
Evo-Clocks: Software Evolution at a Glance
Carol V. Alexandru∗, Sebastian Proksch∗, Pooyan Behnamghader†, Harald C. Gall∗
∗ Software Evolution and Architecture Lab

University of Zurich, Switzerland
{alexandru,proksch,gall}@ifi.uzh.ch

† Center for Systems and Software Engineering
University of Southern California, USA

pbehnamg@usc.edu

Abstract—Understanding the evolution of a project is crucial in
reverse-engineering, auditing and otherwise understanding exist-
ing software. Visualizing how software evolves can be challenging,
as it typically abstracts a multi-dimensional graph structure
where individual components undergo frequent but localized
changes. Existing approaches typically consider either only a
small number of revisions or they focus on one particular
aspect, such as the evolution of code metrics or architecture.
Approaches using a static view with a time axis (such as line
charts) are limited in their expressiveness regarding structure,
and approaches visualizing structure quickly become cluttered
with an increasing number of revisions and components. We
propose a novel trade-off between displaying global structure
over a large time period with reduced accuracy and visualizing
fine-grained changes of individual components with absolute
accuracy. We demonstrate how our approach displays changes by
blending redundant visual features (such as scales or repeating
data points) where they are not expressive. We show how using
this approach to explore software evolution can reveal ephemeral
information when familiarizing oneself with a new project. We
provide a working implementation as an extension to our open-
source framework for fine-grained evolution analysis, LISA.

I. INTRODUCTION

Managing, developing, and maintaining large software projects
is fundamentally challenging due to their size and complexity
and the distribution of knowledge across many team members
and stakeholders. Developers in large projects often only work
on small parts of the software and may be unable to stay aware
of the entire context surrounding the software artifact they
work on. Furthermore, it can be particularly difficult for new
members joining the project, outside contractors, or auditors to
gain a comprehensive overview of the structure and history of
the project in a short time, if relying solely on browsing source
code (e.g., in an IDE), reading commit logs, or a combination
of the two whilst browsing a version control system.

Numerous existing software visualization techniques ad-
dress this challenge one way or another, attempting to visualize
how both individual components and the structure as a whole
evolve over time, typically using one of the two following
methods or using a combination of both. The first option is to
visualize the evolution of software metrics by using a global
time axis, for example, in using line charts or more elaborate
visualizations like the Evolution Matrix by Lanza [1]. In
these cases, multiple (or even all) data points, stretching
the evolution of one or more metrics, are visible at once.
The other option relates to changes in structure and can be
more challenging because software artifacts appear, disappear,
move, and change over time. In this case, the time component
is usually implemented on top of a structural visualization,

such that changes can be played back as an animation, one
time unit at a time, like in interactive variants of “code
cities” [2], [3]. In this case, the observer can only inspect
one revision at a time, but can move forward and backward
in time to investigate the evolution.

While both these approaches can be useful in certain
instances, we believe that for visualizing the evolution of
software components, both techniques have their respective
drawbacks. On one hand, over the lifetime of most individual
software components, changes are typically small, so showing
them without context can result in low information density
of the resulting visualization. On the other hand, the sheer
number of commits created in modern software development
makes it infeasible to visualize the structure of a project
for each revision in its entire history, as such a view would
overwhelm the observer, while showing only a single snapshot
at a time can make it hard to recognize higher-level tendencies.

We propose a novel method for simultaneously visualizing
software structure and the evolution of its individual compo-
nents: Evo-Clocks. It uses localized, evolutionary representa-
tions of individual artifacts embedded within a multi-revision
representation of structure that has been merged into a single
view. Our approach provides an accurate representation of
structure at a single point in time or, alternatively, a close
approximation of structure for an extended period, while also
displaying the evolution of individual metrics in a single
view. Selective information hiding, facilitated by simple yet
effective selection and filtering features, and means to further
explore hidden details, enable the observer to learn more about
specific time ranges and metrics relevant to an exploratory
task, like during an audit, when planning developer allocation,
or onboarding of new team members.
Our contributions can be summarized as follows:

1) We propose a novel way of visualizing the gradual
evolution of localized artifacts in the global structure of
graph-based data, such as versioned source code.

2) We show that our approach can answer ephemeral,
project-specific questions and provide valuable insights
during the explorative phase of project familiarization.

3) We discuss numerous additional improvements that we
think feasible with regard to the proposed visualization.

4) We publish the implementation of our entire toolchain as
open-source software.1

1https://bitbucket.org/sealuzh/lisa/ – A separate replication package for the
visualization study will be published and linked for the camera ready version.

https://bitbucket.org/sealuzh/lisa/

II. BACKGROUND AND RESEARCH GOAL

Underlying our method for visualizing graph evolution is an
idea that originally relates primarily to the efficient computa-
tion of metrics and other analyses over the entire history of
large software projects, although the technique applies to any
kind of versioned graph, as we discuss in section V-D. To this
end, we present a graph compression algorithm and numerous
techniques for reducing redundancies when analyzing multiple
revisions of the same project in previous work [4]. A central
concept in that work is the idea of a “revision range”.

Individual commits to a software repository typically con-
tain only a few localized changes. This is especially true in
modern version control systems like Git, where large projects
can receive dozens or even hundreds of commits per day.
Nonetheless, most software-evolution research is conducted
by applying measuring tools intended for analyzing a single
(typically the current) state of a given project. Consequently,
each revision to be measured is analyzed individually in
a laborious, resource-intensive, and slow process. Research
shows that more than 95% of data is redundantly analyzed
when discounting the multi-revision nature of software and
that, all other factors being equal, analyzing revisions individ-
ually can be over 50 times slower [4]. Short of expensively
parallelizing the workload, a fairly simple improvement is
to analyze revisions incrementally, recomputing values only
in artifacts where changes occur. But given that changes are
usually small and localized, for example, at the method level,
this still involves significant redundant computation.

Fig. 1. Illustrative description of LISA’s internal graph representation [4].
represent (inner) class nodes, and represent method nodes. (1), (2) and
(3) show how three commits modify the program structure. (4) shows the
merged, annotated representation. (5) shows how a method count is computed
and stored. The top-level class, for example, counts two methods in the
first revision, and then five in the second and third revisions, for which this
value is stored only once. Revision ranges are created, split and merged to
accommodate all data with complete accuracy, while avoiding redundancies
where there is no change over time.

We developed a representation of change (and lack thereof),
in which program components are not represented as in-
dividual data points for every individual revision. Instead,
components and their metrics are represented in ranges that
comprise several (unchanged) subsequent revisions. As a re-
sult, analyses (for example, counting the number of methods
in a class, shown in fig. 1) do not have to analyze each
revision individually, but can be executed only once for a set
of identical input values stretching across several revisions.

In practice, revision ranges can stretch over thousands of
commits, in which a program component does not experience
any change to itself or to the metrics computed for it. We have
shown that this technique reduces the number of individual
states required to be dealt with in individual program nodes
by roughly 97% on average over 4, 000 projects we analyzed
using our approach, compared to storing state for each node
and every revision. Larger and older projects especially benefit
from this redundancy-removal technique.

Even though we developed the idea of revision ranges with
the primary goal of accelerating software evolution research,
we recognize that it may also apply to visualization. Because
changes are usually small and localized, a global, multi-frame
view of a project does not change much over time. This is
why visualizations like Gource [5] remain possible to follow
and understand in the first place, as otherwise there would be
too much happening on every frame. Thus, we hypothesize
that applying the idea of revision ranges for visualizing the
evolution of individual software artifacts (such as classes and
methods) might have some merit. We ask the question: How
can the evolution of both structure and individual components
be visualized without using a multi-frame visualization?

Since this is a methodological question, we chose not to
formulate design goals for the visualization itself, i.e., we do
not determine in advance what kind of questions we want the
visualization to answer. Instead, we implement the approach
in order to discover its strengths and weaknesses, as well as
which kinds of questions it is best able to answer. We discuss
the results of this investigation in section IV.

III. APPROACH

We wish to visualize how individual components evolve as part
of a larger structure, independently of the application domain.
In our specific use case – the evolution of software metrics
and structure – we build a merged representation of multiple
revisions as described in [?], resulting in a directed, cyclic
graph where individual nodes represent program fragments
and have arbitrary numerical and categorical attributes (e.g.,
size and authorship, respectively) which can change over time.
Edges in the graph only have a categorical type attribute. We
chose to use a node-link diagram for visualizing the subject
matter as a whole, while using small, circular visualizations
describing the history of individual nodes.

In this section, we describe how representing metrics across
revision ranges can be achieved through what we call “clocks”.
We also show how the node-link diagram is a merged represen-
tation of how the structure looked at different points in time. In

Fig. 2. Four clocks representing the size history of a class (a 1st-level node)
and its three methods (2nd-level nodes). The center of the class node indicates
the number of methods, while its red color indicates that this class is abstract.
The method nodes are initially hidden – in this case, the user clicked on
the center of the class node to spawn them. The class had been co-evolving
(see section III-E) with one other class as shown by the number at the top.
The class and all three methods were created at the same time in August 2015
but deleted in recent history. The class size changed several times, apparently
due to changes in two out of its three methods. The third method did not
change in size at all, thus only a single clock sector with a uniform color is
visible. Additional information for one particular revision range of the class is
being displayed as the mouse is hovering over its corresponding clock sector.

addition, we discuss how we can reduce information overload
and optimize targeted information retrieval for a specific time
frame or subcomponent of the project by allowing the user to
interact with the visualization and apply simple but effective
selection and filtering mechanisms.

We implemented the approach described in this section as
a browser front-end to our open-source analysis framework,
LISA, using Javascript, HTML/CSS, and SVG, utilizing the
renown D3 visualization library.2 While the visualization is
designed to represent the evolution of any graph-structured
data, our specific use case is visualizing the history of software
projects compiled for the JVM.

A. The Evo-clock

To show how individual nodes in a graph evolve independently
from each other, a variety of visual tools (such as simple line
charts or even polymetric views [6]) could be used. A circular
visualization lends itself nicely for our use case, since it makes
it easier to avoid overlaps when visually grouping several
nodes together in a force-directed layout (which gravitates to
hexagonal packing), as we will discuss in section III-D. Thus,
just as revision ranges are the core conceptual term we use
when talking about the evolution of individual coding artifacts,
the circular clock, four specimens of which are shown in fig. 2,
is the primary visual tool we utilize for presenting it. In bare
terms, a clock is really just a pie chart where different sectors
represent different times in the history of the project, just like
with a regular clock.

If all revisions are displayed, the history begins with the
oldest revision at the 12 o’clock position and runs clock-wise

2https://d3js.org/

Fig. 3. The same nodes as shown in fig. 2, but using a categorical color
scale for authors. The total history range is, of course, identical, but the
sectors appear to have different sizes exactly because they visualize different
dimensions which were changing at different times. Two methods (and thus,
the class itself) were modified by two authors, the unchanging method near
the bottom left by only the first. In contrast to fig. 2, the mouse is hovering
over a commit where the class does not exist, such that only commit metadata
is shown in the tooltip.

around the circle reaching the latest revisions upon returning to
the 12 o’clock position approaching from the left. A black line
serves as a reminder for the discontinuity. The sectors of each
clock can be colorized according to various different kinds
of information, as laid-out in section III-B. This means that
(i) for any range of revisions where the artifact experienced no
change, a sector with a larger internal angle, spanning multiple
individual revisions, is rendered and (ii) if there is no change
in the metric being visualized, even if the artifact has changed
otherwise, the colors of adjacent sectors (representing adjacent
revision ranges) will still be identical, resulting in a visually
larger sector yet again. In this way, irrelevant increments in
the history of an artifact (such when unrelated components or
metrics changed) are completely hidden, which can be seen
when comparing figs. 2 and 3, where sectors visually cover
different time spans depending on the metric displayed. If an
artifact is entirely absent in a given range, the corresponding
clock sector is colored in gray.

B. Visualizing metrics and other information

When visualizing the history of structured data, a natural place
to start with is the age of different components: a metric
which any kind of artifact exhibits. By default, clock sectors
of 1st-level nodes (which are drawn by default) are colorized
in shades of blue and 2nd-level nodes (which are hidden
by default) in shades of green, darker shades representing
older revisions and lighter shades representing newer ones
(analogous to the colors used by the range selection tool shown
in fig. 4). If, for example, the left half of a clock is colorized
in a single shade of dark blue, this indicates that the node had
been existing in its current state for a long time. Also, quite
naturally, multiple sectors with a small internal angle in close
succession indicate frequent change.

Sector colors in each clock can be used to represent the
evolution of both numerical and categorical data. Increasing
values of numerical metrics can be placed on a continuous
color scale (we use a green-yellow-red gradient). We recali-

https://d3js.org/

brate scales every time the diagram is updated, so that colors
are interpolated between the highest and lowest value for
any specific metric within the currently visible selection of
nodes and time. For categorical data (such as which person
authored which commit, shown in fig. 3), each category is
assigned a color picked from the CIECAM02 [7] color model,
maximizing the perceived differences between colors even for
a larger number of categories.

Many kinds of numerical and categorical coloring condi-
tions can conceivably be visualized in this fashion. We discuss
alternative ways of (re-)computing color scales as well as
additional potential metrics in section V.

C. Revision range selection

By default, the entire history of a project is visualized in a
single view. However, the user might be interested only in
a specific period. To view only a specific range and, thus,
reduce the complexity of the visualization by filtering out-of-
scope data, we designed a range selection tool, shown in fig. 4,
which itself resembles a clock and follows the same intuition:

• A circle represents the entire history of the project being
visualized.

• Blue and green gradients around the center serve as a
visual reminder of the colors used to represent the age of
1st and 2nd-level nodes, as described in section III-B.

• Year labels around the circle facilitate a high-level ori-
entation on how much time the history spans and how
densely packed revisions are over different periods.

Fig. 4. The range selection tool. In this example, the history spans from
before 2012 until after 2017. Judging from the spacing of year labels, 2012
and 2016 have seen a much larger number of impactful commits than other
years, hence they take up more space on the circle’s circumference. The green
handle has been moved to the 4 o’clock position, thus the visualization will
not render data from before October 2012.

• Two handles can be dragged around the circle, like hands
of a clock, to select the start and end revisions of the
history range to be displayed. The green handle signifies
the selected start, the orange handle the selected end
revision. Double-clicking a handle resets it to the 12
o’clock position. Revisions outside the selected range
are shaded in gray, as the dark-to-light blue and green
gradients move together with the handles, such that the
entire gradient is always utilized for the visualization,
ensuring strong visual contrast.

• Hovering over different circle sectors reveals commit
metadata, including the message.

• Text indicators below the selection tool show additional
information on the selected start and end revisions. The
first field of each triplet accepts input, such that the user
can enter a number or a commit hash to move the handles
to specific commits.

D. Node-Link diagram

When the visualization is first rendered, it displays a node-
link diagram (which the user can zoom and pan) representing
a limited selection of project components existing in any
revision of the entire history, as shown in fig. 5. There are
numerous requirements to be considered in designing the
diagram worthy of individual discussion:

Nodes and types of nodes: When considering what to dis-
play, both performance overhead and information overload are
imposing upper limits on the number of nodes that can be
meaningfully displayed. For our visualization, we assume that
the data being displayed is, at least somewhat, hierarchical.
Software artifacts, specifically, can be layered going from
classes or units via methods down to statements. Finally, it
often makes sense to cluster nodes into groups. For our use
case, we render classes as 1st-level nodes and methods as
2nd-level nodes (which are initially hidden). All nodes are
grouped by their containing package. It is conceivable to add
class fields as 2nd-level members or to add additional 3rd or
4th layers depending on the use case.

Each node, regardless of level, is rendered using a clock
and displays the evolution of that particular node. Since each
node represents an entire history, we use an average of a size
metric to determine the radius used to draw each node. For
our JVM dataset, the size is determined from the number of
tree nodes in LISA’s internal representation, extracted from
the JVM bytecode, although for AST-based data, we could
also use the number of lines of code or any other metric.

Links and types of links: Because the diagram we render is
a merged representation of multiple revisions, nodes will be
rendered even if they do not exist in the most recent revision.
Their final clock sector will be colored gray to indicate recent
absence, but they will be rendered. Any connections these
nodes have to other nodes will be drawn if the connections
existed at any point in the history of a related node. Thus, a
connection might be shown even if it does not exist in recent
history. This is a necessary trade-off, which can, however, be

Fig. 5. A screenshot of the visualization with the controls overlaid on the left side. Node histories are represented as clocks (section III-A) using a particular
color scale and legend (section III-B), with node centers indicating the number of children and using colors to indicate modifiers (blue for concrete and red
for abstract classes, yellow for interfaces). Numbers above certain nodes indicate co-evolving nodes, which are hidden by default. Clicking on such a number
spawns the co-evolving nodes and colorizes their tops (section III-E). Near the top-left, a 1st-level node has been expanded to show the history of any methods
it had during its existence. Inheritance links are drawn blue, method calls in bright green when hovering over nodes using the mouse (section III-D2). The
background behind nodes is shaded according to packages (section III-D7).

alleviated by using the range selection tool: if links or nodes
do not exist in the selected range, they will not be drawn. We
believe that this is a fair trade-off, as the connection between
nodes was relevant at some point, and zooming into a shorter
time-frame increases the accuracy of the visualization.

For our specific use case, we currently use three kinds of
links. Thin, blue lines indicate inheritance. Thick, transparent
bands connect 2nd-level nodes to their owning 1st-level nodes.
Finally, thin, green lines indicate outgoing method calls. To
avoid information overload, method calls are only shown when
the user hover over a calling node by default.

Node identifiers: To position nodes and draw links in the
diagram, we need to assign unique identifiers that are valid
throughout the history of a node. These IDs largely depend
on the application domain. In our case, LISA determines IDs
for our bytecode data using a simple tree-based path naming
scheme, such that every class name is prefixed by the package
name, while method nodes are using the JVM-assigned method
names and signatures, prefixed by the containing class. This
means that if an artifact is renamed once in its history, it will
be represented by two separate nodes with non-overlapping
revision ranges. Detecting such moves in software evolution
is a hard problem though [8] and is out of scope for this paper.

Layout and node placement: We have several requirements on
how nodes should be placed in the diagram. We need 1st-level
nodes belonging to the same group to be clustered together,
and it makes sense to shorten the links between nodes as much

as possible to reduce the amount of clutter. We also don’t
want nodes to overlap. There are many possible strategies for
computing node-link layouts, ranging from circle packing to
static tree-like structures. Because it satisfies our requirements
and is easy to use, we chose to use D3’s implementation
for drawing force-directed graphs [9]. A D3 force simulation
initially places all nodes in a phyllotaxis arrangement and
then performs an iterative optimization, in which the forces
are applied to gradually move the nodes. The forces get
weaker in later iterations until all movement stops and a
static arrangement of nodes has been achieved. Whenever
the diagram is modified (for example by adding or removing
nodes), the simulation is restarted and forces can again act
upon nodes to re-compute a fitting arrangement. We apply the
following forces:

• A basic centering force ensures that nodes bunch together
instead of drifting apart by pulling them somewhat to-
wards the center of the drawing.

• A collision force ensures that nodes don’t overlap.
• A link force applies a positive attraction between nodes

which are connected by a link.
• A clustering force determines the largest 1st-level node

in each group and pulls all other nodes of that group
towards it. This force is stronger than the link force to
ensure that nodes in the same group are nicely clustered,
even if longer link links are required.

These forces in unison result in a layout where nodes are
clustered in groups, with more connected graph components
placed closer to the center.

Graph modification: Computing and drawing a force-directed
graph layout using SVG is computationally intensive. To avoid
clutter when first loading the diagram, the layout is computed
covertly for 2, 000 ticks and only the final, static placement is
rendered to screen. The diagram can, however, be modified in
one of several ways:

• The user can choose to view only a specific period in the
whole history of the project (section III-C). Nodes which
do not exist in the selected range must be removed from
the diagram.

• Nodes are clustered by groups (for example, packages). A
user can select a subset of groups to display, thus hiding
all others (section III-D7).

• The user can enter a search term that is matched against
node IDs. Only nodes whose ID match the query should
be rendered.

• 2nd-level nodes are not rendered initially. If the user
clicks on the center of a 1st-level node, its 2nd-level nodes
must be added to the graph.

• Co-evolving 1st-level nodes (section III-E) are summa-
rized, such that only the largest among them should be
rendered. The user can choose to expand that node by
clicking on the circle above it, upon which all co-evolving
nodes are added to the graph.

When adding or removing nodes, it is crucial to ensure visual
continuity, as it would be hard to keep track of nodes if
they were to jump about the screen whenever the layout is
recomputed. So instead, the simulation is restarted and the
diagram is rendered on every tick, giving the impression of
existing nodes fluently moving to the new place where they
belong.

Sticky nodes: When the diagram is modified and the sim-
ulation is running, nodes are moving towards a more ideal
placement given the update. However, this movement can take
several seconds and during that time it can be tricky to interact
with the visualization: it is hard to click on the center of a node
if that node is moving around the screen. Thus, on a minor
but impactful implementation detail, a node will not move at
all, if hovered with the mouse cursor, even if the simulation
is still running.

Clustering and filtering groups: To visualize which higher-
level group a given node belongs to, we use a common contour
based approach, which has been shown to be versatile in
previous research [10]. As visible in fig. 5, nodes are placed
upon a colorized backdrop (computed using Voronoi tesse-
lation [11] like in Gansner and Hu’s GMap approach [12]).
A limited number of colors is used, meaning that in rare
cases, adjacent packages may share the same color. To learn
which group a cluster of nodes belongs to, the user can hover
over the backdrop to spawn a tooltip displaying the group
name. Since rendering and viewing all nodes at the same
time can be overwhelming, the user can select one or more

groups to remain visible while all others are hidden. This is
done by holding the SHIFT key and then clicking on the
backdrop of each group that should remain visible (like is
customary for multiple selections in most file managers, word
processors and spreadsheet calculators). Once the SHIFT key
is released, all non-selected groups are removed from the
diagram, the simulation is restarted, and the remaining nodes
are repositioned accordingly. At the click of a menu button,
all hidden groups can be restored to the diagram.

E. Condensing co-evolving units

Previous research has shown that co-evolution of software
artifacts is an indicator of logical coupling [13], [14]. In
line with reducing the number of visible nodes to a feasible
minimum, we analyze the revision ranges of all nodes and
group those nodes (across all groups), whose history have
exactly the same revision ranges. Out of all these nodes, the
largest one is selected as the representative for the whole
group and will be displayed while all other co-evolving nodes
remain hidden. The number of hidden nodes is printed in a
small circle above the representative. Clicking this field will
(i) make the hidden nodes appear next to the selected node,
(ii) colorize the clicked circle, as well as the circles above
the corresponding co-evolving nodes with the same color, and
(iii) restart the simulation, such that the previously hidden
nodes have a chance to move towards their desired place (even
as they might be from different packages). Since the circles
above all co-evolving nodes have the same color, it remains
easy to track them, even if they belong to other packages, as
shown in fig. 6.

Fig. 6. Co-evolving classes (as indicated by their blue-colored top
circle) spread across the bcel.generic, bcel.classfile and
bcel.verifier.statics packages.

IV. EVO-CLOCKS IN PRACTICE

Joining a new project as a developer can be an overwhelming
experience. It is challenging to familiarize oneself with a
project just by browsing source code or reading issues and
API documentation. In particular, it is hard to even know where
to start exploring. Furthermore, the history of a project may
be underestimated as a valuable source of information, even
though the current state of the code base is the result of a
dynamic evolution involving many design decisions, people –
and even mishaps – from times long past.

To understand the usability of our approach and the extent
to which it facilitates project familiarization, we explored
the core module of four subject systems shown in table I,
ourselves. These systems, along with others from the Apache

TABLE I
PROJECTS ANALYZED USING EVO-CLOCKS.

Project Impactful commits
Commons-Codec 456
Commons-Pool 373
Avro 329
Bcel 581

ecosystem, are frequently used as study subjects in software
engineering research. To visualize inter-object relationships
(such as inheritance and method calls), analyzing source code
or abstract syntax trees only was not an option. For this
reason, we utilized SQUAAD [15], a framework for compiling
software histories, to generate the necessary bytecode to be
fed into LISA for analysis and visualization. Naturally, there
exists a large number of commits which introduce build
failures or do not affect the compilation at all. SQUAAD
uses commit-impact analysis [16] to reduce the number of
uncompilable revisions, increasing the compilation ratio for
impactful commits to almost 100%. In total, it found and
compiled 1, 739 commits that produce a distinct revision of
the core modules in our subject set.

A. Finding a starting point
Even without prior knowledge on a project, merely opening
Evo-Clocks and seeing a high level overview – of both
structure and history – already conveys significant and valuable
information about the overall shape of the project, like the
edit history of files, the density of development activity,
inheritance and access dependencies between artifacts, and
thus, potentially interesting candidates for further exploration.

Using Evo-Clocks to get familiar with Apache Avro, a new
developer would immediately be able to identify which classes
are often changed by many people (e.g., GenericData) or
remain stable (e.g., SpecificErrorBuilderBase). They
can recognize important top-level types which are frequently
inherited or implemented (e.g., SpecificRecordBase),
and also how inheritance is structured across package bound-
aries (e.g., all classes in io inherit within the package, except
for DatumReader and DatumWriter, which are inherited
by classes in generic).

This initial orientation, which draws both from the structure
as well as the history of the project, can provide a starting
point for continued exploration unlike comparable tools that do
not visualize the fine-grained history of entities together with
their structure. In the following sections, we describe several
discoveries we made while exploring our data and which may
be relevant to a developer starting to work on these projects.

B. Development activity and authors
When joining a project, auditing existing components or
working on related code, it is useful to know who has been
working on which parts of the source code, and which parts
of the source code need frequent changes.

Our visualization, with clock sectors colorized by author,
makes it easy to explore both these questions. For exam-
ple, the two aforementioned interfaces, DatumReader and

DatumWriter, shown in fig. 7, have been modified together,
frequently, and by many different authors, while the other
classes in the same package have not been modified in a long
time. We can also spot groups of classes which have been
edited together, albeit less frequently.

Looking at the commit history of individual files, for
example by using Git, is an alternative, though tedious, source
for this information. The main problem is that while git log
can identify multiple commits to one file and git blame can
identify the most recent author for any line of code, there is
no direct way to see the most recent couple of authors for
multiple closely related files while retaining a mental image
of how the files involved relate to each other.

Fig. 7. Using a categorical scale for author names, we can distinguish classes
frequently changing together or being modified at the same time and thanks
to the structural layout, we are able to put these classes into context.

C. Large-scale architectural changes
While LISA does not detect moves, it is possible to recognize
them visually. The example in fig. 8 illustrates how the
BCEL project renamed the org.apache.commons.bcel
package to org.apache.commons.bcel6 about half way
through its evolution, and then back again in recent history.
This appears – even visually – to have been an incisive design
choice that was nonetheless reverted a year later, likely having
had an impact on other software depending on BCEL. We can
actually confirm this by hovering over the respective revision
sectors of any affected class, revealing the commit message
“Major release of BCEL requires updating package name
and maven coordinate” in August 2015, and then later: “Fix
messed up package rename” in June 2016.

Although nodes not present in the most recent revision are
being rendered, it is possible to recognize which parts of the
graph are relevant for which part of the project’s past by visual
intuition, given the cardinal direction on the face of any clock
towards which sectors are drawn. Restricting the revision range
using the range selector can confirm intuition if necessary and
provide a deeper insight into specific periods of time.

Fig. 8. Renamings of packages can be recognized via several nodes exhibiting
complementary revision ranges.

D. Discovering pitfalls

SpecificRecordBase is the most inherited class of the
Avro project. With a single click on the central number,
its 20 methods that existed in its history are revealed, as
shown in fig. 9. Two methods appear to be alternating in
their presence. A quick glance at their history reveals that the
second method in question fixed a typo in the method name
of the getConversion(String fieldName) method.
However, the fix was reverted just two impactful commits
later. It was introduced a second time, and reverted yet
again. It is possible that the fix broke too much depending
software. A third fix was finally permanent. Given that there
is another method, spelled correctly but accepting an Integer
(getConversion(int field)), this could have been a
source of confusion when working with or on this project for
quite some time. The deprecation warning is still present in
the API even today.

Fig. 9. SpecificRecordBase and its methods. The large arrow A points
to the typo, the small arrows B and C indicate where fixing the typo was
reverted for the first time.

E. Summary

Our findings show that at a glance, the user can gain detailed
knowledge regarding hot spots, developer activity, frequently
changed components, and important architectural changes, as
well as the high-level structure of a project. Irregular parts
of the software or its evolution signify interesting starting
points for understanding the intricacies of a project without
any prior knowledge and without knowing where to start.
Spotting outliers is interesting because they usually have a
story behind them. Our visualization arguably helps revealing
interesting matters, albeit without letting the user drown in
information. We believe that placing historical data on each
software component into a structural context makes it easier to
get one’s bearings in an unfamiliar software project, compared
to existing visualizations that lack one or the other. That said,
additional research is needed to confirm these assumptions.

V. DISCUSSION

The design of any visualization is subject to trade-offs. We
chose to visualize quite a lot of information simultaneously,
while providing users with the opportunity to limit the amount
of data being rendered. Having the option to filter, collapse,
and expand information on-demand strongly increases the
explorability of our visualization.

We are not rendering a perfect picture of the structure of
the project, but we think the chosen view provides a suffi-
cient, intuitive understanding of its shape. For very specific
questions, tailored tools are likely better suited for finding an
answer. However, we see great potential in our approach as an
exploratory tool, exploration often being the first step towards
asking more specific questions.

We envision numerous extensions through which the Evo-
Clock visualization can be improved in future iterations. Fur-
thermore, we wish to conduct purpose-specific comparisons
with other approaches as well as controlled lab studies with
test subjects using our tool. In this section, we reflect on many
different aspects of the visualization, indicate shortcomings
and possible improvements.

A. Polymetric “clocks”

Disregarding the numbers and colored center spot, our clocks
currently depict only a single metric at a time, which is
sufficient given the scope of this paper, but limits the expres-
siveness of the visualization. We are considering to expand the
compactified visualization of component histories by adding
additional visual features. Besides colorizing entire node sec-
tors and the center of a node, we could also add an outer
border to each node to indicate an additional dimension. For
example, the border color could be used to highlight search
results when implementing additional search functionality.
Furthermore, instead of coloring entire sectors with a single
color, multiple metrics could be displayed using one of the
methods sketched in fig. 10.

Fig. 10. Two artificially created concepts for extending the clock to render
additional dimensions. On the left, a line chart indicating a metric ranging
from 5 to 20 is wrapped around the center with an axis drawn at the 12
o’clock position. Also, the outer edge, in pink, may highlight this node as
a search result. On the right, the evolution of three different dimensions is
drawn in concentric rings around the center.

B. Improving scales

We mention in section III-B that scales are recalibrated every
time the graph is updated. We made this decision with the goal
of utilizing the entire scale no matter which nodes are drawn.
This could, however, be made optional, so that color scales
will always reflect the magnitude of values relative to all other
nodes, whether visible or not. Furthermore, the same scale is
currently used for 1st and 2nd-level nodes, which, for large
1st-level nodes containing many small 2nd-level nodes, results

in one overly red and many overly green nodes. Thus, it makes
sense to compute separate scales for different levels, or even
within a group of siblings. It is also feasible to add additional
options, like using a logarithmic instead of linear scale. In
addition, although our current approach of using a green-
yellow-red scale for continuous numerical metrics is arguably
intuitive, color blind people may appreciate additional color
options.

With regard to the time scale, currently all time-steps have
the same internal angle, thus periods of high-frequency change
take up more space than periods with less change. We could
use the actual time passing between commits to determine the
internal angle, which would result in time being uniformly
distributed around the clock.

C. Evolution of edges

Edges between two nodes in the graph are currently rendered
if they exist in at least one of the revisions being viewed,
which may be misleading in some cases. It could be useful to
give the user more control:

• An additional handle on the range selection tool could be
used to select a single revision for which the edges should
be drawn. Moving the handle back and forth would show
the change in structure with edges popping in and out of
existence. As only the edges for a single revision would
be visible, this would be a playback-based solution, albeit
only partially so, since nodes in the visualization would
nonetheless remain static.

• A color gradient spanning the length of the edge could
inform the user of its evolution, just like the sectors of the
clock do. This option would avoid the need for playback,
but it may be overly colorful and thus hard to understand.

• The tooltip shown when hovering over edges could be
augmented with its own clock to render the evolution of
edge-related metrics.

D. Different application domains

While we designed the visualization of evolutionary data using
clocks with software in mind, the visualization’s applicability
is not limited to software evolution and neither is it lim-
ited to two levels of data nesting (classes and methods in
our example). The same visualization of localized change
embedded in a larger structure could apply to a variety of
other domains, such as (i) social networks and marketing,
where nodes visualize historical data on individuals and edges
visualize their relationships, (ii) logistics networks, where
nodes could visualize the evolution of stock or other data,
(iii) geographical data, where nodes could have several nesting
levels from countries down to municipalities or even individual
households, and finally (iv) versioned Semantic Web (RDF)
data for arbitrary knowledge domains
LISA already supports a variety of programming languages

and it has built-in generic data structures which supporting
versioned graphs for arbitrary application domains. Thus, it is
feasible to adapt our open-source implementation to support
visualizing different kinds of data.

E. Data linking

Coming back to the context of software development, it could
be useful to integrate additional information sources, such as
issue trackers or communication channels. At the very least,
we plan to implement facilities for linking artifacts to their
source inside the version control system, such that a user can
reach the source code revision corresponding to any clock
sector. Naturally, the idea of linking data to other channels
also applies to any other application domain.

F. Improvements to visuals and performance

Using a different drawing technology (such as HTML5 Can-
vas or even just OpenGL) might certainly improve the per-
formance of the visualization even when rendering a large
number of nodes. However, it could be argued that a larger
number nodes being displayed would be of no benefit due
to information overload. It would be possible to simply set a
node limit, such that only the n largest or most recently added
nodes are rendered, to retain the intuitive understanding of the
project structure while reducing the actual number of nodes
rendered. Our approach scales well to hundreds of impactful
revisions, with however if there were thousands, the individual
arcs would be extremely small and SVG rendering would
likely become unresponsive. In this case, individual arcs would
need to be merged not just visually (i.e. drawing them with
the same color), but using the underlying drawing technology.
The Avro and BCEL projects in our sample are not small and
the approach works well. For much larger projects it would
likely be necessary to add an additional level of indirection to
view sub-components of a project individually.

As there are no labels on individual nodes it can be hard
identify which node represents which software artifact. After
browsing for a while, one recognizes certain entities by their
history, edge placement or numbers, but most of the time, it is
necessary to hover over the node to reveal its ID. A possible
solution to this problem would be to only show node labels
when zooming in close to a group of nodes, such that the
labels will not overlap with other drawing elements.

Another improvement to both visual clarity and performance
would be to make edge drawing optional, unless the user
hovers over a node that is connected by an edge.

We can also extend the amount of information available for
2nd-level nodes, utilizing their centers to convey information,
just like with 1st-level nodes.

G. Improvements to graph modification and comprehension

At the moment, expanding a 1st-level node which has many
children does not provide the most pleasing visual experience,
as dozens of moving method nodes clutter the display until
they have settled at their most ideal placement. It might be
possible to limit the number of additional nodes spawned on
a single click to, for example, load only the largest methods on
the first expansion. We also consider hiding all nodes which
are not directly linked to the expanded 2nd-level nodes.

It would also be beneficial to add a node filter that works by
selecting one or more nodes (for example using a “lasso” tool)

and then only showing these nodes plus any nodes coupled to
them by inheritance, co-evolution or access, similarly to how
multiple packages can be selected at the moment.

H. Various minor improvements

We think that it might be beneficial to be able to specify
the strictness of how co-evolving nodes are grouped. It might
make sense to group nodes even if their history slightly differs,
as long as most of it is identical. This would further reduce
clutter and convey additional information on logical coupling
within a project.

2nd-level nodes are not providing much data in our current
proof-of-concept implementation. It is possible to implement
additional metrics, such as cyclomatic complexity or call
counting, to be displayed when rendering method nodes.

VI. RELATED WORK

As gathered in systematic reviews by Novais et al. [17] and
Khan et al. [18], there is a large corpus of existing research
in software evolution visualization, thus we focus on the most
closely related work.

Ever since polymetric views were first formalized by Lanza
et al. for the use of software visualization [6], the concept
has been used extensively. Lanza et al. themselves designed
a visualization superficially resembling Evo-Clocks, where
multiple metrics of a few modules, evolving over a small
number of revisions, are drawn on the radial axes of a Kiviat
diagram [19]. The diagrams themselves are arranged in a
graph, with edges indicating coupling. Evo-Clocks, however,
visualize a much larger number of revisions (arguably with
less clutter, since axes are not repeated on every node) at the
class and method, rather than the module level, albeit currently
just one metric at a time. Later, Lanza et al. also experimented
with 3D variations of polymetric views [20]. Both Telea et al.
and Hassan et al. have presented tools for exploring source
code evolution that include fine-grained evolution views using
similar color-coding as our clocks, but they do not show struc-
ture simultaneously, as evolving components are visualized
in parallel stripes instead of circles in a graph [21]–[23].
On the other hand, Telea et al. have also visualized changes
in the structure of code by matching elements in different
revisions, flattening their syntax trees vertically, and then
connecting matched elements using horizontal lines [24]. This
visualization, however, does not visualize code metrics or other
properties, only structure, and only works for a small number
of revisions.

With the goal of combining structural and metric informa-
tion, Gonzales et al. have proposed an approach that visualizes
metrics and commits in a circular view that also starts the his-
tory at the 12 o’clock position, going around clockwise [25].
However, it only provides a single, global overview and, thus
a separate tree view is utilized to browse individual artifacts,
with metrics being displayed using regular line charts.

Nam et al. have developed EVA, a tool for understanding
changes in software architecture [26], which uses small circles
to visualize methods and classes, packed into larger circles

representing packages, without rendering edges for inheritance
or method access. Unlike our visualization, EVA is better
suited for comparing a very small number of major revisions. It
renders the complete program representation for every revision
being compared, stacks the versions in layers, and connects
entities that are present in different revisions when the user
hovers over them with the mouse. It incorporates issue tracker
data to help developers understand architectural changes.

Numerous multi-frame approaches have been developed,
where only one revision is shown at a time and change is
visualized by animation. Examples are evolving versions of
“software cities” [27] by Langelier et al. [28], Steinbrückner
and Lewerentz [2], Boccuzzo and Gall [29] and Wettel and
Lanza [3], the latter two also supporting some kind of static
timeline view for a limited number of revisions. Another multi-
frame visualization, drawing individual releases at a fine-
grained level (including inheritance, call graphs, and control
flow) and using color coding to indicate authorship, has been
demonstrated by Collberg et al. [30]. Gource [5] is a playback-
based tool for visualizing the evolution of files in version
control systems, which renders the file tree as a graph, with
additions and removals visualized step-by-step.

What distinguishes Evo-Clocks from all existing approaches
is that it is able to visualize very fine-grained history for indi-
vidual components within a structure context, while avoiding
visual axes and tick marks unlike comparable visualizations.
Despite high information density, the opaque rendering of
unchanging metrics and the ability to filter, collapse, and
expand details help to avoid draining the viewers attention
unnecessarily, even though every node’s history, comprising
hundreds of (impactful) commits, is accurately represented.

VII. CONCLUSION

With the goal of designing a visualization which can accurately
describe fine-grained changes without the need for animated
playback, we have created a generic solution for visualizing
evolving graphs and show how it functions on the example of
evolving software. In contrast to other approaches, our tool is
not tailored to a specific question. It does, however, facilitate
the familiarization with a project through simple exploration
and does so by embedding the fine-grained histories of individ-
ual components into the global context of a graph. In our case
study, we have found that Evo-Clocks indeed allowed us to
discover ephemeral information that provides a valuable and,
most importantly, tangible insight into the project’s hotspots
and legacy, without having any prior knowledge about these
projects. The visualization is extensible and provides ample
opportunity to be further enriched with additional edge rep-
resentations, metrics, and information hiding techniques. In
conclusion, we believe that embedding component-specific,
fine-grained historical information into a structural context can
amplify intuitive understanding of unknown software.

REFERENCES

[1] M. Lanza, “The evolution matrix: Recovering software evolution
using software visualization techniques,” in Proceedings of the 4th
International Workshop on Principles of Software Evolution, ser.

IWPSE ’01. New York, NY, USA: ACM, 2001, pp. 37–42. [Online].
Available: http://doi.acm.org/10.1145/602461.602467

[2] F. Steinbrückner and C. Lewerentz, “Representing development
history in software cities,” in Proceedings of the 5th International
Symposium on Software Visualization, ser. SOFTVIS ’10. New
York, NY, USA: ACM, 2010, pp. 193–202. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879239

[3] R. Wettel and M. Lanza, “Visual exploration of large-scale system
evolution,” in 2008 15th Working Conference on Reverse Engineering,
Oct 2008, pp. 219–228. [Online]. Available: http://doi.acm.org/10.1109/
WCRE.2008.55

[4] C. V. Alexandru, S. Panichella, S. Proksch, and H. C. Gall,
“Redundancy-free analysis of multi-revision software artifacts,”
Empirical Software Engineering, Jul 2018. [Online]. Available:
https://doi.org/10.1007/s10664-018-9630-9

[5] “Gource,” https://gource.io, accessed: 2019-04-20.
[6] M. Lanza and S. Ducasse, “Polymetric views - a lightweight visual

approach to reverse engineering,” IEEE Transactions on Software Engi-
neering, vol. 29, no. 9, pp. 782–795, Sep. 2003.

[7] N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and
T. Newman, “The ciecam02 color appearance model,” in Color Imaging
Conference, 2002.

[8] M. Kim and D. Notkin, “Program element matching for multi-
version program analyses,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories, ser. MSR ’06. New
York, NY, USA: ACM, 2006, pp. 58–64. [Online]. Available:
http://doi.acm.org/10.1145/1137983.1137999

[9] S. G. Kobourov, “Spring embedders and force directed graph drawing
algorithms,” CoRR, vol. abs/1201.3011, 2012. [Online]. Available:
http://arxiv.org/abs/1201.3011

[10] C. Vehlow, F. Beck, and D. Weiskopf, “Visualizing group structures
in graphs: A survey,” Computer Graphics Forum, vol. 36, no. 6, pp.
201–225, 2017. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.12872

[11] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental
geometric data structure,” ACM Comput. Surv., vol. 23, no. 3, pp.
345–405, Sep. 1991. [Online]. Available: http://doi.acm.org/10.1145/
116873.116880

[12] E. R. Gansner, Y. Hu, and S. Kobourov, “Gmap: Visualizing
graphs and clusters as maps,” in 2010 IEEE Pacific Visualization
Symposium (PacificVis), March 2010, pp. 201–208. [Online]. Available:
http://doi.org/10.1109/PACIFICVIS.2010.5429590

[13] H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), Nov 1998, pp. 190–198.

[14] R. Robbes, D. Pollet, and M. Lanza, “Logical coupling based on fine-
grained change information,” in 2008 15th Working Conference on
Reverse Engineering, Oct 2008, pp. 42–46.

[15] P. Behnamghader and B. Boehm, “Towards better understanding of
software maintainability evolution,” in 2018 Conference on Systems
Engineering Research (CSER 2018), Charlottesville, USA, May 2018.

[16] P. Behnamghader, R. Alfayez, K. Srisopha, and B. Boehm, “Towards
better understanding of software quality evolution through commit-
impact analysis,” in 2017 IEEE International Conference on Software
Quality, Reliability and Security (QRS), July 2017, pp. 251–262.

[17] R. L. Novais, A. Torres, T. S. Mendes, M. Mendonça, and
N. Zazworka, “Software evolution visualization: A systematic mapping
study,” Information and Software Technology, vol. 55, no. 11, pp. 1860
– 1883, 2013. [Online]. Available: http://www.sciencedirect.com/scienc
e/article/pii/S0950584913001298

[18] T. Khan, H. Barthel, A. Ebert, and P. Liggesmeyer, “Visualization
and Evolution of Software Architectures,” in Visualization of Large
and Unstructured Data Sets: Applications in Geospatial Planning,
Modeling and Engineering - Proceedings of IRTG 1131 Workshop
2011, ser. OpenAccess Series in Informatics (OASIcs), C. Garth,
A. Middel, and H. Hagen, Eds., vol. 27. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012, pp. 25–42. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2012/3739

[19] M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing
multiple evolution metrics,” in Proceedings of the 2005 ACM
Symposium on Software Visualization, ser. SoftVis ’05. New
York, NY, USA: ACM, 2005, pp. 67–75. [Online]. Available:
http://doi.acm.org/10.1145/1056018.1056027

[20] C. Mesnage and M. Lanza, “White coats: Web-visualization of evolving
software in 3d,” in 3rd IEEE International Workshop on Visualizing
Software for Understanding and Analysis, Sep. 2005, pp. 1–6. [Online].
Available: http://dx.doi.org/10.1109/VISSOF.2005.1684302

[21] A. Telea and L. Voinea, “Interactive visual mechanisms for exploring
source code evolution,” Visualizing Software for Understanding and
Analysis, International Workshop on, vol. 0, p. 17, 09 2005.

[22] L. Voinea and A. Telea, “Multiscale and multivariate visualizations
of software evolution,” in Proceedings of the 2006 ACM Symposium
on Software Visualization, ser. SoftVis ’06. New York, NY, USA:
ACM, 2006, pp. 115–124. [Online]. Available: http://doi.acm.org/10.
1145/1148493.1148510

[23] Jingwei Wu, R. C. Holt, and A. E. Hassan, “Exploring software
evolution using spectrographs,” in 11th Working Conference on Reverse
Engineering, Nov 2004, pp. 80–89.

[24] A. Telea and D. Auber, “Code flows: Visualizing structural evolution
of source code,” Computer Graphics Forum, vol. 27, no. 3, pp.
831–838, 2008. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1111/j.1467-8659.2008.01214.x

[25] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia, “Combined
visualization of structural and metric information for software evolution
analysis,” in Proceedings of the Joint International and Annual
ERCIM Workshops on Principles of Software Evolution (IWPSE)
and Software Evolution (Evol) Workshops, ser. IWPSE-Evol ’09.
New York, NY, USA: ACM, 2009, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1595808.1595815

[26] D. Nam, Y. K. Lee, and N. Medvidovic, “Eva: A tool for
visualizing software architectural evolution,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings, ser. ICSE ’18. New York, NY, USA: ACM, 2018, pp. 53–
56. [Online]. Available: http://doi.acm.org/10.1145/3183440.3183490

[27] R. Wettel and M. Lanza, “Codecity: 3d visualization of large-
scale software,” in Companion of the 30th International Conference
on Software Engineering, ser. ICSE Companion ’08. New York,
NY, USA: ACM, 2008, pp. 921–922. [Online]. Available: http:
//doi.acm.org/10.1145/1370175.1370188

[28] G. Langelier, H. Sahraoui, and P. Poulin, “Exploring the evolution of
software quality with animated visualization,” in 2008 IEEE Symposium
on Visual Languages and Human-Centric Computing, Sep. 2008, pp.
13–20.

[29] S. Boccuzzo and H. Gall, “Cocoviz: Towards cognitive software
visualizations,” in 2007 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, June 2007, pp. 72–79.
[Online]. Available: http://dx.doi.org/10.1109/VISSOF.2007.4290703

[30] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K. Wampler, “A system
for graph-based visualization of the evolution of software,” Proceedings
of ACM Symposium on Software Visualization, 03 2003.

http://doi.acm.org/10.1145/602461.602467
http://doi.acm.org/10.1145/1879211.1879239
http://doi.acm.org/10.1109/WCRE.2008.55
http://doi.acm.org/10.1109/WCRE.2008.55
https://doi.org/10.1007/s10664-018-9630-9
https://gource.io
http://doi.acm.org/10.1145/1137983.1137999
http://arxiv.org/abs/1201.3011
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12872
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12872
http://doi.acm.org/10.1145/116873.116880
http://doi.acm.org/10.1145/116873.116880
http://doi.org/10.1109/PACIFICVIS.2010.5429590
http://www.sciencedirect.com/science/article/pii/S0950584913001298
http://www.sciencedirect.com/science/article/pii/S0950584913001298
http://drops.dagstuhl.de/opus/volltexte/2012/3739
http://doi.acm.org/10.1145/1056018.1056027
http://dx.doi.org/10.1109/VISSOF.2005.1684302
http://doi.acm.org/10.1145/1148493.1148510
http://doi.acm.org/10.1145/1148493.1148510
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01214.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01214.x
http://doi.acm.org/10.1145/1595808.1595815
http://doi.acm.org/10.1145/3183440.3183490
http://doi.acm.org/10.1145/1370175.1370188
http://doi.acm.org/10.1145/1370175.1370188
http://dx.doi.org/10.1109/VISSOF.2007.4290703

