Independent Software Analyzer), as well as

a replication package including 8.5 GB worth of fine-

grained historical code measurements2.

II. APPROACH

In the following sections, we describe several novel tech-

niques which vastly reduce the redundancies inherent to ana-

lyzing multiple revisions of a program. This includes a multi-

version graph representation of source code, an asynchronous

parsing and deduplication algorithm and a highly flexible

abstraction that enables the analysis of multiple programming

languages using the same analysis instructions. We combine

these techniques in LISA, although they could be applied inde-

pendently to improve different aspects of existing applications.

1https://bitbucket.org/sealuzh/lisa
2http://tiny.uzh.ch/C0

https://bitbucket.org/sealuzh/lisa
http://tiny.uzh.ch/C0


A. Multi-revision Graph Representation of Source Code

In this section, we describe a condensed graph representa-

tion which allows us to analyze the source code of thousands

of revisions simultaneously.

Graph representation. We define a directed graph as an

ordered pair G = (V,E), consisting of a vertex set V and an

edge set E. Each vertex v ∈ V is a tuple (i,Mv) consisting

of a unique identifier i and a map Mv containing metadata

on the vertex in the form of (k,m) key-value pairs. Every

edge e ∈ E is a tuple (s, d,Me) identified by the source and

destination vertices s and d and can also contain a map Me

with metadata describing the edge. Such a graph is commonly

used to model various representations of a program. For

example, using a language grammar, one can create a concrete

syntax tree (CST) for each file in a project, such that every

vertex v represents a symbolic token in the original source

code, connected to zero or more child vertices, populating

the graph with disconnected trees (one for each file). In this

case, vertices identify by their file name and syntax tree path,

e.g., /src/Main.java/CompilationUnit0 and store

their literal token as metadata, while edges store no metadata.

Similarly, one can build an abstract syntax tree (AST), where

multiple tokens are interpreted and combined into higher-level

entities. In that case, vertices also store additional metadata

depending on the vertex type. For example, an AST vertex

may represent a Java class and store metadata such as its name

and visibility. A graph is also suitable for modeling a compiled

program, in which case relationships between different parts of

the program can be represented by additional edges containing

metadata about the relationship, e.g., whether it describes

attribute access or a method call. The metadata also serves

as a container for additional data created during analysis. For

example, a vertex representing a class may contain a method

count as part of the metadata.

LISA uses Signal/Collect [47], a low-level graph frame-

work, to store arbitrary graphs. Clients implement an interface

with just two members: a definition of suffixes of file names

that the client supports and a parse routine, which receives the

content of a file and an agent for modifying the graph. Thus,

any pre-existing parsers can be used in conjunction with LISA

and any kind of revisional data can be represented. The data

Fig. 2. Contrary to the traditional method of checking out (i.e., reading and
writing) all files in each revision and then parsing the source code from the
filesystem (a), parsing the source code directly from a bare Git repository
requires only a single read operation per relevant file (b).

contained in Mv and Me is hence determined by the kind

of graph that is loaded and by the analyses performed. Our

implementation ships with adaptors for the JDK javac parser

and for ANTLRv4. ANTLR is a parser generator for which

existing grammars can be found for many languages3. Given

an ANTLR grammar, it is possible to create a new LISA-

compatible parser with only a few lines of boilerplate code.

Asynchronous code-loading. Differently from traditional

tools, which check out individual revisions from the ver-

sion control system to act on source code contained in

files and folders, our implementation encourages direct, asyn-

chronous access to the sources of multiple revisions. Our

SourceAgent interface, which we implement for Git, man-

dates the preliminary creation of key-value pairs (p,B) for

each file in any revision of the project, where p identifies a file

by its path and B denotes a chronologically ordered sequence

of sources for the file in different revisions. This way, each

pair can be assigned to one of many parallel workers, which

read the sources for a single file sequentially, while sources for

different files can be read independently from each other. In

Git, this extraction step can be performed in a single traversal

of the Git graph database, without the need to ever check out

a working copy of the code, as illustrated in fig. 2. That said,

this technique will work with any version control system that

allows direct access to individual revisions of files.

This approach has four distinct performance benefits over

the traditional approach: Avoiding the checkout to a working

directory first reduces the number of reads for each relevant

file from 2 to 1, because each blob is only read once during

parsing and never for a checkout, and it reduces the number

of writes from 1 to 0, since blobs are never re-written to the

file system. Second, it avoids the unnecessary checkout of any

other assets which are not even relevant for the analysis. Third,

it allows for the asynchronous, parallelized parsing of many

revisions simultaneously, which is otherwise only possible by

checking out multiple copies of the entire source code to

different locations. Finally, files are only read in revisions

where they underwent actual change.

Multi-revision graph representation. Typically, a single

commit only changes a tiny part of an application. This means

that the graph representations of two adjacent revisions overlap

to a large degree and that most vertices are unchanged for

many consecutive revisions (thousands, in practice). To avoid

creating separate graphs for each revision, we extend our graph

representation such that each vertex tuple (i, R,MvR) carries

an additional set R denoting one or more revision ranges.

A revision range r(s, e) consists of start and end revisions

s and e and indicates in which revisions the vertex exists.

Likewise, the metadata MvR of a vertex now stores metadata

for each revision range that the vertex represents. Edges on the

other hand do not require any special treatment: whether or

not an edge exists in a revision is determined by whether the

two connecting vertices exist. In this paper, we will generally

3For example, https://github.com/antlr/grammars-v4 contains grammar files
for over 60 structured file formats.

https://github.com/antlr/grammars-v4


denote a range as two dash-separated numbers in brackets, e.g.,

a revision range with start 10 and end 15 is denoted as {10-

15}. No information is lost using this graph representation, as

the structure of a single revision can still be identified simply

by selecting only vertices whose revision ranges contain the

desired revision. Even so, it saves a tremendous amount of

space, because the majority of the graph remains unchanged

for much of the entire evolution of a project.

B. Low Redundancy Graph and Metadata

The interface provided by LISA for clients to populate

the graph is transparent with regard to this multi-revision

representation. When a client reads a file for a particular

revision and adds a vertex with an identifier i to the graph,

LISA transparently handles the case where a vertex with the

same identifier already exists, and adds or extends a revision

range inside the existing vertex to accommodate the new

revision. This has several important consequences:

1) A vertex may contain differing metadata in different

revisions. A simple example for this are literal tokens:

There may be an “Integer” syntax vertex, whose metadata

contains the number 5 as a literal in one revision, but 7 in

another. In this case, two separate, adjacent ranges with

different metadata are necessary to accurately represent

both revisions using the same vertex.

2) If the same file was parsed in two adjacent revisions (e.g.,

5 and 6), then it makes sense to merge the ranges {5-5}
and {6-6} into a common range {5-6} for all vertices

that underwent no change.

3) If a file has not undergone any changes in a revision, then,

as per the previous section, it will not be parsed, leading

to erroneous gaps in the revision ranges of a vertex. For

example, if a file underwent changes in revisions 5 and

10, it will not be parsed in revisions 6 to 9, resulting in

two ranges {5-5} and {10-10}. But the syntax nodes are

actually present in-between these revisions, necessitating

a range extension for a final configuration of {5-9}{10-

10}, or even {5-10}, if the two parsed revisions contain

the same metadata in the given vertex.

4) Finally, the metadata of a vertex for two adjacent revi-

sions may also exhibit some overlap. Imagine a vertex

representing a method during a computation which cal-

culates the cyclomatic complexity and statement count

of individual entities. Between two adjacent revisions,

the method may have the same name and complexity,

but a different statement count. In this case, two separate

ranges are necessary to describe the vertex, yet most of

the metadata is shared.

In the following section, we describe the data structures and

algorithm used to efficiently build and store the revision-

specific data in such a fashion that neither vertices nor

metadata are unnecessarily duplicated.

Sparse graph loading algorithm. We explain the LISA

range compression, shown in algorithm 1, by following the

evolution of a single syntax tree vertex v of an exemplary

project with just 10 revisions, as illustrated in table I. v is

parsed from a file f which Git stores as a blob for each

revision where it underwent any change. The first row in table I

enumerates the different revisions of the project. The letters

in the second row denote unique metadata configurations that

exist in v. In this example, the node has the same metadata in

revisions 0 to 3, then the node is deleted in revision 4, then

it reappears with different metadata in revisions 6 and then

the metadata is again changed in revisions 8. The third row

indicates whether the file f has been affected by a revision. In

this example, f is parsed in revisions 0, 1, 3, 4, 5, 6 and 8. This

implies that in revisions 2, 7 and 9 there were no changes in f ,

meaning that all vertices that existed in previous revisions (1,

6 and 8) are unchanged and still exist, even if the file wasn’t

re-parsed. In revisions 4 and 5, f was parsed, but v did not

appear in the source code of those revisions.

When a client adds a vertex to the graph and this vertex

already exists, then LISA updates the vertex (UPDATEVERTEX

in algorithm 1) by simply adding another single-revision

range and queuing a range compression task leading up to

the preceding revision. Hence, the range compression itself

also runs asynchronously and “cleans up” behind the parser,

compressing ranges added by the parser. For example, the

parser may already have parsed the first 4 revisions (0 to 3),

meaning that it will have created 3 single-revision ranges {0-

0}, {1-1} and {3-3} in vertex v. Since the metadata of v is

Algorithm 1 LISA range compression algorithm. The ranges
variable is a map from revision ranges to metadata and con-

tains all metadata for a single vertex.← assigns,→ references.

1: procedure UPDATEVERTEX(v, rev,meta)
2: CREATERANGE(v.ranges, rev,meta)
3: queue(COMPRESSRANGES(v.ranges, v.mark, rev−1))

4: procedure CREATERANGE(ranges, rev,meta)
5: new ← ({rev, rev} → meta)
6: ranges← ranges+ new

7: procedure COMPRESSRANGES(ranges,mark, end)
8: if end = null then ⊲ Case 1
9: mark ← ranges.head

10: else
11: next← ranges.get(end+ 1)
12: if mark = null & next = null then ⊲ Case 2
13: doNothing
14: else if mark = null & next 6= null then ⊲ Case 3
15: mark ← next
16: else if mark 6= null & next = null then ⊲ Case 4
17: extended← ({mark.start, end} → mark.meta)
18: ranges← ranges−mark + extended
19: mark ← null
20: else if mark 6= null & next 6= null then
21: if mark.meta = next.meta then ⊲ Case 5
22: merged ← ({mark.start, next.end} →

mark.meta)
23: ranges← ranges−mark − next+merged
24: mark ← merged
25: else if mark.meta 6= next.meta then ⊲ Case 6
26: extended← ({mark.start, end} → mark.meta)
27: ranges← ranges−mark + extended
28: mark ← next



TABLE I
METADATA OF AN EXEMPLARY GRAPH VERTEX.

Revision 0 1 2 3 4 5 6 7 8 9

Content A A A A B B C C

Touched

Revision 0 1 2 3 4 5 6 7 8 9 End Mark Case

0
A

-
-

1
A {0-0}

1
A A

0
{0-0}

5
A {0-1}

2 A {0-1}

3
A A

2
{0-1}

5
A {0-3}

4
A

3
{0-3}

4
A -

5
A

4
-

2
A -

6
A B

5
-

3
A B {6-6}

7 A B {6-6}

8
A B C

7
{6-6}

6
A B C {8-8}

9 A B C {8-8}

final
A B C

9
{8-8}

4
A B C -

the same in all these revisions, including revision 2, where no

changes were made to the file at all, the goal of the algorithm

is to combine these ranges into a single range {0-3}.

We now step through the execution of the compression

algorithm for each revision of the example vertex. Note that for

each possible case in the algorithm, table I contains the case

number in the last column. Also note that “marking” a range

simply means saving a reference to that range as a temporary

property of the vertex. This mark indicates whether a revision

range is “open-ended” in the sense that it may be extended in

the next revision. After parsing revision 0, the compression

algorithm simply needs to mark the first existing range in v
(case 1). After parsing revision 1, it finds a marked range and

an existing range at revision end+1 = 1. It compares the two

ranges, finds that they are equal (case 5), merges them and

marks the resulting range. Revision 2 saw no changes in f ,

so v remains unchanged by the parser. Note however that in

reality, the code represented by v continues to exist, hence the

revision range needs to be extended. This happens in revision

3, where f was modified again. The algorithm finds the

marked range and a range at end+1 = 3 containing the same

metadata, prompting a merge (case 5). In revision 4, there

exists a marked range, but there is no range at end+ 1 = 4.

A merge is not necessary, so it just unmarks the existing

marked range (case 4). In revision 5, there is no marked
range and no next range, so nothing happens (case 2). This

simply means that even though f had undergone changes, they

did not affect v, which does not exist in end or in next. In

revision 6, there is no marked range, but there is a next
range, so it is marked (case 3). Revision 7 saw no changes.

In revision 8, there is a marked range and a next range, but

they are not equal, so the marked range is extended until end
and then the next range is marked instead (case 6). Revision

9 saw no changes. In the end, a final pass is made through all

vertices in the graph, extending any marked ranges to include

the last revision. This is necessary because these marked
ranges previously ended with the revision where the file was

last parsed, although these vertices actually exist until the end

of the project history. In this example, the marked range is

extended to include the last revision (case 4).

As a result of the compression, instead of storing metadata

for each revision (eight in case of v) only three ranges with

different metadata remain (visible in the final row of table I).

In practice, revision ranges tend to comprise a much larger

number of revisions. If a file is added to a project in an early

revision, it can be that the majority of vertices within exhibit

the same metadata for thousands of subsequent revisions.

Range splitting and shared metadata. After loading the

graph, the initial metadata for a vertex will likely be contained

in a small number of revision ranges. However, once the

graph is being analyzed (as detailed in section II-C), the

metadata in different ranges may start to diverge to a certain

degree. For example, a “Class” node might exist in revisions

5 to 280 resulting in a single all-encompassing revision range

{5-280}, but its attribute count could be computed as 4 in

the first 100 revisions and as 7 in the remaining revisions.

This means that the revision range {5-280} needs to be

split into {5-105}{106-280}, and that separate metadata needs

to be stored for those two revision ranges. LISA performs

these splits dynamically during the computation whenever

necessary. However, storing completely separate metadata for

each revision range would again introduce significant data

duplication: in our current example, only the attribute count

will be different for the two ranges. Hence, we store metadata

in referentially transparent, immutable data structures called

case classes, which are essentially ‘copy-on-write’, meaning

that while two distinct metadata containers exist after the split,

all their data is actually shared, except for the attribute count.

C. Multi-revision Code Analysis

Signal/Collect, the graph framework used in LISA, operates

under a computational paradigm where vertices in the graph

communicate to form an emergent computation. More specif-

ically, each vertex can signal other vertices on outgoing edges

to transmit arbitrary messages, collect incoming signals and

modify its own state. We ask the reader to refer to [47] for an

in-depth description of this paradigm.

To formulate analyses in LISA, the user defines a data

structure for analysis data (which LISA integrates into the

metadata of a vertex), a start function governing how and

where in the graph the first signals are emitted for this partic-

ular analysis, and an onCollect function, which determines

how incoming signals are processed. Both these functions

are side effect free and return ‘new’ metadata to reflect

changes (however, referential transparency of case classes in

Scala prevents unnecessary data duplication). An exemplary

implementation for calculating cyclomatic complexity [48] can

be found online4. The data structure used by this analysis

(defined on line 15) contains a boolean to determine whether

4http://tiny.uzh.ch/ED

http://tiny.uzh.ch/ED


Listing 1
DEMO.JAVA

1 public class Demo {

2 public void run() {

3 for (int i = 1; i < 100; i++) {

4 if (i % 3 == 0 || i % 5 == 0) {

5 System.out.println(i);

6 }

7 }

8 }

9 }

or not to persist the computed value for a given vertex and

a single integer value to hold the actual complexity value.

The start function causes an MccPacket to be sent out

from each leaf vertex in the graph (lines 19-23). The value

contained in the packet is 1 by default, or 2 if the leaf

vertex itself is already a node that increases the complexity

of the program. In regular programs, having a leaf node

contribute to the complexity is impossible (e.g., there cannot

be an ‘If’ statement with no truth check beneath it in the

tree), but as we will see in the next section, LISA filters

irrelevant nodes during parsing, such that the entire tree below

a branching statement may be omitted from the graph. The

onCollect function accumulates incoming values according

to the definition of cyclomatic complexity (line 28) and once

all child values have been received, it sends the complexity

of the local vertex to its parent (closure starting at line 32).

A transient value is computed and stored in the metadata of

each vertex in the graph as a consequence of this algorithm, but

the analyst would likely want to know the complexity only for

specific kinds of nodes. The determination, whether the mcc

value for a given vertex should be persisted is done on line

34, where the persist property is set true if the vertex is

a class, method or file. The user could easily add other vertex

types (e.g., blocks or closures) if needed.

Once an analysis is completed, the analysis results are per-

sisted using a user-provided persistence strategy, for example

to store values in a database for further processing. LISA ships

with a persistor that will dump all data, for which persistence

has been enabled, into a sparse CSV file, where each line

corresponds to a vertex in a given range and each column

corresponds to one kind of data. Where data has not been

computed for a specific vertex, the cell remains empty.

Since the computations are executed directly on the range-

compressed graph, calculations are executed only once for a

revision range of any particular vertex and outgoing signals are

also attached to a revision range. The revision range of a vertex

may be split, as described in section II-A, if an incoming signal

concerns a partial range of the receiving vertex. In this fashion,

the number of computations necessary to compute metrics for

individual commits is vastly reduced.

D. Multi-language Analysis Genericism

Programming languages share certain concepts and many

code-related analyses can be expressed for different languages.

And while the concrete syntax tree representation can vary

greatly for different languages and parsers, the relative struc-

ture can be fairly similar. For example, when comparing the

Listing 2
A VERTEX LABEL MAPPING FOR JAVA.

1 object AntlrJavaParseTree extends Domain {

2 override val mapping = Map(

3 'method -> Set("MethodDeclaration"),

4 'branch -> Set("IfStatement", "ForStatement",

5 "WhileStatement", "CatchClause",

6 "SwitchLabel", "TryStatement",

7 "DoStatement", "ConditionalExpression")

8 )

9 }

ASTs parsed from a Java and a Python program, the exact

sequence, labeling and nesting of vertices leading from a

root node to the leaf nodes of a method may differ greatly.

However, structural features (where the vertices are located

relative to each other), in the context of code analysis (and

not program compilation) are very similar: A method/function

vertex that has a class vertex as a parent is contained in that

class; or: two ifs on the same level represent 4 possible

paths through the local scope, while one if nested in another

creates only 3 possible paths. This means that we primarily

need to explicitly capture entities, while retaining the structure

as offered by the parser. Furthermore, and especially in the

context of large scale code analysis, the representation of

the source code should capture only the minimum necessary

for a particular analysis. Consider we wanted to compute the

cyclomatic complexity of the example in listing 1. It contains

140 AST vertices when parsed using ANTLR, yet most of

them are entirely irrelevant towards the complexity metric.

The solution we propose to solve this problem is notably

simple: It requires a one-way many-to-many relation T → L
from the domain of entity types T required for a particular

analysis, to the co-domain of parser-specific labels L used

by a particular language. In LISA, this relation is simply

expressed as a map from symbols to sets of labels. Listing 2

shows an example which is sufficient for the complexity anal-

ysis, which notably doesn not contain any language-specific

labels. It specifies how the entities mentioned by the analysis

('method and 'branch) can be identified in Java. Note that

the analysis also checks for other potential symbols ('class

and 'unit), but specifying these is not mandatory. Applied

to the Demo program, this mapping populates the graph with

a mere 5 vertices connected in a straight line: one vertex each

for the file Demo.java itself, the method run, the for loop,

the if statement and the || operator. All other vertices (such

as numbers and other operators) are automatically ignored at

the parsing step. When applying MccAnalysis to this graph,

the result (a complexity of 4, which is persisted only for the

vertex matching the 'method symbol) is still correct.

Note that it is still possible to write language-specific

analyses by specifying the explicit label used by the parser

instead of a mapped symbol, in case a language-specific

structure needs to be analyzed.

E. Approach Summary

Compared to traditional approaches, LISA avoids redundan-

cies at every juncture of multi-version analysis: It analyzes

code taken directly from the Git database and only re-reads



files containing changes, while user-defined mappings vastly

reduce the number of vertices required to perform analyses on

the loaded source code. Both code and metadata present in

multiple revisions is stored only once and the computations

themselves are also executed only once for each revision

range at the vertex/subtree level, avoiding the expensive re-

computation of data at the file level. Finally, the computed

data is selectively persisted to keep the results manageable

for further analysis. Furthermore, the user-defined mappings

not only reduce the size of the graph, but also make analyses

transferable to other languages, which LISA can easily support

via existing ANTLR grammars or through dedicated parsers.

III. EVALUATION

In RQ1, we ask how redundancy can be avoided when

analyzing multiple revisions of a project. Our solution, as

summarized in section II-E, combines multiple novel tech-

niques and we want to know how effective they are. For

RQ2, we want to know if we can analyze code from multiple

programming languages using the same underlying framework

and analysis formulations. We want to gauge the practicality

of light-weight mappings, our proposed solution. We frame

our evaluation in a practical research context, by attempting

to answer a fundamental question with regard to software

evolution analysis: How many releases of a project have to

be analyzed to gain an accurate picture of its evolution?

Our evaluation is structured as follows. In section III-A, we

conduct a large-scale study over the full history of 300 projects

written in 3 different languages. Based on this, we discuss the

performance of our approach and the effectiveness of its re-

dundancy removal techniques in section III-B and also discuss

the practicality of light-weight mappings. In section III-C, we

present the results of our artifact study. Finally, we discuss

threats to our study in section III-D.

We provide a comprehensive replication package, including

all scripts used in the evaluation as well as all the resulting

data (8.5 GB worth of analysis results) online5.

A. Code Study

Using research reports and statistics on popular Java and

JavaScript projects [49], [50] as well as GitHub’s “most

starred” query option, we selected 100 Java, C# and JavaScript

projects, ignoring projects that do not contain an application

per se (such as tutorials and demo projects) and preferring

projects with a larger number of commits (for a median of

2956 commits for Java, 2051 for C# and 1097 for JavaScript).

We proceeded to formulate analyses to compute the number of

classes, methods, method parameters, variables and statements,

the cyclomatic complexity, control flow nesting depth and

number of distinct control flow paths, and to detect the Brain-

Method [51] code smell. We also compute the number of direct

children and total number of vertices beneath each vertex as a

proxy for the size of the code base. We fed LISA with existing

ANTLR grammars for all three languages and proceeded to

5http://tiny.uzh.ch/C0

define suitable mappings to match the entities relevant to our

analyses to the ones used in the ANTLR grammars. Even

though LISA supports analyzing multiple languages within

the same computation, we wanted to observe its performance

characteristics on a language-by-language basis, so that we can

assess the impact of the used parser on overall performance.

We ensured the correctness of the formulated analyses (and

thus the range compression algorithm) by creating a sample

project for each language which contains a large number of

code combinations varying across multiple revisions, manually

calculating the expected code metrics and confirming that they

match the results procured through LISA. Then we ran the tool

on the Git URLs of the 300 projects to compute the metrics

for all revisions connected to the Git HEAD and persisted those

metrics at the file, class and method level.

LISA’s hardware requirements scale with the size of the

project and the number of revisions (or rather the amount of

actual change between revisions). Up to thousands of revisions

and 100’000s of LOC, commodity hardware with 4-16GB of

RAM is sufficient. However, analyzing big projects, such as

Mono, containing over 100k revisions and over 5M LOC,

requires more RAM. To accomodate the analysis of such

projects, we used a Google Compute Engine instance with

24 cores and 158GB of RAM to analyze all projects.

B. Evaluation of the Approach

The figures shown in table II indicates that the redundancy

reduction techniques we apply are extremely effective. We

briefly revisit the challenges outlined in section I-A:

Source data duplication. LISA reads directly from bare

Git. Even though this may seem a simple matter, to our

knowledge, no existing code analysis tool takes advantage of

this technique. Not only does it avoid checkouts, which would

be costly both in terms of time and storage space, but it also

enables LISA to parse the source code of many releases in

parallel, further speeding up the analysis.

Redundant analysis of unchanged code. LISA only reads

the bare minimum necessary to still capture a complete repre-

sentation for analysis. It’s crucial to note that table II shows the

number of files and lines actually parsed by LISA, which are

orders of magnitude smaller than the volume contained in all

analyzed releases added together. To give a concrete example:

analyzing all 106 160 revisions of the mono project, LISA

only had to read 160 422 521 lines of code. This is merely 40

times the number of lines of code contained in the most recent

revision alone (3 914 887 LOC). Likewise, the 2.5 billion lines

of code LISA parsed also represent only a fraction of the total

code volume actually contained in all revisions of all projects.

Manual effort. Formulating the analyses (198 lines of Scala

for the 11 metrics in our study) constitutes the lion share in

terms of manual effort, while writing the language mappings is

a matter of minutes. One simply reads the grammar and selects

the right labels for different entities. To analyze a project,

LISA only requires the Git URL. Since it acts solely on source

code, the analyst need not bother with libraries, build tools

and other hindrances. Thus, LISA allows for short turn-around

http://tiny.uzh.ch/C0


TABLE II
AMOUNT OF CODE ANALYZED AND ANALYSIS DURATIONS IN THE STUDY.

Java C# JavaScript

Projects 100 100 55

Revisions

analyzed

total 646 261 489 764 204 301

smallest 1715 2394 3234

largest 429 392 5106 160 612 038

median 2 956 2 051 1 097

Files

parsed

total 3 235 852 3 234 178 507 612

smallest 7946 2964 810

largest 9300 185 10312 229 1161 843

median 11 171 10 685 2 198

Lines

read

total 1 370 998 072 961 974 773 194 758 719

smallest 12328 118 1355 971 8212

largest 9194 875 095 5160 422 521 618 194 261

median 3 406 857 2 235 404 669 704

Runtime

parsing 13:25h 52:12h 29:09h

analysis 1:35h 2:20h 1:00h

totalA 18:43h 57:20h 30:33h

shortestA 710s 139s 159s

longestA 92:44h 58:43h 165:56h

averageA 11:14min 34:24min 18:20min

medianA 2:15min 4:54min 3:43min

total avg./rev.B 84ms 401ms 531ms

median avg./rev.B 30ms 116ms 166ms
A) Including time spent cloning repositories and persisting results.
B) Excluding time spent cloning repositories and persisting results.
1javaassist 2shadowsocks-windows 3hain 4cloudstack 5mono
6ember.js 7commons-email 8awesome-react 9xtext 10ravendb 11babel
12Android-Universal-Image-Loader 13Fody 15debug 16d3

times when doing exploratory research but also enables the

analysis of large samples without excessive wait times.

Low-resolution historical data. Analyzing all 1 341 802

revisions, capturing the detailed history of 300 projects using

LISA took 41/2 days. To put this into perspective, Tufano et

al. report that in a recent study, the computation of metrics

and code smells in 579 671 revisions of 200 projects required

8 weeks on a 28-core machine [20]. We argue that tools like

LISA can enable new kinds of studies, which are currently

not feasible because of the tremendous effort involved in

creating high-resolution historical code measurements, and we

demonstrate such a study in the following section.

Isolation of programming ecosystems. We demonstrate

that for the computation of basic metrics (which are known

to correlate with more advanced metrics [52], [53]), light-

weight entity mappings and the principle of avoiding explicit

modeling of structure are suitable. Formulating analyses in our

study did not require language-specific instructions. However,

the mapping of some entities may not be entirely obvious: for

example, for JavaScript we mapped the class concept to apply

to root level AST vertices, because there is no convention on

how to represent classes in JavaScript. However, we find light-

weight mappings to work well in practice. LISA comes with

additional mappings for Lua and Python 3.

Performance compared to other tools. A fair one-on-one

comparison to other tools is not feasible, as each tool has a

different feature sets, restrictions and capabilities. In previous

work [32], we compared the performance of a LISA prototype,

which lacked most of the performance-enhancing techniques

discussed in section section II, to two existing analysis tools,

namely inFusion [54] and SOFAS [55] for analyzing the As-

pectJ project. In that comparison, the prototype took 1:31min
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projects.

to analyze a single revision, outperforming SOFAS by a factor

of 9.8 and inFusion by a factor of 4.3. The average time needed

to analyze one revision fell below 2 seconds when analyzing

more than 100 revisions and below 900ms when analyzing

more than 1000 revisions, whereas using the other tools, each

additional revision to be analyzed incurs the same cost.

We can now compare the performance of LISA directly to

the original prototype and by extension, to the tools used in the

original study [32]. Analyzing a single revision of AspectJ, the

prototype spent 1:31min while LISA spent only 37s. Of the

total duration, the prototype spent 31s on parsing and building

the code graph and 60s on the analysis, while LISA spent 22s

and 15s respectively. When analyzing thousands of AspectJ

revisions, the prototype spent 650ms on average per revision,

while LISA spent only 34ms. Of this, the original prototype

spent more than 500ms on parsing and graph building, and

around 80ms on the analysis. LISA on the other hand spent

28ms on parsing and 5.9ms on the analysis. The resulting

average of 34ms per revision is near the median average across

all Java projects, as shown at the bottom of in table II.

The parsing speed improvement can be attributed both to

the filtered parsing, enabled by the light-weight mappings

(section II-D), and to the asynchronous multi-revision parsing

algorithm (section II-A). The original prototype stored the

entire parse trees as provided by the parser and could only

parse files for one revision at a time. The analysis speed

improvement follows naturally from the filtered parsing, as the

signals need to travel much shorter distances within the graph.

This demonstrates how the chosen meta-model (or rather, lack

thereof) has a significant impact on the overall performance.

C. Sampling Revisions in SE Research

An often recorded threat in existing code studies is the

limited number of releases analyzed. While our tool can

perform certain analyses for every commit, we hypothesize

that there exists an optimal sampling interval which captures

the evolution of a project with sufficient accuracy, such that

slower, yet more feature-rich tools can be applied more effec-

tively on a limited sample of revisions. However, to do so, we

first need to identify this sampling interval.

The major releases of facebook-csharp-sdk are

shown, again, in fig. 4, but with the fine-grained data obtained

upon analyzing all 1611 commits using LISA overlaid. Even

from the naked eye, it’s clear that analyzing only major

releases does not give a good approximation of the overall
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evolution of the project. Measuring the error between the

assumed evolution based on sampling only major releases and

the actual evolution in terms of the difference of the Area

under the Curve (AUC) reveals a discrepancy upward of 30%.

To generalize this problem and to find an appropriate

sampling interval, we apply the following procedure to each

project. For 5 metrics from our data set (shown in fig. 5),

we create two series: the first contains all, while the second

contains s equally spaced commits from the entire history of

the project, using an initial value of s = 4. We calculate the

AUC of the high-resolution series AUCreal as well as the

sparse series AUCsampled and calculate the absolute differ-

ence AUCerror = |AUCreal − AUCsampled|. We quantify

the mismatch as e = AUCerror/AUCreal. We then keep

incrementing s by 1 until we find the s for which e ≤ 0.05.

The sampling interval is therefore given by i = c/s where

c is the number of commits. We repeat the experiment for

targets e ≤ 0.01 and e ≤ 0.1 to see how sensitive the error

is to different sampling intervals. The results for e ≤ 0.05 are

visualized in fig. 5. We share the following insights:

• The appropriate sampling interval i varies for different

programming languages. At e ≤ 0.05 the median i for

Java projects is near 600, while for C#, it is close to 400.

For JavaScript, even lower i are necessary.

• For Java and C#, i is stable across all metrics, while for

JavaScript, i fluctuates depending on the metric.

• i can vary significantly across projects. Sampling every

5000th commit can still be sufficient in some Java and

C# projects, while other projects require i ≤ 50.

• With e ≤ 0.01, the median i drops significantly, to around

80 for Java, 40 for C# and below 5 for JavaScript. With

e ≤ 0.10 it reaches ∼800 for Java, ∼500 for C# and ∼200

for JavaScript.

Software evolution studies need to carefully consider the

number of revisions analyzed in order to maintain validity. The

decision depends on the language, but also on the acceptable

error margin for a particular study. A safe recommendation,

at least given a large enough number of projects in a study, is

to analyze every 250th commit for Java, every 150th commit

for C# and every 25th for JavaScript projects. Finally, even

when using sampling, projects with thousands of commits still

require a large number of commits to be analyzed for an

accurate description of their evolution.
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Fig. 5. Maximum sampling interval accurately capturing the evolution within
a 5% margin of error based on 100 projects for each of 3 languages.

D. Threats to Validity

Threats to construct validity concern the relationship

between theory and observation. We ensure the correctness

of analyses performed by LISA in a controlled environment

by manually calculating metrics on exemplary multi-revision

projects. This human judgement may be error-prone, but we

tried to alleviate this issue by double-checking the results.

Threats to external validity concern the generalizability of

our findings. One threat is the choice of projects used in our

experimentation. To mitigate this issue we selected a large

sample projects for each programming language and based

our choice on their popularity according to multiple sources.

Furthermore, all projects in our sample are open-source,

and closed-source projects may generally undergo a different

evolution. To extend the generality of our findings, we may

replicate our study for additional projects and programming

languages in future research.

IV. LIMITATIONS AND FUTURE WORK

Attempting to increase the performance of software analysis

tools is not trivial and inescapably requires a trade-off between

comprehensiveness of analyses and the speed of execution.

Any sort of code analysis can be formulated in LISA, but con-

sidering it acts exclusively on source code (without access to

a compiler), analyses which concern a single file (as opposed

to cross-file analyses) are easiest to formulate. One could

argue, that time used to reformulate analyses in LISA could be

better spent using language-specific tools. However, other tools

cannot easily take advantage of the zero-redundancy approach

to multi-revision analysis of LISA. That said, the LISA graph

can hold arbitrary data, as outlined in section II-A, so it would

also be possible to, for example, integrate a Java class loader

to load multiple pre-compiled versions of a program into LISA

and perform much more complex analyses, such as coupling

or control flow analyses, on the resulting multi-revision graph.

A technical limitation arises from how LISA identifies ver-

tices in the graph. The identifier of a vertex always corresponds

to the file and syntax tree location of a node. Hence, renaming

a file constitutes the creation of a new file, whose code will

be represented using new vertices, even if nothing inside

the file has changed. Likewise, if the order of methods in

a class is changed, the subtrees will be partially re-created.

This problem is hard to solve in general [56], [57], even more

so in a language-independent manner, because an alternative



identification scheme would be required, probably involving

the actual names of entities within the file. Note however

that this limitation only concerns the redundancy reduction

in LISA. The actual analyses are robust with regard to these

kinds of changes and their results are unaffected. If an analyst

wishes to keep track of language-specific entities, she can

simply formulate an analysis to connect all vertices belonging

to the same program entity via additional edges.

It takes much more time to parse the source code than it

takes to analyze it. It may be smart to find a way of persisting

(and occasionally updating) the parsed graph such that when

an analyst wants to run a computation, she does not need

to re-parse everything. However, this has the downside that

she must either decide on a rigid entity mapping or disable

filtered parsing altogether, such that the entire syntax trees

are represented in the graph (similarly to how BOA stores

ASTs [29]), which in turn inflates memory requirements and

computational load.

V. RELATED WORK

In the past, code analysis frameworks had a strong focus

on integrating different resources (like version control and bug

trackers) as well as enabling replicable end-to-end analyses in

the first place [28], [41], [55], [60]. More recently, efforts

toward large-scale, high-performance analyses have yielded

frameworks such as BOA [29], which utilizes a Hadoop cluster

to permit the rapid execution of analyses on the metadata of

over 8 million projects. BOA also provides access to parsed

ASTs of numerous Java projects which can be analyzed using

a visitor pattern. LISA, compared to these frameworks, is a lot

more low-level: it is highly generic and provides algorithms to

accelerate source code analysis, but does not target any partic-

ular infrastructure, language or type of analysis. Researchers

can integrate it like any other JVM-compatible library to be

used in a variety of scenarios.

Le et al. present a technique for patch verification across

versioned control flow graphs (CFGs) [61] resembling LISA’s

multi-revision code representation of ASTs, but it was de-

signed for representing a few dozen revisions, not thousands.

Similarily, TypeChef [62] uses a variability-aware parser to

analyze multiple configurations of C programs (i.e., #ifdefs)

in a shared graph. Both approaches have very different goals

and are designed for problems on a much smaller scale

compared to LISA.

Comparing our light-weight mappings to existing meta-

models, the most significant difference is that the latter always

imply a transformation of a source data structure (e.g., an

AST) to a concrete instance of a meta-model. Meta-models

such as FAMIX [63], KDM [64] or ASTM [65] as well as

general-purpose models such as RSF [66] or GXL [67] model

not only the kinds of nodes, but also their relationships and

structure explicitely. The same is true for the cross-language

model developed by Strein et al. [14] and M3 [68], which is

specifically designed for use with Rascal Metaprogramming

Language [69] and which also includes non-code concepts

such as physical and logical source locations. Contrary to

this, the mappings in LISA only determine the types of source

nodes which are loaded into the graph. The structure of the

graph, however, will be identical to the original structure pro-

vided by the parser, minus any nodes which are not mapped. It

is only in the context of a particular analysis that the mappings

of individual nodes gain meaning. As such, our light-weight

mappings can be considered a view onto an existing graph

structure, rather than a meta-model. Furthermore, code models

typically come with predefined entity types and relationships,

whereas our light-weight mappings are formulated in the

context of a particular analysis. Tichelaar et al., the makers of

FAMIX, note that any code meta-model represents a trade-off

between being too coarse-grained to be useful for a wide range

of problems and being to fine-grained to remain sufficiently

language-independent [63]. In this regard, LISA leaves it to

the analyst to decide the level of coarseness.

VI. CONCLUSION

We present several distinct redundancy removal techniques

and demonstrate that in combination, they enable the com-

paratively rapid analysis of code contained 100 000s of com-

mits. After formulating a particular analysis, the selection of

projects, the creation of language mappings and the automated

execution of analyses in our open-source tool, LISA, are

straightforward and enable the quick extraction of fine-grained

software evolution data from existing source code. We also

present the idea of using light-weight mappings instead of

traditional meta-models for static, structural analyses of code

written in different languages. The light-weight mappings

not only represent a simple, analysis-specific bridge between

different languages, but they also play an important role in

improving LISA’s performance, as they enable the filtering

of unnecessary source data without sacrificing knowledge

relevant to analyses. Our evaluation on a large sample of

projects allowed us to observe that code in different pro-

gramming languages evolves differently and that an accurate

representation of their evolution is possible only with a large

enough number of sampled commits.

LISA fills a unique niche in the landscape of software

analysis tools, occupying the space between language-specific

tooling used for the in-depth analysis of individual projects

and releases, and traditional software repository mining, where

code analysis is typically restricted to merely counting files

and lines of code. The techniques discussed in this paper could

be adapted for existing solutions individually, but LISA also

offers clean and easy-to-implement interfaces for additional

sources (i.e. version control systems), parsers and storage

methods.
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