
Replicating Parser Behavior using Neural

Machine Translation
Carol V. Alexandru, Sebastiano Panichella and Harald C. Gall

Software Evolution and Architecture Lab

University of Zurich, Switzerland

{alexandru,panichella,gall}@ifi.uzh.ch

Abstract—More than other machine learning techniques, neu-
ral networks have been shown to excel at tasks where humans tra-
ditionally outperform computers: recognizing objects in images,
distinguishing spoken words from background noise or playing
“Go”. These are hard problems, where hand-crafting solutions
is rarely feasible due to their inherent complexity. Higher level
program comprehension is not dissimilar in nature: while a
compiler or program analysis tool can extract certain facts from
(correctly written) code, it has no intrinsic ‘understanding’ of
the data and for the majority of real-world problems, a human
developer is needed - for example to find and fix a bug or to
summarize the bahavior of a method. We perform a pilot study
to determine the suitability of neural machine translation (NMT)
for processing plain-text source code. We find that, on one hand,
NMT is too fragile to accurately tokenize code, while on the
other hand, it can precisely recognize different types of tokens
and make accurate guesses regarding their relative position in the
local syntax tree. Our results suggest that NMT may be exploited
for annotating and enriching out-of-context code snippets to
support automated tooling for code comprehension problems. We
also identify several challenges in applying neural networks to
learning from source code and determine key differences between
the application of existing neural network models to source code
instead of natural language.

I. INTRODUCTION

Deep learning has become an ever more prominent tool for

solving hard problems in computer science [1] and other dis-

ciplines; particularly those problems, where humans typically

outperform their artificial counterparts. For example, people

can easily spot and identify multiple objects in an image, even

if they are occluded, badly lit or otherwise hard to discern from

the surrounding imagery. Manually writing a program with

the same purpose is extremely hard and has kept researchers

busy for decades, whereas machine learning, and especially

deep learning, has provided several breakthroughs in image

recognition technology within the past decade alone [2].

In a way, program comprehension (PC) falls into the same

problem category: while an interpreter can read a program line

by line, link different sources and execute arbitrarily complex

pieces of (correctly written) code, it has no inheret under-

standing of the program - it is just a ‘dumb’ automaton, hand-

crafted by a human designer. To actually comprehend what is

going on in a given piece of code, to fix a bug or to change

some specific program behavior, a human developer is most

often required, unless the bug or change falls into a narrow

category of problems that have been solved programmatically.

From this point of view, PC is another hard problem where

humans outperform machines and where research is struggling

to yield effective automated means of answering relatively

simple questions: ‘Why does this method crash given some

specific input?’, ‘Is this code thread safe?’, ‘Why does this

assertion fail?’. Questions like these might be answered by an

experienced developer just by reading the source code, but a

program that can answer all three questions necessitates an

immensely complex, yet narrowly targeted toolchain.

As such, we argue that for many PC tasks, a traditional

model of the source code (as a compiler builds it) is not

enough. We believe that in the long run, deep learning could

be a key towards automating PC. The goal, of course, is to

create automated tools that can aid developers more effectively

in understanding and modifying source code. However, Rome

was not built in a day, and as a first step in the right direction,

we ask: can neural networks learn the first lesson of mastering

a new programming language, namely recognizing its syntactic

components? After all, even for more complex comprehension

tasks (i.e., how two separate pieces of code interact), any deep

learning model would first need to learn an internal model of

the source code itself in order to know “what is what”.

Hence, we explore the ability of neural machine transla-

tion (NMT) to interpret plain-text source code directly. Our

contributions are: (i) a fast and simple tool for gathering

NMT training data from GitHub1, (ii) an examination of

the suitability of NMT to tokenize source code and annotate

tokens with typing and location metadata, (iii) an outline for

future avenues of research applying NMT towards PC.

II. RELATED WORK

Recurrent neural networks (RNN) have found widespread

use in other fields, with natural language processing being

most closely related to source code processing. Sequence-

to-sequence translation, as outlined by Sutskever et al., has

been shown to match or even outperform existing systems

when translating sentences from one language to another [3].

Vinyals et al. discovered that neural machine translation can

also parse natural language sentences into parse trees with

similar performance as the Berkley Parser [4]. Both these

examples show that a relatively simple RNN can mimmick

more complex, human-engineered and state-of-the-art tooling

behavior. These results in natural language processing inspire

confidence that deep learning may also be effective for solving

similar problems in source code processing. In fact, White

et al. show that RNNs significantly outperform n-gram based

models for predicting the next token in a sequence [1].

1The tool, ParseNN, is open source: https://bitbucket.org/sealuzh/parsenn

https://bitbucket.org/sealuzh/parsenn

III. APPROACH

Parsers traditionally use a rule-based lexer to group source

code characters. The resulting tokens are fed into a parser to

construct a parse tree. We follow the same two-step process,

however both translations are performed by an NMT model.

Since parse trees can be much more deeply nested and since

they are generally more complex than natural language parse

trees, the result of the second step in this preliminary study is

not a parse tree, but rather an annotation sequence identifying

the type for each token, as well as its depth in the parse tree,

indicating the relative location of different tokens.

A. Neural Machine Translation

Luong et al. describe NMT as a neural network modelling

the conditional probability p(y|x) of translating a source

sequence x1,, xn to a target sequence y1, ..., ym [5]. The

model consists of an encoder, that creates some numerical

representation s for each source sequence, while a decoder

generates one output word at a time. Thus, the conditional

probability of translating any particular sentence is defined as:

ln p(y|x) =

m∑

j=1

ln p(yj |y1, ..., yj−1, s)

In other words, the probability of any single word yj being

appended to the output depends both on the input and on any

previously generated output words. Recurrent neural networks

(RNN), consisting of Long Short-Term Memory (LSTM) [6]

or gated recurrent units (GRU) [7], lend themselves naturally

to model this problem because they make predictions based

not only on input data, but also on previous internal states.

While the basic sequential model works with input and output

sequences consisting of single words, it is also possible to use

sequences where each word has more than one feature [8].

To map words to their numerical representation, vocabu-

laries Vx and Vy are created for the input and the output

sequences. They contain a mapping from words to integers

for the top-k most common words in each dataset. They also

contain four control words, for the start and end of sentence,

padding and unknown words (assigned to all uncommon words

not present in the vocabulary).

To further improve predictions by an RNN, attention-based

models compute context vectors to determine the relevant

information in the source sequence for the next output word.

The context vector may be computed over the entire input

sequence (global attention), or only parts of it by attempting to

align which words in the input sequence are most predictive for

the next output word (local attention). Through input feeding,

the previous context vector may be fed back into the model

at each step, such that the ‘attention’ moves over the source

sequence continuously. Finally, instead of only going forward

through the sequences, a bi-directional RNN can average

predictions going through the sequences both forward and in

reverse, which can also improve predictions.

As with all neural networks, the training goal is to minimize

the prediction error of the model by tweaking its internal

weights using one of several optimization techniques. The

prediction error, typically called loss, is defined as:

loss = −
1

N

N∑

j=1

ln pyj

Usually, per-word perplexity is used as the performance metric

for sequence prediction models. Perplexity is defined as:

perplexity = e
−

1

N

∑
N
j=1

ln pyj = eloss

Metaphorically speaking, the perplexity x of a model indicates

that it predicts the correct word as often as an ‘x-sided‘ die.

Thus, better models exhibit lower perplexity and with larger

target vocabularies, increased preplexity is expected.

B. Training data

As we are training two separate models for the two trans-

lation steps, we need four kinds of data, as shown in table I.

For the first translation step to tokenize source code, we avoid

using the tokens themselves in the output sequence because

many of them would be ‘unknown’ (e.g., class and method

names are often unique in the dataset). Instead, we use a

sequence of just three simple lexing instructions: (a) ‘0’ →
continue (or begin) the current token, (b) ‘1’ → end the

current token, (c) ‘ ’ → skip the current character. For the

second translation step, we do use tokens as words in the input

sequence (where some may be “unknown”), but these words

can still be annotated correctly thanks to the surrounding

context - they are not necessarily informative.

The example provided in Table I shows the original input se-

quence (A1), the lexing instructions (A2) required to produce

the given tokens (B1), as well as the corresponding annotations

(B2). It shows that the tokens public and ; are on the same

level (a statement level element, most likely), while the other

elements are located further down the tree. Some levels are

noticably missing, which is because the original AST created

by the parser creates many nodes not represented by a literal

token. We address this problem in section IV.

Neural translation models in natural language normally

operate at the sentence-level. As there are no ‘sentences’ in

source code, we decided to simply split the input data on

newlines. This has one particular disadvantage, namely that

the resulting model cannot recognize multi-line tokens (such as

multi-line strings). We discuss this problem, as well as possible

alternatives in section IV. For now, when the parser we use

to generate the training data encounters a multi-line token, the

corresponding input and output sequences are thrown away

and excluded from the training data.

C. Training Data Acquisition

To gather the training data, we first used the GitHub API

to obtain the Git URLs of the top 1000 Java projects hosted

on GitHub, ordered by the number of stars they received. We

then wrote a tool to automatically apply the following process

for each of the projects:

1) First, the Git repository is cloned.

TABLE I
EXEMPLARY TRAINING DATA

ID Sequence Seq. type Example

A1 Plain text code Characters public String s = "Hello, World";

A2 Lexing instructions Characters 000001 000001 1 1 000000000000011

B1 Tokens Words [public] [String] [s] [=] ["Hello, World"] [;]

B2 Annotations Words|Integers [ClassOrInterfaceModifier|11] [ClassOrInterfaceType|13] [VariableDeclaratorId|14] [VariableDeclarator|13] [Literal|17] [FieldDeclaration|11]

TABLE II
ONE SUCCESSFUL AND ONE FAILED TRANSLATION (ERRORS HIGHLIGHTED)

Successful

translation

List<Throwable> errors = TestHelper.trackPluginErrors();

000110000000011 000001 1 0000000001100000000000000001111

[ClassOrInterfaceType|14] [TypeArguments|15] [ClassOrInterfaceType|18] [TypeArguments|15] [VariableDeclaratorId|15] [VariableDeclarator|14]

[Primary|19] [Expression|17] [Expression|17] [Expression|16] [Expression|16] [LocalVariableDeclarationStatement|11]

Failed

translation

@Test(expected = NullPointerException.class)

10001100000001 1 000000000000000000000000011

2) The bare Git tree is traversed to obtain the Git blob IDs

of all Java files present in the latest revision.

3) An ANTLR-generated lexer and parser are then used to

parse each file and simultaneously extract all four data

sequences, meanwhile ensuring that all the sequences are

aligned correctly. Accidentally skipping any line in any

of the sequences would result in a fatal misalignment of

the training data. As we need each word (be it individual

characters, tokens or annotations) to be separated by a

blank space for further training, we replace any existing

spaces within a word with an unassigned unicode charac-

ter (0xFF00) and then concatenate the words using spaces

when writing them to file.

By the end of this process, we had obtained four data files, all

containing space-separated words which can directly be used

by the translation model. The automated extraction process

for 1000 Java projects took 4.3 hours. From this data, we

eventually used 25 million sentences for training and a separate

2 million for validation.

D. Model Training and evaluation

We experimented with different frameworks (based on Ten-

sorflow and Torch) as well as different hyperparameters for the

models. We found OpenNMT [8] to be most suitable (in terms

of speed, resource requirements and ease of use), as it is a ma-

ture, full-featured framework rather than a research prototype.

All models were trained until no improvement in preplexity

was made for 2 full training epochs, and using the following

OpenNMT default parameters unless otherwise noted: 2 layers,

500 hidden LSTM units, input feeding enabled, batchsize:

64, dropout probability: 0.3 and a learning rate decay rate

of 0.5 applied at the end of each epoch where perplexity did

not improve. Combining both models, we built an annotation

engine that translates plain-text source code to annotated token

sequences. Table II shows examples for both successful and

failed translations. The source and target vocabulary sizes are

denoted as Vxsize and Vysize .

Tokenization. For translating plain-text source code (Vxsize :

2189) to lexing instructions (Vysize : 7) we trained a bi-

directional RNN operating on input and output sequences up

to 100 words (characters) long. After training for 7 epochs,

requiring 24 hours for each epoch, the resulting model exhib-

ited a perplexity of 1.11. Although this is very low, given that

the target vocabulary is tiny, and the number of tokens per

sequence quite large (a single line of code can contain dozens

of characters), any single mistake leads to a faulty tokenization

(see the second row in table II). A similar training session

using a uni-directional RNN diverged in the second epoch.

Token annotation. For annotating tokens (Vxsize : 50004,

Vysize : 91), we trained both a uni-directional (5½ hours per

epoch) and a bi-directional (7 hours per epoch) model for

11 epochs on sequences up to 50 words in length. Both

models reached the same perplexity of 1.28, although the

uni-directional one learned more quickly in the beginning.

This is a good result given the non-trivial target vocabulary.

Given how we constructed our training data, we know that

some predictions cannot accurately be made: some input

sequences consist only of a single curly bracket (}), and

without additional context it is impossible to predict the scope

and depth of such a token. Using a different code splitting

strategy, as discussed in section IV, would certainly alleviate

this issue and may improve the perplexity.

Conclusion. NMT is not very well suited for tokenizing

source code, but it is highly capable of recognizing token

types and their relative locations in an implied parse tree.

IV. FUTURE WORK

Our results suggest that NMT can effectively annotate tok-

enized source code given enough training data, but our strategy

for tokenizing source code using lexing instructions is ineffec-

tive. It may be better to first use a naive tokenization to reduce

the sequence length (e.g., splitting on non-alphanumerics)

and to train a model for extracting proper tokens from that

sequence. A direct translation from characters to tokens may

also be attempted, given that attention may be enough to

replace rare target-tokens (names of variables, method, etc.)

with the correct characters from the input sequence.

A. Alternative input data separation.

We split our input data on newlines. This means that

our training sequences are variable in length and that many

sequences likely exhibited similar features. On one hand, this

makes for a more regular data set, where the neural network

can more easily learn certain patterns (e.g., public at the

beginnig of a line can easily be recognized as a modifier).

On the other hand, this makes it more difficult for the neural

network to correctly translate irregular code. There exist

alternatives that may be worth exploring:

• Splitting the data such that the resulting token sequences

have a fixed length. This implies that the input sequence is

variable-length, because each token may entail a different

number of characters. This would likely make the ap-

proach more robust to strangely formatted code, as there

is no longer any assumption of where on a line a token

occurs more often. On the other hand, more training data

would be needed and the model would also need longer

to train in order to perform well.

• Simlilarily, a fixed input length could be used, i.e., split-

ting the input every n characters. This has the drawback

that characters at the beginning and end may not describe

an entire token. For these characters, a special ‘partial’

token could be used in the target sequence.

• Splitting based on semantics: for example for Java, we

may split the token sequences into class and method

definitions, control statements (for, while etc.) and

block statements. We suspect that this approach could

slightly outperform our current approach, since there

are fewer ‘spurious’ sequences, such as single closing

brackets, but only experimentation will tell.

B. Translating text or tokens to parse trees

While Vinyals et al. have already shown that NMT can parse

natural language sentences into parse trees, doing the same for

source code is more difficult: Typical natural language tree

banks work with under 50 different token types [9], a typical

Java grammar may have up to 100. Natural language trees are

also much less deeply nested compared to source code. To

make a direct translation from naively tokenized source code

to a linearized tree representation, it is likely necessary to use

multiple features for each target token, either (i) the token

type (same as in this study) and the parent token or scope, or

(ii) the token type and whether the current token starts or ends

a child scope. It may also make sense to use a meta-model

representation of the code (e.g., FAMIX [10]), instead of the

source language grammar when creating the training data.

C. Parsing noisy, out-of-context sources

Code snippets found on online forums or StackOverflow are

often taken out of their original program context and may be

missing parts necessary for compilation or further processing

(such as imports or variable definitions). Furthermore, they

may contain noise, such as ellipses or generic placeholders

(like foo or X). Even island parsers have difficulty parsing

noisy code and we propose that neural machine translation

could significantly improve on existing techniques. Concretely,

one can (i) train a simple sequence-learning model (with the

goal of predicting the next token or character) on correctly

formatted code from GitHub, (ii) use the model to detect and

catalogue noise in sources from StackOverflow, (iii) apply the

same noise to the original sources used to train the model

generating synthetic ‘noisy’ input sequences, and (iv) train

a new model that de-noises the code using placeholders or

best-match tokens from the original training data. Contrary to

existing methods of working with code from StackOverflow

(e.g., displaying full snippets deemed relevant [11]), a model

able to parse these snippets could form the basis for more

sophisticated recommender systems.

V. CONCLUSION

This pilot study yields a negative and a positive result: NMT

is not the ideal model for simply tokenizing source code, but

it is certainly a strong contender for annotating source code

with contextual information. Our training data creation tool

can easily be adapted to create large-scale datasets containing

other kinds of sequences (and annotations) to perform further

experiments. Creating full-fledged parse-trees is more difficult

when working with source code than when working on natural

language, but simpler representations (e.g., using meta models)

may be feasible.

We conclude that NMT can learn the first lesson in master-

ing a programming language: recognizing syntax and identify-

ing types of tokens. Perhaps, NMT and related neural network

models can learn to understand more complex concepts as well

- from scratch, rather than by the hand of a developer hard-

coding solutions for specific problems.

ACKNOWLEDGEMENTS

This research is partially supported by the Swiss National

Science Foundation (Project №149450 – “Whiteboard”). We

thank the Nvidia Corporation for providing the Titan X GPU

used for this research.

REFERENCES

[1] M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyvanyk,
“Toward deep learning software repositories,” in Mining Software Repos-

itories (MSR), 2015 IEEE/ACM 12th Working Conference on, May 2015.
[2] A. Karpathy and F. Li, “Deep visual-semantic alignments for

generating image descriptions,” CoRR, vol. abs/1412.2306, 2014.
[Online]. Available: http://arxiv.org/abs/1412.2306

[3] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” CoRR, vol. abs/1409.3215, 2014. [Online].
Available: http://arxiv.org/abs/1409.3215

[4] O. Vinyals, L. Kaiser, T. Koo, S. Petrov, I. Sutskever, and G. E.
Hinton, “Grammar as a foreign language,” CoRR, vol. abs/1412.7449,
2014. [Online]. Available: http://arxiv.org/abs/1412.7449

[5] M. thang Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation.”

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[7] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the

properties of neural machine translation: Encoder-decoder approaches,
2014.

[8] G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M. Rush, “OpenNMT:
Open-Source Toolkit for Neural Machine Translation,” ArXiv e-prints.

[9] A. Taylor, M. Marcus, and B. Santorini, “The penn treebank: An
overview,” 2003.

[10] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, “A meta-
model for language-independent refactoring,” in Principles of Software

Evolution, 2000. Proceedings. International Symposium on, 2000.
[11] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,

“Mining stackoverflow to turn the ide into a self-confident programming
prompter,” in Proceedings of the 11th Working Conference on Mining

Software Repositories, ser. MSR 2014. ACM, 2014.

http://arxiv.org/abs/1412.2306
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1412.7449
http://dx.doi.org/10.1162/neco.1997.9.8.1735

