&Y

2\ Universityo

Zurich™

i zh
u dad
R:);\jirasrl\ Caarlos aw

Onward! 2018

Boston Park Plaza Hotel

Boston, Massachusetts, United States
07 November 2018

On the Usage of Pythonic Idioms

Carol V. Alexandru?, José |. Merchante?, Sebastiano Panichella':3
Sebastian Proksch?, Harald C. Gall*, Gregorio Robles?

1Software Evolution and Architecture Lab, University of Zurich, Switzerland
{alexandru,proksch,gall} @ifi.uzh.ch

2Grupo de Sistemas y Comunicaciones, Universidad Rey Juan Carlos, Spain
ji.-merchante@alumnos.urjc.es, grex@gsyc.urjc.es

3Service Prototype Lab, Zurich University of Applied Sciences, Switzerland
panc@zhaw.ch

|

Y -

Carol V. Sebastiano Sebastian Harald C.
Alexandru Panichella Proksch

Gregorio
Merchante Robles

N\ - -
e 1S r? —

Things to know about Python

Things to know about Python

* (Created by Guido van Rossum

Things to know about Python

* (Created by Guido van Rossum

— He is (was) the "Benevolent Dictator for Life”

— Makes the final decisions when necessary

Things to know about Python

* (Created by Guido van Rossum

— He is (was) the "Benevolent Dictator for Life”

— Makes the final decisions when necessary
* Strong principles

- The "Zen of Python” >>> import this

Things to know about Python

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse 1s better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

AT +hmanimnbh mnrascrFa 03134+ bastFe mirva Favu

Things to know about Python

* (Created by Guido van Rossum
— He is (was) the "Benevolent Dictator for Life”
— Makes the final decisions when necessary

* Strong principles
- The "Zen of Python” >>> import this

— Python Enhancement Proposals (PEPs)

Things to know about Python

* (Created by Guido van Rossum

— He is (was) the "Benevolent Dictator for Life”

— Makes the final decisions when necessary
* Strong principles

- The "Zen of Python” >>> import this
| — Python Enhancement Proposals (PEPs)

| j * Widespread adoption across many fields

Pythonic appears to be 'a thing'

| PYTHON rl =%

ITRICKS

#irc
QY

= stackoverflow

Pythonic appears to be 'a thing'

| PYTHON rl wairs| <]

: TRICKS

A O
*! THE BOOK
("]
E:
S | ABuffet il
= of Awesome \ 4 2
Features -— s
A X
AN

\
=" stackoverflow

A simple question

How do | check if a list is empty?

For example, if passed the following:

2896 a=1]

How do | check to see if a is empty?

python list is-empty

Top Answer claims to be “pythonic”...

if not a:
print("List is empty")
4119

Using the implicit booleanness of the empty list is quite [JEEHRIE.

share improve this answer edited Apr 27 '17 at 2:52

...but 100s of people seem sceptical

if not a:
print("List is empty")

4119
Using the implicit booleanness of the empty list is quite [JEEHRIE.

share improve this answer edited Apr 27 '17 at 2:52

Playing devil's advocate. | don't understand why this idiom is considered
SAIERIE. 'Explicit is better then implicit', correct? This check doesn't
seem very explicit about what is is checking. — James McMahon

/0

“Pythonic” because of the style guide (PEP 8)

Appeal to Authority

PEP 8, the official Python style guide for Python code in Python's standard
library, asserts:

For sequences, (strings, lists, tuples), use the fact that empty sequences
are false.

Yes: if not seq:
if seq:

No: 1f len(seq):
1f not len(seq):

“Pythonic” because of performance

Doing what's usually pays off in performance:

Does it pay off? (Note that less time to perform an equivalent operation is
better:)

>>> import timeit

>>> min(timeit.repeat(lambda: len([]) == 0, repeat=100))
0.13775854044661884
>>> min(timeit.repeat(lambda: [] == [], repeat=100))

0.0984637276455409

>>> min(timeit. repeat(lambda: not [], repeat=100))
0.07878462291455435

ldioms and signaling

Patrick's (accepted) answer is right: if not a: is the right way to do it.
Harley Holcombe's answer is right that this is in the PEP 8 style guide. But

what none of the answers explain is why it's a good idea to follow the
idiom—even if you personally find it's not explicit enough or confusing to
Ruby users or whatever.

ldioms and signaling

Patrick's (accepted) answer is right: if not a: is the right way to do it.
Harley Holcombe's answer is right that this is in the PEP 8 style guide. But
what none of the answers explain is why it's a good idea to follow the
idiom—even if you personally find it's not explicit enough or confusing to
Ruby users or whatever.

Python code, and the Python community, has very strong idioms. Following
those idioms makes your code easier to read for anyone experienced in
Python. And when you violate those idioms, that's a strong signal.

And there are exceptions

The "pythonic" way doesn't work:

The "pythonic" way fails with numpy arrays because numpy tries to cast
the array to an array of bool s, and if x tries to evaluate all of those
bool s at once for some kind of aggregate truth value. But this doesn't
make any sense, so you get a ValueError :

>>> X = numpy.array([0,1])

>>> if x: print("x")

ValueError: The truth value of an array with more than one ¢
I ———

Creative use of the word “Pythonic”

The numilielille way

As explained in the scipy FAQ, the correct method in all cases where you
Know you have a numpy array is to use if x.size:

>>> X = numpy.array([0,1])
>>> 1f x.size: print("x")
X

s there a definition for “Pythonic™?

s there a definition for “Pythonic™?

py’[honic:1 <)

Examples Word Origin

adjective

s there a definition for “Pythonic™?

py’[honic:1 <)

Examples Word Origin

adjective
1. of or relating to pythons.

2. similar to a python; pythonlike.

3. gigantic or monstrous.

s there a definition for “Pythonic™?

Pythonic
An idea or piece of code which closely follows the most common idioms of
the Python language, rather than implementing code using concepts
common to other languages. ’ o ’ ’ ’

Pythonic vs. Non-pythonic

numbers from 1 to 999
XS = range(l, 1000)

Pythonic vs. Non-pythonic

numbers from 1 to 999
XS = range(l, 1000)

Non-pythonic
res = []
for index in range(0, len(xs)):
1T xslindex] % 2 == 0:
res.append(xs[index] * 3)

Pythonic vs. Non-pythonic

numbers from 1 to 999
XS = range(l, 1000)

Non-pythonic
res = []
for index in range(0, len(xs)):
1T xslindex] % 2 == 0:
res.append(xs[index] * 3)

Pythonic
res = [x * 3 for x 1n xs 1f X % 2 == 0]

s there a definition for “Pythonic™?

Pythonic
An idea or piece of code which closely follows the most common idioms of
the Python language, rather than implementing code using concepts
common to other languages.

So it's “Using Python-specific syntax and concepts’, right?

But what do developers believe?

Let's ask a few developers

Interviews done
* in Person
e at a Python conference
* in Spain
e using open questions

Let's ask a few developers

Python exp. (years) Current employment

6 DevOps Eng.

16 Softw. Consultant, Python Trainer

4 Chief Data Scientist

Interviews done 3 SecDevOps Backend Eng.
e in Person 11 Researcher
 at a Python conference >6 Director of Eng.
* in Spain 6 Software Developer
 using open questions 2 Software Developer
>10 CTO

2-3 Student

3 Chief Data Scientist

1 Software Developer

9 Infrastructure Automation Eng.

What does Pythonic mean?

What does Pythonic mean?

“elegant and readable code”

“makes code easier to
“boosts readability and understand and maintain”

performance”

What does Pythonic mean?

“elegant and readable code”

“makes code easier to
“boosts readability and understand and maintain”

performance”

“using features provided
by the language or
standard library”

What does Pythonic mean?

“elegant and readable code”

“makes code easier to

“boosts readability and understand and maintain”
performance”
" “using features provided
simply the most by the language or
accepted way of writing ctsndard library”
python”

Using Python idioms != Pythonic

While there are many idioms in Python, using them does not mean

that you're writing pythonic code. Sometimes, idioms make the code
less readable, or more complicated.

Using Python idioms != Pythonic

While there are many idioms in Python, using them does not mean
that you’re writing pythonic code. Sometimes, idioms make the code
less readable, or more complicated.

— Using idioms != Pythonic code

— Using idioms != always more readable

Novice vs. Pro

S“1 N/
Novice: v’ Pro:

— Better style — Using built-in functionality

- Fewer lines of code — Efficient execution

Novice vs. Pro

S“1 N/
Novice: v’ Pro:

— Better style — Using built-in functionality

- Fewer lines of code — Efficient execution

- Using idioms — Writing elegant code

Novice vs. Pro

Novice: O’ Pro:

— Better style — Using built-in functionality
— Fewer lines of code — Efficient execution
- Using idioms — Writing elegant code

— Simpler interpretation — Less concrete interpretation

Learning 'Pythonic'?

Learning 'Pythonic'?

“StackOverflow shows you multiple points of
view of people, and you always learn.”

Learning 'Pythonic'?

“StackOverflow shows you multiple points of
view of people, and you always learn.”

“reading code in repositories of other projects”

“saw them in documentation”

Learning 'Pythonic'?

“StackOverflow shows you multiple points of
view of people, and you always learn.”

“reading code in repositories of other projects”

“saw them in documentation”

“from colleagues
during code review”

Learning 'Pythonic'?

“StackOverflow shows you multiple points of
view of people, and you always learn.”

“reading code in repositories of other projects”

“saw them in documentation” “My code became more
pythonic year after year”

“from colleagues
during code review”

“Becoming a pythonic programmer takes time”

Learning 'Pythonic'?

“StackOverflow shows you multiple points of
view of people, and you always learn.”

“reading code in repositories of other projects”

“saw them in documentation” “My code became more
pythonic year after year”

“from colleagues

during code review” “Becoming a pythonic programmer takes time”

— Pythonic not taught in books or lectures

— Seems to creep in with experience

Do you care? Do your peers care?

Do you care? Do your peers care?

“Pythonic code is positively
viewed but not required”

Do you care? Do your peers care?

“Pythonic code is positively
viewed but not required”

“If you're a novice Python programmer,
better focus on general programming skills”

Do you care? Do your peers care?

“Pythonic code is positively

viewed but not required” “Pythonic idioms can at least
be used to measure a

developer’s knowledge.”

“If you're a novice Python programmer,
better focus on general programming skills”

Do you care? Do your peers care?

“Pythonic code is positively

viewed but not required” “Pythonic idioms can at least
be used to measure a

“If you're a novice Python programmer, developer’s knowledge.”

better focus on general programming skills”

“If | learn a new idiom | add it to my toolbox and then when | touch
something, | modify it and leave it better, but it’s not an obsession.

Do you care? Do your peers care?

“Pythonic code is positively

viewed but not required” “Pythonic idioms can at least
be used to measure a

“If you're a novice Python programmer, developer’s knowledge.”

better focus on general programming skills”

“If | learn a new idiom | add it to my toolbox and then when | touch
something, | modify it and leave it better, but it’s not an obsession.

— Pythonic important, but not formally

— Pythonic signals expertise and garners respect

A catalogue of Pythonic Idioms

A catalogue of Pythonic Idioms

* Published online at http://pythonic.libresoft.info/catalogue

— including examples, references and benchmarks

A catalogue of Pythonic Idioms

* Published online at http://pythonic.libresoft.info/catalogue
— including examples, references and benchmarks
* Compiled from

— Several books (on learning and applying Python)

— Online statements by influential and renowned Python developers

A catalogue of Pythonic Idioms

* Published online at http://pythonic.libresoft.info/catalogue
— including examples, references and benchmarks
* Compiled from

— Several books (on learning and applying Python)

— Online statements by influential and renowned Python developers
* (Classified into “performance” and “readability”

— performance measured using benchmarks

A catalogue of Pythonic Idioms

Dict comprehensions Readability Performance

Find idioms Is an easy and elegant way to construct a dictionary. Is a similar case as list comprehensions
Dict comprehension l dict_compr = {k: k**2 for k in range(4)}
Decorator .
No Pythonic
Magic methods
d={}
Finally block for k in range(10000):
dlk] = k**2

With statement

Pythonic way

enumerate

dict_compr = {k: k**2 for k in range(10000)}
Generators

. It is more readable and also improve the performance:
Generator expressions

No Pythonic

Tags 0.00253295898438 seconds
— # Pythonic
Readabili Performance
Al | Readability | Performance] 5 0018548965454 seconds

Empirical study

Empirical study setup

* Most recent commit in 1000 Python projects from GitHub

— >1mb, sorted by stars, cleaned for books etc., no forks, not archived
— 178,735 files, 38,505,577 lines of code

Empirical study setup

* Most recent commit in 1000 Python projects from GitHub

— >1mb, sorted by stars, cleaned for books etc., no forks, not archived
— 178,735 files, 38,505,577 lines of code

* Analyzed using LISA (http://t.uzh.ch/Fk)

- AST-based detection of all idioms

Empirical study setup

* Most recent commit in 1000 Python projects from GitHub

— >1mb, sorted by stars, cleaned for books etc., no forks, not archived
— 178,735 files, 38,505,577 lines of code

* Analyzed using LISA (http://t.uzh.ch/Fk)
- AST-based detection of all idioms

* Idiom occurences in #projects and total occurence count

Empirical study - a quick look

ldiom

List comprehension
Generator expressions
Dict comprehension

projects (out of 1000)
866
709
146

of occurences
75,466

33,038

796

Empirical study - a quick look

ldiom # projects (out of 1000)
List comprehension 866
Generator expressions 709
Dict comprehension 146

Simple magic methods
Intermediate magic methods
Advanced magic methods

of occurences
75,466

33,038

796

Empirical study - a quick look

Magic methods

__nonzero__ (self)

Defines behavior for when bool() is called on an instance of your class.
Should return True or False, depending on whether you would want to
consider the instance to be True or False.

Empirical study - a quick look

ldiom

List comprehension
Generator expressions

Dict comprehension

Simple magic methods
Intermediate magic methods
Advanced magic methods

projects (out of 1000)
866
709
146
759
417
190

of occurences
75,466

33,038

796

78,376

13,255

2,613

Empirical study - a quick look

ldiom # projects (out of 1000) # of occurences
List comprehension 866 75,466
Generator expressions 709 33,038

Dict comprehension 146 796

Simple magic methods 759 78,376
Intermediate magic methods 417 13,255
Advanced magic methods 190 2,613

— More in-depth research is needed

— Detecting anti-idioms is difficult

What we learned so far

* “Pythonic” is important - somehow

What we learned so far

* “Pythonic” is important - somehow

* "Pythonic” encompasses more than just programming idioms

What we learned so far

* “Pythonic” is important - somehow
* "Pythonic” encompasses more than just programming idioms
* Using “Pythonic idioms”...

— makes you appear more knowledgeable

— alone does not necessarily make your code better or more pythonic

What we learned so far

* “Pythonic” is important - somehow
* "Pythonic” encompasses more than just programming idioms
* Using “Pythonic idioms”...

— makes you appear more knowledgeable

— alone does not necessarily make your code better or more pythonic

* “Pythonic” does not always mean “more readable” for everyone

What we learned so far

* “Pythonic” is important - somehow
* "Pythonic” encompasses more than just programming idioms
* Using “Pythonic idioms”...

— makes you appear more knowledgeable

— alone does not necessarily make your code better or more pythonic

* “Pythonic” does not always mean “more readable” for everyone

* "Pythonic” is not learned systematically

Questions remain...

* Is there something special in the culture of Python?

— The Zen of Python / "one way to do it

— Why are there no words like “Rubyist’, “Javanese” or "C#y"

Questions remain...

* Is there something special in the culture of Python?

— The Zen of Python / "one way to do it

— Why are there no words like “Rubyist’, “Javanese” or "C#y"

* If “Pythonic” is not just syntax and idioms, what is it?

Questions remain...

* Is there something special in the culture of Python?

— The Zen of Python / "one way to do it

— Why are there no words like “Rubyist’, “Javanese” or "C#y"

* If “Pythonic” is not just syntax and idioms, what is it?

* Does “Pythonic” correlate with code quality?

Questions remain...

* Is there something special in the culture of Python?

— The Zen of Python / "one way to do it

— Why are there no words like “Rubyist’, “Javanese” or "C#y"
* If “Pythonic” is not just syntax and idioms, what is it?
* Does “Pythonic” correlate with code quality?

* Is “Pythonic” just a posh mark of pride serving to create a two-tier
society within the Python community?

«»“’o‘P . ° .;.

£ %) Universityof g~ Zh
: op Z o hUZH u Universidad

=57 Zu"c Rey Juan Carlos aw

On the Usage of Pythonic Idioms

Carol V. Alexandru?, José |. Merchante?, Sebastiano Panichella':3
Sebastian Proksch?, Harald C. Gall*, Gregorio Robles?

Read the paper: http://t.uzh.ch/S7
Get the slides: http://t.uzh.ch/Sb
Browse the catalogue: http://pythonic.libresoft.info/catalogue

