
Empirical Software Engineering (preprint)

Redundancy-free Analysis of Multi-revision
Software Artifacts

Carol V. Alexandru · Sebastiano
Panichella · Sebastian Proksch · Harald
C. Gall

30. April 2018

Abstract Researchers often analyze several revisions of a software project to
obtain historical data about its evolution. For example, they statically ana-
lyze the source code and monitor the evolution of certain metrics over multi-
ple revisions. The time and resource requirements for running these analyses
often make it necessary to limit the number of analyzed revisions, e.g., by
only selecting major revisions or by using a coarse-grained sampling strategy,
which could remove significant details of the evolution. Most existing analy-
sis techniques are not designed for the analysis of multi-revision artifacts and
they treat each revision individually. However, the actual difference between
two subsequent revisions is typically very small. Thus, tools tailored for the
analysis of multiple revisions should only analyze these differences, thereby
preventing re-computation and storage of redundant data, improving scalabil-
ity and enabling the study of a larger number of revisions. In this work, we
propose the Lean Language-Independent Software Analyzer (LISA), a generic
framework for representing and analyzing multi-revisioned software artifacts.
It employs a redundancy-free, multi-revision representation for artifacts and
avoids re-computation by only analyzing changed artifact fragments across
thousands of revisions. The evaluation of our approach consists of measur-
ing the effect of each individual technique incorporated, an in-depth study of
LISA’s resource requirements and a large-scale analysis over 7 million program
revisions of 4,000 software projects written in four languages. We show that
the time and space requirements for multi-revision analyses can be reduced
by multiple orders of magnitude, when compared to traditional, sequential
approaches.

Software Evolution and Architecture Lab - s.e.a.l.
Binzmühlestrasse 14
CH-8050 Zürich
Switzerland
E-mail: {alexandru,panichella,proksch,gall}@ifi.uzh.ch

2 Carol V. Alexandru et al.

1 Introduction

Static analysis is crucial for modern software development. It is omnipresent
both in software engineering research and practice and has a broad range of
applications. For example, it can be used to enforce coding guidelines [70],
allocate resources and estimate future effort [29,49,59,85], suggest refactoring
opportunities [20, 29, 62, 80], detect bugs [46, 66] and duplicates [15, 42], or
assert quality properties [25]. Over the years, many approaches went beyond
pure static code analysis and also leverage historical information related to the
development of open-source projects. This information not only represents an
interesting source for building tools, e.g., to discover new patterns and anti-
patterns [57,64,73,84] or for change and bug prediction [29,46,48,66,67], but
is also the body of a whole line of research that is interested in understanding
the evolution of software systems.

Software evolution research deals with questions concerning the develop-
ment and change occurring within a software project. Naturally, this research
relies on historical data about structured and semi-structured artifacts. Thus,
researchers have created a wide spectrum of approaches to extract pertinent
information from software repositories that facilitate studies on software de-
velopment and software evolution [12, 24, 31, 33, 60, 69]. They have also per-
formed historical analyses of popular software projects, such as the Firefox
web browser [18, 91] and projects coming from open source software ecosys-
tems (e.g., the Apache Software Foundation) [13,19,39,61,87].

Due to the lack of tools that are able to efficiently analyze many revisions at
once, researchers usually fall back to regular static analysis tools for extracting
information and monitoring properties of software systems over time. These
tools often can only be executed on each individual revision [12] which makes
this approach hard do adopt when the goal is to study large projects. Indeed,
large projects typically feature a vast number of revisions and analyzing all of
them individually is computationally expensive. To make these studies feasible,
researchers typically analyze a limited number of revisions by either focusing
on release revisions or through sampling a subset of the available revisions.

However, such coarse-grained representations threaten the representative-
ness of the results [65], because details might be lost in the process. A concrete
example from the area of testing is the detection of test smells [77, 90]. The
state-of-the-art tools DECOR [63] and JDeodorant [83] cannot analyze mul-
tiple revisions of test artifacts. For instance, JDeodorant requires compiling
source code and importing each project into an Eclipse1 workspace. As a re-
sult, empirical studies on test smells are typically limited to a specific set of
major releases from selected software projects [14,90].

Some researchers have studied the repetitiveness [68] or uniqueness [76]
of changes. Others have sketched tools to identify and remove redundancies
between program revisions in an analysis. For example, Kawrykow et al. pro-
pose a tool for detecting non-essential code differences [44] and Yu et al. [89]

1 http://www.eclipse.org/

Redundancy-free Analysis of Multi-revision Software Artifacts 3

propose a technique to reduce changes to those relevant for a particular devel-
opment task. However, no concrete solution directly addresses the problem of
redundancy in software evolution analysis itself.

A second problem involving redundancy is the analysis of projects consist-
ing of different programming languages. Not all, but many software analysis
tools are limited to one specific language (e.g., linters, bug detection tools and
metric computers) and researchers analyzing multi-language projects or mul-
tiple projects written in different languages need to apply multiple tools that
sometimes diverge in how exactly they compute and report measurements or
they need to implement new tools from scratch. This is the case even though
many concepts (like methods, attributes and cyclomatic complexity) are very
similar in different programming languages. While multi-language program
analysis has been explored in recent literature [11,50], working approaches are
usually based on a concrete metamodel [26,78,82] for the analysis or manipula-
tion of multi-language software code. However, these models are comparatively
heavy-weight and always require a translation from an existing program rep-
resentation (such as an AST) to an instance of the model. Furthermore, they
are not designed with performance as a primary goal in mind.

Given these circumstances, we base our work on two observations: individ-
ual revisions of a software system typically only have minor differences and
analyses of different programming languages exhibit significant overlap. We
argue that avoiding redundancies in the representation and subsequent analy-
sis of multi-versioned, multi-language artifacts can facilitate studying a larger
number of more diverse projects and investigating a more fine-grained history
involving a substantially higher number of revisions. Thus, this research can
be condensed into two main research problems:

P1: Redundant analysis must be minimized to effectively perform large-scale
software evolution studies on full program histories.

P2: Analyzing projects involving more than one language on a larger scale
requires multi-language abstractions to be both expressive and scalable.

As a solution to both problems, we present the Lean Language-Independent
Software Analyzer (LISA), a multi-revision graph database and computa-
tional framework for analyzing software artifacts across thousands of revisions
with minimum redundancy. Even though P1 and P2 are two distinct prob-
lems, a common solution for both required us to consider certain trade-offs.
For example, domain knowledge can be used to optimize the performance of
multi-revision analyses for one specific programming language, but the solu-
tion would no longer be generic and language independent. Likewise, generic
metamodels that support several languages tend to be heavyweight, whereas
the high-speed requirement forces us to find a more lightweight solution. Ulti-
mately, we believe that a generic solution is of greater value for the scientific
community and we have designed LISA as a generic approach for representing
and analyzing structured artifacts that exist in countless different revisions.
While this paper is focused on one particular use case, namely the static anal-
ysis of plain-text source code and its parsed abstract syntax trees (ASTs),

4 Carol V. Alexandru et al.

the core framework is agnostic to the type of multi-revision graph that is the
subject of an investigation.

Our experiments show that the techniques we present in this paper, which
could be individually applied to existing tools, are highly effective. When
combined, they reduce the computational effort and resource requirements
to around 4% of what would be required for an analysis of individual revisions
(depending on the programming language). We also show that our light-weight
approach of applying generic analyses to different programming languages is
very easy to use and implement. These achievements enabled us to analyze the
complete source code in every revision of 4,000 projects written in 4 different
programming languages.

In summary, this paper presents the following main contributions:

– We conceive several techniques to remove redundancies in multi-revision
software analysis and implement a framework, LISA, for loading, represent-
ing and concurrently analyzing hundreds of thousands of program revisions
at minimal marginal cost for each additional revision.

– We introduce lightweight entity mappings, a novel approach enabling ad-
hoc mappings between artifact-specific entities and cross-artifact semantic
concepts without an actual translation to a pre-defined metamodel. These
mappings identify the parts that need to be observed over the entire history
of a software artifact and play a crucial role in the redundancy reduction.

This paper is an extended version of our previous work [9]. Compared to the
previous paper, it includes the following original contributions:

– We significantly extend the size of the artifact study by an order of mag-
nitude and analyze 4, 000 projects written in 4 different languages.

– We integrate Python into the framework to demonstrate LISA’s extensibil-
ity and perform a Python-specific artifact study. We further demonstrate
this extensibility in a detailed description of all required steps to add sup-
port for the Lua programming language.

– We augment the description of our approach with a running example, di-
rectly measuring the effectiveness of each technique we describe.

– We perform an in-depth analysis of the resource requirements and scala-
bility of LISA given different amounts of memory and CPU cores.

– We further discuss current limitations of LISA as well as the potential
future uses for other kinds of software evolution research.

We provide a comprehensive replication package2 together with this work. It
contains all scripts and runners that we have used in our experiments, the
1.6 GB of fine-grained code measurements for the 4,000 projects analyzed in
our study, and the required scripts to obtain and interpret the original source
code. Furthermore, all source code, including alternate versions and analyses
of our evaluation, is available as open source in the project repository.3

2 https://doi.org/10.5281/zenodo.1211549
3 https://bitbucket.org/sealuzh/lisa

https://doi.org/10.5281/zenodo.1211549
https://bitbucket.org/sealuzh/lisa

Redundancy-free Analysis of Multi-revision Software Artifacts 5

The rest of this paper is structured as follows. In Section 2, we present
the different techniques to reduce redundancies in multi-revision and multi-
language research implemented in LISA, as well as the limitations of our ap-
proach. Section 3 provides an in-depth evaluation regarding the performance,
resource requirements and adaptability of LISA. In Section 4, we discuss our
experience with LISA in performing practical software evolution studies and
the insights we gained from our experiments. Furthermore, we elaborate on
future work, both in terms of how to improve LISA and how it may be used
in future research scenarios. We re-visit related work on analyzing software
evolution in Section 5 and relate it to our own contribution. We conclude the
paper in Section 6.

2 Creating a Lean Language-Independent Software Analyzer

In the following sections, we describe several techniques which significantly re-
duce the redundancies inherent to analyzing multiple revisions of a program.
The combined workflow and architecture diagram shown in Fig. 1 summarizes
the following components. We present a multi-revision graph representation
of source code which vastly reduces both the memory required to represent
source code of multiple program revisions and the computational effort re-
quired for its analysis (1 , Section 2.1.3). By operating directly on bare Git
repositories (2) and by parsing source code asynchronously across multiple
revisions (3 , Section 2.1.2), available computing power is utilized more effi-
ciently, and by sharing state across multiple revisions at the AST node level,
redundant storage of data is avoided entirely (4 , Section 2.1.5). Using an
asynchronous computational paradigm (5 , Section 2.2), one or more anal-
ysis suites (6 , Section 2.2.1), can be executed in parallel without conflicts
or blocking waits. Flexible mappings between parser-specific node types and

Git URLs

for each project

Git

clone

Cloned

Git

parse all revisions

in parallel

Multi-revision Graph

async compute

DB /

CSV

store

results

LISA library

ANTLR

grammars

generate parser

Light-weight mappings

Grammar

labels

Analyses
Generic anal-

ysis concepts

filter

AST
generically apply

shared

state

1

2

3
4

5

67

8

9

Fig. 1: Workflow and architecture overview.

6 Carol V. Alexandru et al.

analysis-specific keywords (7 , Section 2.3) not only enable the analysis of
multiple programming languages with the same analysis instructions (8), but
also avoid representing nodes which are unnecessary for a particular analysis
(9), further reducing the workload of any specific analysis. All the techniques
described in this paper could be applied independently to improve different
aspects of existing applications. We combined them in our research tool, LISA.

Running example. While Section 3 contains an in-depth evaluation, we pro-
vide a running example throughout the approach to illustrate the immediate
effect of each technique on the analysis of multiple revisions. We do this by
sharing runtime metrics and by comparing LISA to traditional approaches and
handicapped versions of itself, where single features are disabled selectively for
the same analysis. This allows us to make statements on the effectiveness of
individual techniques, all else being equal. We chose the Reddit project as an
example: Reddit is a social media site currently ranking 8th on Alexa [5], a
renowned web traffic analysis index. Reddit is primarily written in Python
and JavaScript and the source code powering Reddit is available on GitHub.
The latest revision contains roughly 70,000 lines of Python- and 50,000 lines
of JavaScript code. We chose Reddit because it is an industrial-scale product,
is composed of more than one language, is large enough for a representative
discussion, but small enough such that handicapped versions our tool can still
produce results within reasonable time.

We enable both the Python and JavaScript parsers in LISA and apply
the two analysis suites used in the two artifact studies described in Section 4
simultaneously: the object-oriented analysis suite computes complexity metrics
and counts entities such as classes, methods and variables, while the Pythonic
analysis suite detects Pythonic idioms [71]. Throughout the approach, we will
highlight information relating to the running example as follows:

Example 1: If one were to analyze each of the 7,947 revisions of the Reddit
project independently, for example by checking out the source code and ap-
plying an analysis tool to the working directory, a total of 2,195,805 files and
595,232,615 lines of code would need to be checked out, parsed and analyzed.
A handicapped version of LISA which follows this exact procedure, needs
6.9 seconds on average to check out sources, compute code metrics and de-
tect Pythonic idioms for a single revision of Reddit (on a server with 64 GB
memory and 12 CPU cores, including checkouts and data persistence). Over
all revisions, this quickly adds up to a total runtime of 15 hours and 9 min-
utes. Using the proper, fully optimized version of LISA, the same analysis
completes in 15 minutes and 43 seconds: 5 seconds to clone the project from
GitHub, 2 seconds to extract all commit metadata and build an incremental
list of the 14,495 files – spanning across all revisions – that actually need to
be parsed, 12 minutes to parse them, 4 minutes for the actual analysis and
11 seconds to store the results. That is 119ms on average per revision, or
8.4 revisions per second.

Redundancy-free Analysis of Multi-revision Software Artifacts 7

Listing 1: Boilerplate for using a new ANTLRv4 grammar with LISA

1 object AntlrCSharpParser
2 extends AntlrParser[CSharp4Parser](AntlrCSharpParseTree) {
3 override val suffixes = List(".cs")
4 override def lex(input: ANTLRInputStream) = new CSharp4Lexer(input)
5 override def parse(ts: CommonTokenStream) = new CSharp4Parser(ts)
6 override def enter(parser: CSharp4Parser) = parser.compilation_unit ()
7 }

2.1 Multi-revision graph representation of source code

In this section, we describe a condensed graph representation which allows us
to store and analyze the source code of thousands of revisions simultaneously.

2.1.1 Graph representation

We define a directed graph as an ordered pair G = (V,E), consisting of a ver-
tex set V and an edge set E. Each vertex v ∈ V is a tuple (i,Mv) consisting of
a unique identifier i and a map Mv containing metadata on the vertex in the
form of (k,m) key-value pairs. Every edge e ∈ E is a tuple (s, d,Me), identified
by the source and destination vertices s and d, and can also contain a map Me

with metadata describing the edge. This graph is used to model arbitrary rep-
resentations of program artifacts. For example, using a language grammar, one
can create a concrete syntax tree (CST) for each file in a project, such that ev-
ery vertex v represents a symbolic token in the original source code, connected
to zero or more child vertices, populating the graph with disconnected trees
(one for each file). In this case, vertices identify by their file name and syntax
tree path and store their literal token as metadata, while edges store no meta-
data. The syntax tree path of a node could consist of its type and an index to
discern siblings, e.g., /src/Main.java/ComponUnit0/Class0/Method4 for the
5th method of a class contained in a file Main.java. How vertices are identified
is up to the parser which adds the vertices to the graph. Similarly, one can
build an abstract syntax tree (AST), where multiple tokens are interpreted
and combined into higher-level entities. In that case, vertices also store addi-
tional metadata depending on the vertex type. For example, an AST vertex
may represent a Java class and store metadata such as its name and visibility
modifier. A graph is also suitable for modelling a compiled program, in which
case relationships between different parts of the program can be represented
by additional edges containing metadata about the relationship, e.g., whether
it describes attribute access or a method call. In this case, vertices could be
identified by their proper names, as long as the identifiers are unique. For
example, a Java method with the signature String getName(int id) could
be identified by org.example.core.Main/String.getName(int). The meta-
data can also serve as a container for additional analysis data, e.g., a vertex
representing a class may contain a method count as part of the metadata.

Both the graph model and its implementation are agnostic regarding the
type of representation. LISA uses Signal/Collect [79], a low-level graph frame-
work, to store the graph and exposes an interface with just two mandatory

8 Carol V. Alexandru et al.

members for clients to implement: a definition of suffixes of file names that
the client supports and a parse routine, which is provided with the content
of a file and an agent for adding vertices and edges to the graph. This means
that any sort of source data can be used in conjunction with LISA, as long as
it can be represented as a graph. Hence, the data contained in Mv and Me is
determined by the kind of graph that is loaded and by the analyses performed.
If parse errors occur, it is up to the parser to handle them, e.g., by ignoring
the file for that particular commit. Our implementation ships with adaptors
for the JDK javac Java parser, the JDK Nashorn JavaScript parser, the native
cpython Python parser and for ANTLRv4. ANTLR is a parser generator for
which existing grammars can be found for many languages.4 Given an ANTLR
grammar, it is possible to create a new LISA-compatible parser with only a
few lines of boilerplate code, as shown in Listing 1.

2.1.2 Asynchronous metadata extraction and source code parsing

Traditional tools typically check out individual revisions from the version con-
trol system (VCS) to act on source code contained in files and folders. Using
Git, for example, this means first reading all files contained in a specific re-
vision from the Git database and writing them to a working directory, before
actually parsing them and then moving on to the next revision and repeating
this process for every single revision. It also means that for any specific revi-
sion, even when parsing files in parallel, it would always be necessary to wait
for the largest files to finish parsing before being able to move on to the next
revision.

Our implementation separates this process into two separate stages, both
of which can be parallelized efficiently: 1. identifying all relevant files to be
parsed in the entire history of the project, and 2. actually parsing the files.
Whereas centralized version control systems like SVN or CVS rely on a server
to checkout files for specific revisions into local working directories, Git is a
decentralized solution where a local file-based database contains the data of all
revisions. This local Git repository is called bare if no working copy has been
checked out. The Git database is a content-addressable file system, consisting
of a key-value store (to uniquely identify objects such as file blobs) and a tree
structure. Using the tree, the identifiers of both commits and blobs contained
therein can be resolved. It is thus possible to access such blobs directly via their
ID [22]. To use LISA with Git, we implemented LISA’s SourceAgent interface,
which mandates the preliminary creation of key-value pairs (p,B) for each file
in any revision of the project, where p uniquely identifies a file by its path and
B denotes a chronologically ordered sequence of sources (i.e., Git blob ids)
for the file in different revisions. This process can conveniently be parallelized:
LISA traverses the Git graph database and uses a pool of workers which act
on individual revisions and extract those blobs whose identifier matches the

4 For example, https://github.com/antlr/grammars-v4 contains grammar files for over
60 structured file formats.

https://github.com/antlr/grammars-v4

Redundancy-free Analysis of Multi-revision Software Artifacts 9

Fig. 2: Contrary to the traditional method of checking out (i.e., reading and
writing) all files in each revision and then parsing the source code from the
file system (a), parsing the source code directly from a bare Git repository
requires only a single read operation per relevant file (b).

suffix of any enabled parser. Using this technique, files of different revisions
are extracted simultaneously and without the need to ever check out a working
copy of the code, as illustrated in Fig. 2. Then, in the second step, each pair
can be assigned to one of many parallel workers, which parse the sources for a
uniquely identified file sequentially, while sources for different files can be read
independently from each other, even if they belong to different revisions.

The approach has five distinct performance benefits over the traditional
approach: 1. Avoiding the checkout to a working directory first reduces the
number of reads for each relevant file from 2 to 1, because each blob is only
read once during parsing and never for a checkout, and it reduces the number
of writes from 1 to 0, since blobs are never re-written to the file system. 2. It
avoids the unnecessary checkout of any other assets (e.g., images) contained
in the project, which are not even relevant for the analysis. 3. It allows for the
asynchronous, parallelized parsing of many revisions simultaneously, which is
otherwise only possible by checking out multiple copies of the entire source
code to different locations. 4. Files are only read in revisions in which they
were actually changed. 5. It avoids having to wait on the parsing of large files
in every single revision. Instead, LISA can efficiently parallelize the parsing of
many different files from different revisions.

This technique, requiring direct access to data blobs of different commits,
is easily applied to decentralized version control systems like Git and Mercu-
rial. For centralized VCS like SVN, CSV or TFS, which, in principle, support
checking out single files of specific revisions, a low latency network and a fast
server would be required, although converting such repositories to Git would
likely be the better option.

Example 2: The parallelized metadata and file blob identification for the
Reddit project took just 1.63 seconds using LISA. For comparison, simply

10 Carol V. Alexandru et al.

checking out all 7,947 revisions of the project by looping over git log and
using git checkout takes 9 minutes and 40 seconds on the same hardware.
This is a fair comparison because in both cases, actually parsing the source
code is not included. This shows, unsurprisingly, yet conclusively, that di-
rectly accessing Git eliminates the time spent on checking out source code,
which can be significant even for medium-sized projects such as Reddit. To
exactly identify the difference between asynchronously parsing files of all
revisions compared to parsing them from checked-out files one revision at a
time, we tracked the time spent parsing (excluding any other activity) of the
properly optimized version of LISA and a handicapped version which uses
checkouts, yet also parses files of a single revision using parallel workers.
Measuring only the actual time spent parsing files into the graph, the asyn-
chronous version spends 11 minutes and 38 seconds, while the handicapped
version needs 37 minutes and 5 seconds. This illustrates the significant slow-
down caused by the explicit checkouts and having to wait for the largest files
to finish parsing in each revision.

2.1.3 Multi-revision graph representation.

A single commit often changes only a tiny part of any file. This means that
the graph representations of a file in two adjacent revisions overlap to a large
degree and that most vertices are unchanged for many consecutive revisions
(thousands, in practice). To avoid creating separate graphs for each revision,
we extend our graph representation such that each vertex tuple (i, R,MvR)
carries an additional set R denoting one or more revision ranges. A revision
range r(s, e) consists of start and end revisions s and e, and indicates in which
revisions the vertex exists. Likewise, the metadata MvR of a vertex now stores
metadata for each revision range that the vertex represents. Edges on the
other hand do not require any special treatment: whether an edge exists in a
revision is determined by whether or not the two connecting vertices exist. In
this paper, we will generally denote ranges as pairs of dash-separated numbers
in brackets. For instance, a node that exists in revisions 10 to 15 and 19
to 20 is denoted as {10-15,19-20}. No information is lost using this graph
representation, as the structure of a single revision can still be identified simply
by selecting only vertices whose revision ranges contain the desired revision.

Fig. 3: Exemplary ASTs of four revisions and their shared representation,
where revision ranges indicate which revisions each node exists in.

Redundancy-free Analysis of Multi-revision Software Artifacts 11

Even so, it saves a tremendous amount of space, because the majority of the
graph remains unchanged for much of the entire evolution of a project. Figure 3
shows an example of four revisions of a tiny, exemplary AST. Individually,
these revisions contain 30 AST nodes. However, the shared representation (5)
contains only 10 nodes. 5 of them exist in all revisions ({1-4}), while the
others exist in one or more revisions, but not all of them. In total, 11 ranges
are necessary to capture all 30 vertices contained in the four original revisions
without any information loss. Thus, we can calculate a vertex compression
ratio of 11/30 = 0.36.

Example 3: All 7,947 revisions of the Reddit project contain a total of
2,195,805 files. One would need 1,003,984,942 vertices to represent the ASTs
contained in these files individually. Using the multi-revision graph repre-
sentation, only 2,014,720 vertices, together containing 2,991,074 ranges, are
required. Thus, the vertex compression ratio using LISA to analyze Red-
dit is 2,991,074/1,003,984,942 = 0.0030 after parsing. In other words, the
multi-revision representation only needs about 0.3% of the vertices required
to represent all revisions individually.

The interface provided by LISA for clients to populate the graph is trans-
parent with regard to this multi-revision representation. When a client reads a
file for a particular revision and adds a vertex with an identifier i to the graph,
LISA transparently handles the case where the vertex already exists and adds
or extends a revision range inside the existing vertex to accommodate the new
revision. This has several important consequences:

1. An entity represented by the same vertex may contain differing metadata in
different revisions. A simple example for this are literal tokens: There may
be an “Integer” AST node, whose metadata contains the number 5 as a
literal in one revision, but 7 in another. In this case, two separate, adjacent
ranges with different metadata are necessary to accurately represent both
revisions using the same graph vertex.

2. If the same file was parsed in two adjacent revisions (e.g., 5 and 6), then
it makes sense to merge the ranges {5-5} and {6-6} into a common range
{5-6} for all vertices that underwent no change.

3. If a file was not changed in a revision, then, as per the previous section, it
will not be parsed. This leads to erroneous gaps in the revision ranges of a
vertex. For example, if a file is changed in revisions 5 and 10, it will not be
parsed in revisions 6 to 9, resulting in two ranges {5-5} and {10-10}. But
the code within that file is actually present in-between these two revisions,
necessitating a range extension for a final configuration of {5-9,10-10}. If a
vertex contains the exact same metadata in two subsequent revision ranges,
it is further possible to merge them into a single range, e.g., {5-10}.

4. Finally, the metadata of a vertex for two adjacent revisions may also exhibit
some overlap. Imagine a vertex, representing a method, during a compu-
tation which calculates the cyclomatic complexity and statement count of
individual entities. Between two adjacent revisions, the method may have

12 Carol V. Alexandru et al.

the same name and complexity, but a different statement count. In this
case, two separate ranges are necessary to describe the vertex, yet most of
the metadata is shared and it would be redundant to store the unchanged
name and complexity twice.

In the following section, we describe the data structures and algorithm used
to efficiently build and store the revision-specific data in such a fashion that
neither vertices nor metadata are unnecessarily duplicated.

2.1.4 Sparse graph loading algorithm.

We explain the LISA range compression, shown in Algorithm 1, by following
the evolution of a single syntax tree vertex v of an exemplary project with
just 10 revisions, as illustrated in Table 1. The vertex v is parsed from a file
f which Git stores as a blob for each revision where it underwent any change.
The first row in Table 1 indicates the different revisions of the project, enu-
merated sequentially starting at 0. The letters in the second row denote unique
metadata configurations that exist in v. I.e., in revisions with the same letter
the metadata is identical. In this example, the node has the same metadata in
revisions 0 to 3 (‘A’), then the node is deleted in revision 4, then it reappears

Algorithm 1: LISA range compression algorithm. The ranges variable is a map
from revision ranges to metadata and contains all metadata for a single vertex
(Assignment: ←, Reference: →).

1: procedure updateVertex(v, rev,meta)
2: createRange(v.ranges, rev,meta)
3: queue(compressRanges(v.ranges, v.mark, rev − 1))

4: procedure createRange(ranges, rev,meta)
5: new ← ({rev, rev} → meta)
6: ranges← ranges + new

7: procedure compressRanges(ranges,mark, end)
8: if end = null then . Case 1
9: mark ← ranges.head

10: else
11: next← ranges.get(end + 1)
12: if mark = null & next = null then . Case 2
13: doNothing
14: else if mark = null & next 6= null then . Case 3
15: mark ← next
16: else if mark 6= null & next = null then . Case 4
17: extended← ({mark.start, end} → mark.meta)
18: ranges← ranges−mark + extended
19: mark ← null
20: else if mark 6= null & next 6= null then
21: if mark.meta = next.meta then . Case 5
22: merged← ({mark.start, next.end} → mark.meta)
23: ranges← ranges−mark − next + merged
24: mark ← merged
25: else if mark.meta 6= next.meta then . Case 6
26: extended← ({mark.start, end} → mark.meta)
27: ranges← ranges−mark + extended
28: mark ← next

Redundancy-free Analysis of Multi-revision Software Artifacts 13

with different metadata in revision 6 (‘B’) and then the metadata is changed
again in revision 8 (‘C’). The third row indicates whether the file f has been
affected by a revision. In this example, f is parsed in revisions 0, 1, 3, 4, 5, 6
and 8. This implies that in revisions 2, 7 and 9 there were no changes in f ,
meaning that all vertices that existed in previous revisions (1, 6 and 8) are
unchanged and still exist, even if the file was not parsed again. In revisions 4
and 5, f was parsed, but v did not appear in the source code of those revisions.

When a client adds a vertex to the graph and this vertex already exists,
LISA updates the vertex (updateVertex in Algorithm 1) by simply adding
another single-revision range and queuing a range compression task leading
up to the preceding revision. Hence, the range compression itself also runs
asynchronously and “cleans up” behind the parser, compressing ranges added
by the parser. For example, the parser may already have parsed the first 4
revisions (0 to 3), meaning that it will have created 3 single-revision ranges
{0-0}, {1-1} and {3-3} in vertex v. Since the metadata of v is the same in all
these revisions, including revision 2, where no changes were made to the file at
all, the goal of the range compression algorithm is to combine all these ranges
into a single range {0-3}.

Table 1: Metadata of an exemplary graph vertex.

Revision 0 1 2 3 4 5 6 7 8 9
Content A A A A B B C C
Touched

Revision Internal revision range representation End Mark Case

C
h

a
n

g
e
 o

f
in

te
rn

a
l

re
p

re
s
e
n

ta
ti

o
n

 d
u

ri
n

g
 p

a
rs

in
g 0

A
-

-
1

A {0-0}

1
A A

0
{0-0}

5
A {0-1}

2 A {0-1}

3
A A

2
{0-1}

5
A {0-3}

4
A

3
{0-3}

4
A -

5
A

4
-

2
A -

6
A B

5
-

3
A B {6-6}

7 A B {6-6}

8
A B C

7
{6-6}

6
A B C {8-8}

9 A B C {8-8}

final
A B C

9
{8-8}

4
A B C -

14 Carol V. Alexandru et al.

We now step through the execution of the compression algorithm for each
revision of the example vertex. Note that for each possible case in the algo-
rithm, Table 1 contains the case number in the last column. Also, note that
“marking” a range simply means saving a reference to that range as a tempo-
rary property of the vertex. This mark indicates whether a revision range is
“open-ended” in the sense that it may be extended in the next revision. After
parsing revision 0, the compression algorithm simply needs to mark the first
existing range in v (case 1). After parsing revision 1, it finds a marked range
and an existing range at revision end + 1 = 1. It compares the two ranges,
finds that their data is identical (case 5), merges them and marks the result-
ing range. Revision 2 saw no changes in f , so v remains unchanged by the
parser. Note however that in reality, the code represented by v continued to
exist, hence the revision range needs to be extended. This happens in revision
3, where f was modified again. The algorithm finds the marked range {1-2}
and another range at end + 1 = 3 containing the same metadata, prompting
a merge (case 5). In revision 4, there exists a marked range, but there is no
range at end+1 = 4. A merge is not necessary, so it just unmarks the existing
marked range (case 4). In revision 5, there is no marked range and no next
range, so nothing happens (case 2). This simply means that even though f
had undergone changes, they did not affect v, which does not exist in end or
in next. In revision 6, there is no marked range, but there is a next range,
so it is marked (case 3). Revision 7 saw no changes. In revision 8, there is
a marked range and a next range, but they are not equal, so the marked
range is extended until end and then the next range is marked instead (case
6). Revision 9 saw no changes. Once all revisions have been parsed, a final
pass is made through all vertices in the graph, extending any marked ranges
to include the last revision. This is necessary because these marked ranges
previously ended with the revision where the file was last parsed, while these
vertices actually exist until the end of the project history. In this example, the
marked range is extended to include the last revision (case 4).

As a result of the compression, instead of storing metadata for each revision
(eight in case of v) only three ranges with different metadata remain (visible in
the final row of Table 1). In practice, revision ranges tend to comprise a much
larger number of revisions. If a file is added to a project in an early revision,
it can be that the majority of vertices within exhibit the same metadata for
thousands of subsequent revisions.

Example 4: We find a total of 2,195,805 JavaScript and Python files across
all revisions of Reddit. However, LISA identified 14,495 blobs during the
preliminary Git metadata extraction step, which represent changed versions
of these files that actually need to be parsed.The graph loading algorithm
transparently takes care of extending the ranges of nodes belonging to pre-
viously parsed files and thus creates the lossless representation of all files.

All operations in this algorithm can be executed in constant or ‘effective
constant’ time (where assumptions about hash distribution and vector length

Redundancy-free Analysis of Multi-revision Software Artifacts 15

Fig. 4: Range splitting during the computation does not duplicate any data
thanks to the use of immutable data structures for storing analysis data.

exist5), including (i) identifying or marking the last range to be extended: the
reference (or ‘mark’) is an attribute within the node and ranges of a single node
are added chronologically, so there is no need to look up anything, (ii) creating
a new range within a node or extending an existing range: immutable Scala
map lookups and extensions happen in effective constant time; (iii) adding new
vertices: vertices are stored in an IntHashMap, which has effective constant
time inserts; (iv) queuing a compression task: looking up a vertex to deliver
a compression task to also happens in effective constant time; (v) comparing
adjacent ranges: vertex metadata (including analysis data) is stored as Scala
case classes, which implement a hash-based equals function that executes in
effective constant time.

Avoiding any complex operations is possible, because, as previously ex-
plained in this section, blobs for the same uniquely identified file are parsed
chronologically. It would be possible to redesign this algorithm such that files
could be parsed in arbitrary order, and then merged, but it would necessitate
looking up which existing revision range of a vertex is closest to the newly
added revision, which may come after or before the added revision. The re-
sulting algorithm would be much slower than what we propose, relying on the
sequential parsing of blobs referencing a specific path.

2.1.5 Range splitting and shared metadata.

After loading the graph, the initial metadata for a vertex will likely be con-
tained in a small number of revision ranges. However, once the graph is being
analyzed (as detailed in the following section), the metadata in different ranges
may start to diverge to a certain degree. For example, a vertex representing a
class might exist in revisions 5 to 280 resulting in a single, all-encompassing
revision range {5-280}, but its attribute count could be computed as 4 in the
first 100 revisions and as 7 in the remaining revisions. This means that the re-
vision range {5-280} needs to be split into {5-105,106-280}, and that separate
metadata needs to be stored for those two revision ranges. LISA performs these
splits dynamically during the computation whenever necessary, but it also de-

5 See http://goo.gl/7grx8L for more information on the performance of Scala collections.

http://goo.gl/7grx8L

16 Carol V. Alexandru et al.

fragments vertex ranges where necessary, merging adjacent ranges which store
the same metadata.

However, storing completely separate metadata for each revision range
would again introduce significant data duplication: for the aforementioned
class vertex, only the attribute count will be different for the two ranges.
Hence, to avoid data duplication, we use referentially transparent, immutable
data structures to store the metadata. Figure 4 shows how metadata for the
vertex is stored pre- and post split. No data is copied upon the split, since
both new ranges share references to those parts of the metadata which have
not changed. In fact, the default state for any vertex (which is defined by the
user depending on the analysis) exists only once in the entire computation and
all ranges only store a reference to it. The concrete implementation for this
uses Scala case classes for storing data, an example for which can be seen in
line 11 of Listing 2.

Example 5: As pointed out before, the vertex range compression ratio for
Reddit after parsing was 2,991,074/1,003,984,942 = 0.0030. During the anal-
ysis, the number of ranges contained in all vertices increases from 2,991,074
to 3,072,421, indicating that 81,347 ranges had to be split to accommodate
differing analysis results. This results in a vertex range compression ratio of
3,072,421/972,713,105 = 0.0031 after the analysis has finished - a marginal
increase.

2.2 Multi-revision artifact analysis

Signal/Collect, the graph framework used in LISA, operates under a specific
computational paradigm, where vertices in the graph communicate with each
other to form an emergent computation. Specifically, each vertex can signal
other vertices on outgoing edges to transmit arbitrary messages, collect incom-
ing signals, modify its own state or edit the graph itself by adding vertices and
edges. We refer the reader to [79] for an in-depth description of the paradigm.

2.2.1 Formulating analyses

To formulate analyses in LISA, the user defines a data structure for analysis
data (which LISA integrates into the metadata of a vertex), a packet, which
carries data along edges, a start function governing how and where in the
graph the first signals are emitted for this particular analysis, and a collect
function, which determines how the analysis processes incoming signals. Both
these functions are side effect free and return ‘new’ metadata to reflect changes
(however, referential transparency of case classes in Scala prevents unnecessary
data duplication). Furthermore, analyses are written with only one revision
in mind, even though LISA runs them on all revisions, taking care of the
necessary range splits and multi-revision deduplication transparently.

Redundancy-free Analysis of Multi-revision Software Artifacts 17

Listing 2: Implementation of McCabe’s Complexity in LISA

1 /* This implementation of McCabe's complexity is language agnostic. It
2 * uses the ChildCountHelper trait , which keeps track of whether a
3 * vertex has received analysis -specific data from all child vertices.
4 */
5 object MccAnalysis extends Analysis with ChildCountHelper {
6
7 /* Data structure that will hold the complexity value for any vertex
8 * in the graph. By default , the McCabe's complexity of a vertex is
9 * 1 and it is not persisted.

10 */
11 case class Mcc(persist: Boolean , n: Int) extends Data {
12 def this() = this(false , 1)
13 }
14
15 /* The start function determines where in the graph the first signals
16 * are sent. The domain indicates what kind of vertex (e.g. which
17 * programming language) we're dealing with. It transparently maps
18 * the symbols used in the analysis (e.g. 'fork below) to the labels
19 * used by the parser. The state is an immutable object which we act
20 * on - e.g., to send data packets or modify metadata. The start
21 * function must return a new state. Note that in Scala , return
22 * statements are optional , thus the last statement in a method is
23 * automatically used as a return value.
24 */
25 override def start = { implicit domain => state =>
26 // Proceed only if this vertex is a leaf node
27 if (leaf(state))
28 // add an outgoing packet (directed to travel up the tree) to the
29 // state of this vertex. This is done using the '!' operator. The
30 // operator transparently returns the updated state.
31 state ! new MccPacket(
32 // The packet contains 1 by default or 2 if this vertex is a
33 // branch itself , which is possible when using a filtered graph.
34 if (state is 'fork) 2 else 1
35)
36 // Return the existing state if this is not a leaf vertex.
37 else state
38 }
39
40 /* The definition of the packet that travels along an edge in the
41 * graph. It carries the complexity value (calculated at lower levels
42 * in the tree) and defines the collect function.
43 */
44 class MccPacket(val n: Int) extends AnalysisPacket {
45 override def collect = { implicit domain => state =>
46
47 // The McCabe's complexity of this vertex by definition is
48 // the existing mcc + the incoming mcc - 1
49 val mcc = state[Mcc].n + n - 1
50 // Using allChildren[Mcc], the ChildCountHelper checks whether
51 // this vertex has received an MccPacket from all its children.
52 allChildren[Mcc](state)(
53 // If not , we just store the current aggregated value
54 incomplete = state + Mcc(false , mcc),
55 // If we have collected all child values ...
56 complete = {
57 // the mcc value we send out is the existing value of this
58 // vertex , + 1 if this vertex is a branch itself.
59 val newN = if (state is 'fork) mcc + 1 else mcc
60 // Persist the value only if this vertex is a class , method
61 // or file vertex , since we don't want to store the
62 // complexity of intermediate nodes in the tree.
63 val persist = state is ('class , 'unit , 'method , 'file)
64 // store the value (using the '+' operator) and add an
65 // outgoing packet to the state of this vertex (using '!').
66 state + Mcc(persist , mcc) ! new MccPacket(newN)
67 }
68)
69 }
70 }
71 }

18 Carol V. Alexandru et al.

As an example, Listing 2 contains an implementation of McCabe’s cyclo-
matic complexity [58]. Formally, McCabe’s complexity, is defined as E−N+2P
where E is the number of edges in a control flow graph, N the number of nodes
and P the number of connected components. All practical tools, however, sim-
ply use a complexity of 1 as a baseline and add 1 for each fork in the control
flow (e.g., if or while statements). The data structure used by this analysis
(defined on line 11; initialized on line 12) contains a boolean to determine
whether or not to persist the computed value for a given vertex and a single
integer to hold the actual complexity value. To add data to some state, the +

operator can be used with any defined Data structure. The ! operator is used
to add analysis packets to be sent up the tree. The start function causes an
MccPacket to be sent out from each leaf vertex in the graph (lines 25-37). The
value contained in the packet is 1 by default, or 2 if the leaf vertex itself is
already a node that increases the complexity of the program. In regular pro-
grams, having a leaf node contribute to the complexity is impossible (e.g., there
cannot be an if statement with no truth check beneath it in the tree), but as
we will see in the next section, LISA filters irrelevant nodes during parsing,
such that the entire tree below a branching statement may be omitted from
the graph. The collect function accumulates incoming values according to
the definition of cyclomatic complexity (line 49) and once all child values have
been received, it sends the complexity of the local vertex to its parent (closure
starting at line 56). During the analysis, a transient value is computed and
stored in the metadata of each vertex in the graph as a consequence of this
algorithm, but the analyst would likely want to know the complexity only for
specific kinds of nodes. The determination, whether the mcc value for a given
vertex should be persisted is done on line 63, where the persist property is
set true if the vertex is a class, method or file. This updated persist value is
stored together with the updated mcc value in line 66. The user could easily
add other vertex types (e.g., blocks or closures) if needed.

Fig. 5: Let be statement nodes, and # be function nodes, this example
illustrates a statement count analysis and how it affects range splitting. Not
only do vertices store range-specific data, but the traveling data (indicated
with arrows) carries range-specific data, too. Note that the travel direction
of packets depends on the analysis and that analyses can also add additional
edges, for example to connect graphs of different files.

Redundancy-free Analysis of Multi-revision Software Artifacts 19

Since the computations are executed directly on the range-compressed
graph, calculations are executed only once for a revision range of any par-
ticular vertex and outgoing signals are also attached to a revision range. The
revision range of a vertex may be split, as described in Section 2.1, if an incom-
ing signal concerns a partial range of the receiving vertex. In this fashion, the
number of computations necessary to compute metrics for individual revisions
is vastly reduced. In Fig. 5, for example, the two bottom most leaf nodes are
statements which occur in range {2-3}. Both vertices send a single packet to
their parent, which collects this data and transparently splits its only range {1-
4} into ranges {1-1,2-3,4-4} to accommodate the data. It then propagates the
data further up the tree, where additional splits (and merges) are necessary.
In the final configuration, the root node still only has three ranges, because
its metadata (including the statement count) is identical for both revisions 2
and 3. This example shows that even on the sub-graph level, a single packet
sent regarding an analysis may affect a whole range of revisions.

Thus, thanks to the multi-revision graph representation and a non-
centralized, asynchronous computational paradigm to accompany it, we avoid
redundancy in analyzing code of multiple revisions at the sub-graph level.
Once an analysis is completed, the analysis results are persisted using a user-
provided persistence strategy, for example to store values in a database for fur-
ther processing. LISA ships with a number of comma-separated-value (CSV)
persistors, for example to store aggregated data over the entire program for
each revision, or also on the file level. In general, the persist property indi-
cates to the persistor whether a field should be persisted for any vertex in the
graph. Global aggregations (for example summing up the method count for all
classes) are specified by writing an extract function, which obtains some data
from any single vertex, and an aggregate function, which combines any two
extracted values. This way, the aggregation can be executed asynchronously
and in parallel over the entire graph.

2.3 Multi-language analysis genericism

Programming languages share certain concepts and many code-related analy-
ses can be expressed for different languages. Thus, while the concrete syntax
tree representations can vary greatly for different languages and parsers, their
relative structure can be fairly similar. That is, different entities in the AST,
such as classes, methods or control flow statements have the same collective

Listing 3: Demo.java

1 public class Demo {
2 public void run() {
3 for (int i = 1; i < 100; i++) {
4 if (i % 3 == 0 || i % 5 == 0) {
5 System.out.println(i);
6 }
7 }
8 }
9 }

20 Carol V. Alexandru et al.

meaning when arranged in the same relative structure. For example, when
comparing the ASTs parsed from a Java and a Python program, the exact
sequence, labelling and nesting of vertices leading from a root node to the leaf
nodes of a method may differ greatly. However, relative structural features
(where the vertices are located relative to each other), in the context of code
analysis (and not program compilation) are very similar: A method/function
vertex that has a class vertex as a parent is contained in that class; or: two ifs
on the same level represent 4 possible paths through the local scope, while one
if nested in another creates only 3 possible paths. This means that we pri-
marily need to explicitly capture entities, while retaining the relative structure
as offered by the parser.

Furthermore, and especially in the context of large scale code analysis, the
representation of the source code should capture only the minimum necessary
for a particular analysis. Consider we wanted to compute the cyclomatic com-
plexity for methods in a program: the example in Listing 3 contains 140 AST
vertices when parsed using ANTLR, yet most of them are entirely irrelevant
towards the complexity metric.

The solution we propose to solve this problem is straight-forward: there
needs to be a mapping between the entity types used in an analysis (e.g.,
concepts like methods and control flow forks) to the actual labels used
by the parser when constructing parse trees (e.g., MethodDeclaration and
IfStatement, ForStatement etc.). Formally, this is expressed as a one-way
many-to-many relation T → L from the domain of entity types T required for
a particular analysis, to the co-domain of parser-specific labels L used by a
particular language. In LISA, this relation is simply formulated as a map from
symbols to sets of strings. The implementation of McCabe’s complexity in List-
ing 2 notably does not contain any language-specific labels. Thus, Listing 4
shows an example which is sufficient to be used with the MccAnalysis in List-
ing 2. It specifies how the entities mentioned by the analysis ('method and
'fork) can be identified in Java. Note that the analysis also checks for other
potential symbols ('class and 'unit), but specifying these is not mandatory.
Applied to the Demo program in Listing 3, this mapping populates the graph
with a mere 5 vertices connected in a straight line: one vertex each for the
file Demo.java itself, the method run, the for loop, the if statement and the

Listing 4: A vertex label mapping for Java.

1 object AntlrJavaParseTree extends Domain {
2 override val mapping = Map(
3 'method -> Set("MethodDeclaration"),
4 'fork -> Set("IfStatement",
5 "ForStatement",
6 "WhileStatement",
7 "CatchClause",
8 "SwitchLabel",
9 "TryStatement",

10 "DoStatement",
11 "ConditionalExpression")
12)
13 }

Redundancy-free Analysis of Multi-revision Software Artifacts 21

|| operator. All other vertices (such as numbers and other operators) are au-
tomatically ignored at the parsing step. When applying MccAnalysis to this
graph, the result (a complexity of 4, which is persisted only for the vertex
matching the 'method symbol) is still correct.

Example 6: To analyze Reddit, LISA creates 2,014,720 vertices representing
AST nodes from the source code which have been mapped to a symbol. If
we disable the filtering in a handicapped version, 8,510,693 nodes are added
instead - an increase by a factor of 4.2. Due to the increase in memory con-
sumption, the unfiltered analysis actually required a machine with 128 GB
memory instead of 64 GB (with the same number of cores). Furthermore,
the additional nodes force the analysis packets to travel much longer dis-
tances across the graph, thus the computation itself also takes much longer.
We re-ran the analysis using the optimized version of LISA on the same
(high-memory) hardware, where it needed roughly 15 minutes for parsing
and 3.5 minutes for the analysis, executing ∼871 million signal and collect
operations. With filtering disabled, parsing takes 1 hour and 35 minutes
(6.3 times longer) and the computation takes 25 minutes (7.1 times longer),
while ∼3.1 billion signal/collect operations are executed (3.5 times more).
This means that at this scale, the ability to precisely select which kinds
nodes in the original source data are relevant for an analysis can make a
large difference.

2.4 Limitations

We are aware that our current implementation of the LISA framework suffers
from several limitations, that were not relevant for the experiments presented
in this paper, but that we enumerate in the following sections.

Vertex identification. A technical limitation arises from how we naively iden-
tify vertices supplied by the currently integrated parsers. When parsing
sources, the identifier of a vertex always corresponds to the file and syntax
tree location of a node (as explained in Section 2.1). Hence, renaming a file or
reordering methods in a class bypasses this identification scheme and causes
the creation of ‘new’ vertices, even if the file or methods themselves have not
changed. This reduces the effectiveness of the range-compression. Note, how-
ever, that the actual computation of results in LISA is robust to these kinds
of changes. For example, when computing a metric for classes and persisting
the results based on the class name (as done in the class-level persistor that
ships with LISA), the internal identification of the vertex representing that
class has no relevance and the results are the same no matter which file the
class was contained in across different revisions. However, LISA would not be
able to currently track whether a method or class has been renamed.

The underlying problem of identifying code entities is generally hard to
solve, especially in a language-independent manner [47,88], and might require
an identification scheme specific to a particular experiment. For example, to

22 Carol V. Alexandru et al.

effectively differentiate several overloaded Java methods that share the same
name but have different signatures, it would be necessary to identify them in a
fully-qualified way that also considers the type and names of the parameters.

Support for additional version control systems. The current implementation
of LISA supports a direct extraction of source code from Git repositories.
While Git is arguably the most popular version control system today, at least
in open source, future work might require the analysis of projects that are
managed in different version control systems. Two alternatives exist: either the
existing repository is converted to Git, e.g., through conversion tools such as
svn2git or git-cvsimport, and the project is then analyzed with the existing
tooling for Git repositories. Alternatively, the SourceAgent interface can be
implemented for different version control systems. Note that the asynchronous
parsing of revisions is a Scala trait which can be added to other source agents
as well, as long as they provide some method of accessing files from different
revisions independently. Thus, adding additional version control systems is
straightforward and only a matter of spending engineering effort.

Partial order of commits. Given a repository URL, LISA processes all re-
visions that are ancestors of the tip of the default branch. By default, this
traversal is done in reverse chronological order. Modern version control sys-
tems like Git heavily rely on forks and joins in their commit history by the
use of branches. The history in such branches is no longer sequential and the
commits have to be ordered using some particular strategy. While branches
typically work on unrelated tasks, it can occasionally happen that committers
create conflicts by changing the same file simultaneously. If all commits are
flattened out to a sequence by the aforementioned traversal strategy, it could
appear as if the same file is changed back and forth again, as the versions from
two different branches alternate, which negatively impacts the range compres-
sion – but again, not the computation of results for any particular revision.
In an informal comparison of different traversal strategies, we could not find
a single flattening strategy that is always preferable over the default one.

2.5 Summary of the approach

Compared to traditional approaches, LISA avoids redundancies at every junc-
ture of a multi-revision analysis: It analyzes code taken directly from the Git
database and only re-reads files containing changes, while user-defined map-
pings vastly reduce the number of vertices required to perform analyses on the
loaded artifacts. Both vertices and metadata present in multiple revisions are
stored only once and the computations themselves are also executed only once
for each revision range at the vertex/sub-tree level, avoiding the expensive re-
computation of data at the file level. Finally, the computed data is selectively
persisted to keep the results manageable for further analysis. Furthermore, the
user-defined mappings not only reduce the size of the graph, but also make
analyses transferable to other languages, which LISA can easily support via
existing ANTLR grammars or through dedicated parsers.

Redundancy-free Analysis of Multi-revision Software Artifacts 23

3 Evaluation

The primary goal of this research is to accelerate the analysis of multi-revision
artifacts in a software evolution context. To evaluate LISA’s effectiveness and
to showcase its applicability, we evaluate LISA along three dimensions.

Performance: How fast can LISA analyze projects having different numbers
of revisions, different amounts of source code or containing code written in
different programming languages?

Resources: What are LISA’s hardware requirements in terms of memory
consumption and CPU power?

Adaptability: How flexible is LISA with regard to analyzing new problems
or additional programming languages?

To analyze these dimensions, we perform a sequence of experiments, in which
each experiment has a primary focus on one aspect:

Generality (Analyses): To illustrate LISA’s support for varying kinds of
code analyses, we formulated two distinct analysis suites in LISA: one
to compute object-oriented metrics [53] applicable to any programming
language supporting those concepts and another to detect ‘Pythonic id-
ioms’ [71] in Python programs (Section 3.1).

Large-Scale Performance: To measure performance in a large-scale sce-
nario, we analyzed 4,000 projects; 1,000 projects each written primarily
in Java, C#, Python and JavaScript, applying the object-oriented anal-
ysis suite to all 4,000 projects and applying the Pythonic analysis suite
to the Python projects only. During the execution we captured detailed
time-based performance statistics (Section 3.2).

Impact of redundancy removal techniques: To evaluate the impact of
different redundancy removal techniques of LISA, we created several hand-
icapped versions in which each technique is disabled once, and apply them
to our running example, the Reddit project (Section 3.3).

Resource Consumption: To measure resource consumption, we performed
an additional study in which we have created a sample of all available
projects by selecting projects with differing sizes and number of revisions.
We have then (i) captured the memory footprint during the analysis to
determine memory requirements, and (ii) re-ran the analysis with different
amounts of available memory and CPU cores to determine the impact of
resource availability on the computation speed (Section 3.4).

Generality (Languages): Finally, we have adapted LISA to another pro-
gramming language, namely Lua, to illustrate generalizability to other pro-
gramming languages. We show that the unchanged object-oriented metrics
analysis suite can be applied in the new context (Section 3.5).

This evaluation omits the comparison of LISA with other tools, since we have
already presented this comparison in previous work [8] using a less optimized
version of LISA. The results are summarized in Section 3.2.

24 Carol V. Alexandru et al.

All our experiments are implemented as short Scala programs that are
being compiled and executed on server hardware using simple Bash scripts.
LISA’s hardware requirements grow with project size, number of revisions, and
the size of changes between revisions. While most projects could be analyzed
on commodity hardware, we ran all computations of the large-scale study on
a powerful, shared server.6 To ensure successful runs for the largest projects,
we dedicated 512 GB memory and 32 cores independent of project size. The
Reddit running example was analyzed on instances with 12 cores and although
we established that 20 GB of memory are sufficient to analyze the project, we
decided to dedicate either 64 GB or 128 GB of memory, depending on the
requirements of the handicapped versions, ensuring that equal resources were
used in each individual comparison between an optimized and handicapped
version of LISA.

3.1 Implementing analyses in LISA

In this section, we discuss how the two distinct analysis suites used in the
remainder of our evaluation were formulated. We also discuss advantages as
well as shortcomings of the current approach.

Analysis formulation. Analyses in LISA are formulated as Scala source code
according to the Signal/Collect paradigm as outlined in Section 2.2.

The object-oriented analysis suite computes the number of classes, meth-
ods, method parameters, variables and statements, the cyclomatic complexity,
control flow nesting depth and number of distinct control flow paths, and de-
tects the BrainMethod [53] code smell. It also computes the number of direct
children and total number of vertices beneath each vertex and captures the
number of files and lines of code for each project and revision. We chose this
set of metrics over others like coupling or inheritance depth, because we are
working on plain-text ASTs and source code parsers cannot produce the nec-
essary information to infer such metrics (we discuss possible alternatives to
ASTs in Section 4.2). Implementing these analyses required 203 lines of Scala
code (not counting comments, blank lines and single closing braces).

For the “Pythonic” analysis suite, we wanted to detect the following idioms,
as described in [71]: List Comprehensions, Generator Expressions, Lambdas,
Named Decorators, Named Tuples, Default Dicts, Ordered Dicts, Dequeues,
finally blocks, magic functions, nested functions as well as yield and with

statements. This required writing 180 lines of Scala code in LISA.
We ensured the correctness of the formulated analyses (and thus the range

compression algorithm) for each language by creating sample projects7 which
contain a large number of code combinations varying across multiple revisions,
such as differently nested if statements, nested classes and methods, etc. We

6 SuperMicro SuperServer 4048B-TR4FT, 64 Intel Xeon E7-4850 CPUs with 128 threads,
3TB memory in total

7 The example projects for each language, ending in ‘-example-repository‘, can be found
online at https://bitbucket.org/account/user/sealuzh/projects/LISA

https://bitbucket.org/account/user/sealuzh/projects/LISA

Redundancy-free Analysis of Multi-revision Software Artifacts 25

then manually calculated the expected code metrics, confirming that they
match the results procured through LISA.

Discussion. The Signal/Collect paradigm requires a certain mindset when for-
mulating analyses. For example, to count the methods in a class, 'method
nodes in the AST need to signal the number 1 upward in the AST, while
'class nodes need to collect, add up and persist these numbers. This is very
straightforward to implement and applies to many counter-based metrics to be
computed. The implementation for McCabe’s complexity, shown in Listing 2
is slightly more complex, as it behaves differently depending on whether all
child vertices of a node have already signaled, or not. A different approach
is necessary when counting some of the Pythonic idioms: in some cases, the
idioms are not identifiable from the type of an AST node, because they are all
expressed using the same underlying node type, such as a function call. In this
case, the content of the node, i.e., the literal call string, needs to be examined.
To find brain methods, a purely local analysis is possible: it simply looks at
the complexity, control flow nesting depth, vertex and variable count already
computed by other analyses for this method, and makes a local determination,
simply storing a boolean if the metrics indicate a brain method.

Thanks to the lightweight mappings, analyses are generally formulated
for all languages supporting a certain concept at the same time. That said,
analyses formulated using the Signal/Collect paradigm in Scala can be overly
verbose. For example, a simple method counting consists of 13 lines of code,
out of which 7 are scaffolding required by Signal/Collect. This increases the
complexity of all analyses that we implemented, and is a major, if not the
most important drawback of the current implementation of LISA. We are
considering better solutions (e.g., a domain specific language) in Section 4.2.

3.2 Analysis speed

We want to know how quickly LISA can analyze the entire history of a large
number of projects. In this section, we describe how we selected the projects
and how the analyses we formulated were applied. Then we discuss LISA’s
performance characteristics.

3.2.1 Data gathering

Project list. We first queried the GitHub API for Java, C#, JavaScript and
Python projects, sorted by their number of stars. The GitHub API returns a
maximum of 1,000 results per query, thus we obtained a list of 4,000 reposi-
tories containing code written, primarily, in these 4 languages. Some of these
repositories do not contain actual software projects, but rather tutorials and
other documentation. We cleaned the list of projects by searching for strings
like ‘awesome-’, a commonly used prefix for repositories containing just a col-
lection of links, or ‘tutorial’, ’book’ and a few others. About a dozen of these
repositories remained unnoticed and were only identified after analyzing them

26 Carol V. Alexandru et al.

and obtaining few, if any data. All such repositories were finally replaced by
selecting top projects gathered from research reports and other sources for
popular projects that were not already on the list [1, 6].

Parsers. We used all three different ways of integrating additional data sources
in LISA to parse the source code mentioned in Section 2.1. For Java and C#, we
fed ANTLRv4 grammars into LISA to automatically generate the parsers. For
JavaScript, we adapted the Nashorn parser which ships with JDK8, because
the ANTLR-generated parser used in an earlier study [9] was very slow (for
example, parsing the Unitech PM2 project takes almost 12 minutes to parse
using the ANTLR parser, but just 36 seconds using the Nashorn parser).
Finally, for Python, we call the native cpython parser, as it is much more
robust in parsing code from different Python versions than ANTLR parsers
based on version-specific grammars. For inter-process communication between
LISA and cpython, we used a simple ad-hoc JSON representation of ASTs.8

We proceeded to define suitable language mappings to match the AST entities
relevant to our analyses to the ones used in the ANTLR grammars, Nashorn
API and cpython parser.9 Note that we enabled only one parser per project,
even though LISA supports the analysis of multiple languages within the same
computation (as demonstrated in the running example used in Section 2, where
both the Python and JavaScript parsers were enabled). We wanted to observe
LISA’s performance characteristics on a language-by-language basis, so that
we can assess the impact of the used parser on overall performance.

Analysis execution. We applied our tool to the Git URLs of the 4,000 projects
to compute the metrics for all revisions which are ancestors to the Git HEAD, in-
cluding ancestral branches, (sorted using Git’s default sorting: reverse chrono-
logical) and persisted those metrics at the project-level. This means that we
aggregated a global value (for example the total method count, or the sum of
all complexities or unique control flow paths) for every revision of each project.
Thus, for every project, we obtained a CSV file where each line contains the
aggregated metrics on a single revision of the project. Note that several al-
ternative persistors exist, for example to aggregate data at the file, class or
method level, however these were not needed for any practical studies we have
performed so far. In total, this gave us 1.6 GB of data on the 7,111,358 revi-
sions analyzed. The 512 GB of memory we provided LISA with were sufficient
for all but three projects. The analyses of the Android Platform Frameworks,
JetBrains IntelliJ and Stanford CoreNLP projects did not crash, but would
not complete in reasonable time. For these projects, we split the analysis into
several pieces, specifying start and end commits for a range of revisions to be
analyzed by LISA. Naturally, this split implies that some code needs to be
parsed twice: when the first, e.g., 50,000 revisions are processed, no redundan-
cies occur as usual. However, to analyze the subsequent 50,000 revisions, all
code that was added previously needs to be parsed again. We discuss how this
problem could be solved in Section 4.2.

8 The JSON representation can be found in the repository, here: https://goo.gl/oMDxzv
9 All parser integrations and mappings can be found here: https://goo.gl/6pT7sG

https://goo.gl/oMDxzv
https://goo.gl/6pT7sG

Redundancy-free Analysis of Multi-revision Software Artifacts 27

 0:00

 0:00

 0:01

 0:16

 2:46

10K 1M 50M 1B 10B

D
u
ra

ti
o
n
 (

h
)

LOC (represented)

(a) All projects. The area in the top right box is enlarged in Fig. 6b

3h

6h

12h

250M 1B 10B 100B 500B

D
u
ra

ti
o
n
 (

h
)

LOC (represented)

chummer5a

three.js
highcharts

intellij-community
platform-frameworks-base

CoreNLP

roslyn
mono

monodevelop
corefx

Dynamo

ravendb

sympy

pandas

cpython

odoo
subtitleedit

(b) Very large projects only.

Fig. 6: Analysis duration vs. LOC contained in revisions for several Java (•),
C# (+), JavaScript (×) and Python (N) projects.

Performance Monitoring. LISA captures 32 different runtime statistics, in-
cluding compression ratios, durations for each individual part of an analysis
and size metrics such as the number of files and lines parsed. At the end of an
execution, these statistics are stored in a separate CSV file.

3.2.2 Performance characteristics

Data overview. Table 2 shows runtime statistics and metadata for the analysis
we performed, while Fig. 6a and Fig. 6b visualize the projects by plotting
their size in terms of lines of code on the x-axis versus the analysis runtime
on the y-axis. The largest projects we analyzed, in terms of the number of
revisions, were the Android Platform Frameworks for Java (285k revisions), the
Mono programming language for C# (111k revisions), the Yahoo User Interface
Library for JavaScript (25k revisions), and the Odoo suite of business web
applications for Python (108k revisions). These projects alone account for 7.5%
of all analyzed revisions. Other large and renowned projects in our dataset
include Elasticsearch, Google Guava and Apache Spark for Java, the Roslyn
compiler, CoreFX libraries and PowerShell for C#, popular web frameworks
such as JQuery, Angular and D3 for JavaScript and the Django CMS, the
Requests library and SciPy for Python. Analyzing the source code of all 7.1

28 Carol V. Alexandru et al.

Table 2: Artifact study A: number of revisions, files and lines analyzed; com-
pression ratios achieved; and runtimes during analysis.

Metric Java C# JavaScript Python

Projects 1,000 1,000 1,000 1,000

Revisions
analyzed

total 1,991,638 1,419,317 1,478,521 2,269,785

largest 1285,050 2111,775 325,381 4108,236

average 1,991 1,419 1,478 2,269

median 235 462 603 565

Files
represented

total 10,786,513,588 3,163,589,790 381,717,977 1,260,140,128

largest 56,727,250,559 21,289,015,226 662,178,658 4181,075,631

average 10,786,513 3,163,589 381,717 1,260,140

median 9,089 71,195 9,924 17,403

Files parsed
and analyzed

total 10,246,923 9,189,319 4,363,335 5,544,396

largest 51,648,265 7579,858 3267,447 4663,654

average 10,246 9,189 4,363 5,544

median 484 2,004 1,006 842

Lines
represented

total 1,560,176,972,238 643,839,524,403 43,307,476,687 281,001,712,196

largest 5631,736,446,886 2263,533,058,384 87,334,015,580 950,493,471,752

average 1,560,176,972 643,839,524 43,307,476 281,001,712

median 1,120,037 8,262,959 582,631 2,382,768

Lines parsed
and analyzed

total 4,070,090,931 3,238,816,779 619,061,540 2,762,035,407

largest 1895,632,889 10348,628,995 3179,612,297 4223,881,075

average 4,070,090 3,238,816 619,061 2,762,035

median 99,331 428,155 35,582 219,057

Range (AST)
compression
factor

average 0.034 0.023 0.028 0.041

median 0.023 0.012 0.017 0.024

worst 110.362 120.359 130.523 140.349

best 50.000053 20.000105 150.000136 160.000276

Parse filtering
factor

average 0.152 0.109 0.467 0.208

median 0.154 0.110 0.478 0.209

worst 170.233 180.202 190.667 200.274

best 210.056 220.044 230.012 240.017

Runtime

cloning 2h 55m 2h 32m 1h 18m 1h 22m

metadata extraction 1h 21m 17m 18s 8m 11s 18m 35s

parsing 1d 15h 2d 16h 18h 19m 1d 17h

analysis 2h 42m 3h 23m 3h 28m 7h 52m

persistence 7h 37m 2h 18m 22m 33s 1h 51m

total 2d 5h 3d 0h 23h 38m 2d 4h

shortest 251.292s 261.506s 271.365s 281.630s

longest 2912h 47m 25h 33m 301h 39m 47h 14m

average 3m 14s 4m 21s 1m 25s 3m 8s

median 8.350s 40.499s 14.383s 24.448s

total avg./rev. 97ms 183ms 57ms 83ms

median avg./rev. 41ms 88ms 25ms 48ms

1: android platform frameworks base, 2: mono mono, 3: yui yui3, 4: odoo odoo, 5: JetBrains intellij-
community, 6: nodejs node, 7: Azure azure-powershell, 8: SeleniumHQ selenium, 9: python cpython, 10: dot-
net roslyn, 11: hongyangAndroid android-percent-support-extend, 12: tg123 commandlinefu.cn, 13: barton-
hammond snowflake, 14: corna me cleaner, 15: Automattic wp-calypso, 16: trustedsec social-engineer-toolkit,
17: Freelander Android Data, 18: dotnet standard, 19: airbnb react-native-maps, 20: kennethreitz flask-sockets,
21: addthis stream-lib, 22: Unity-Technologies ScriptableRenderLoop, 23: timuric Content-generator-sketch-
plugin, 24: fxsjy jieba, 25: spring-projects spring-mvc-showcase, 26: madskristensen ShortcutExporter, 27: olis-
tic warriorjs, 28: drathier stack-overflow-import, 29: stanfordnlp CoreNLP, 30: highcharts highcharts

Redundancy-free Analysis of Multi-revision Software Artifacts 29

million program revisions took 8.3 days at 101ms per revision on average, i.e.,
close to 10 revisions per second. Calculating the per-revision runtime for each
project in each language yields a median runtime per revision of 30ms for Java,
79ms for C#, 19ms for JavaScript and 42ms for Python.

Redundancy removal. The range compression technique we propose is ex-
tremely effective: The range compression factor in Table 2 reflects the ratio
of the number of revision ranges in AST vertices needed to represent mul-
tiple program revisions, without loss, versus the actual number of vertices
represented by all revisions individually. On average for each language, this
compression ratio ranges between 0.023 and 0.041, meaning that to analyze
multiple revisions of a program, LISA needs just 4% of the memory and com-
putational resources required to analyze each revision separately. For very large
projects, the range compression factor can be extremely low. For example, dur-
ing the analysis of the Android Platform Frameworks, the compression factor
reached 0.000053. For analyzing Mono, the compression factor was 0.000105.
This means that especially when analyzing large projects, the multi-revision
graph compression saves significant overhead. But even for projects consisting
only of a few dozen revisions, the range compression factor can quickly drop
below 0.4 for Java, C# and Python projects. For JavaScript projects, com-
pression ratio factors as high as 0.53 were observed for very small projects.
JavaScript projects are distinctively different because code is generally con-
tained in fewer files (as reflected in Table 2); it is not unusual for an entire
project to be managed in a single file. This means that (i) the ratio of actual
changes in a single commit to the amount of source code that needs to be
re-parsed is greater – even if only one line is changed in a commit, an entire
file needs to be re-parsed (i.e., changes in languages where code is spread out
over a larger number of files are quicker to re-parse), and (ii) the ASTs for
each file are larger. This means that changes more easily introduce hard-to-
avoid redundancies. Due to how AST nodes are identified, high churn within
a file – possibly at high levels in the AST – causes more vertices and ranges
to be created than for languages were ASTs are shallower due to them being
distributed across many files.

When performing computations by first loading code from several revisions
and then analyzing it in a second step, selecting exactly which parts of an
AST are relevant for an analysis can be extremely advantageous. The effective
filtering factor largely depends on the parser and how it constructs ASTs.
For Java and C#, using ANTLRv4 grammars, this factor is roughly 0.15 and
0.11 respectively. For JavaScript as parsed by the Nashorn parser, this factor
is 0.46, i.e., still less than half of all vertices are loaded into the graph. For
Python, the factor is 0.21.

Performance compared to other tools. A fair one-on-one comparison to other
tools is not feasible, as each tool has different feature sets, restrictions and
capabilities. In previous work [8], we compared the performance of a LISA
prototype, which lacked many of the performance-enhancing techniques dis-
cussed in Section 2, except for the range compression, to two existing analysis

30 Carol V. Alexandru et al.

tools, namely inFusion [2] and SOFAS [34] for analyzing the AspectJ project.
In that comparison, the prototype took 1:31 minutes to analyze a single revi-
sion, outperforming SOFAS by a factor of 9.8 and inFusion by a factor of 4.3.
The average time needed to analyze one revision fell below 2 seconds when
analyzing more than 100 revisions and below 900ms when analyzing more than
1,000 revisions, whereas using the other tools, each additional revision to be
analyzed incurs the same cost, which actually increases with the growth of the
project in later revisions.

We can however compare the performance of LISA directly to the original
prototype and by extension, to the tools used in the original study [8]. To
analyze all 7,778 revisions of AspectJ, the prototype spent 650ms on average
per revision, while LISA spent only 45ms. Of this, the original prototype
spent more than 500ms on parsing and graph building, and around 80ms
on the analysis. LISA on the other hand spent 31ms on parsing and 4ms on
the analysis. The resulting average of 45ms per revision (including metadata
extraction and persistence) is just above the median average across all Java
projects we analyzed, as shown at the bottom of in Table 2.

The parsing speed improvement can be attributed to both the filtered
parsing, enabled by the lightweight mappings (Section 2.3), the asynchronous
multi-revision parsing algorithm and the parallelized Git metadata retrieval
(Section 2.1) and persistence (Section 2.2). The original prototype stored the
entire parse trees as provided by the parser and could only parse files for one
revision at a time. The analysis speed improvement is directly connected to
the filtered parsing, as the signals need to travel much shorter distances within
the graph.

3.3 Measuring the performance benefit of individual features

We wanted to determine the impact of each individual redundancy removal
technique implemented in LISA. Some of the impact, namely the compression
ratio achieved by the multi-revision graph representation and the reduction
in file access through the incremental approach, can be quantified by simply
observing the metrics reported by LISA. However, to also measure the impact
in terms of actual performance benefits, we needed to suppress each of the
optimized features described in Section 2 and make a one-on-one comparison
between the optimized version and each handicapped variant.

Creating and comparing handicapped versions of LISA. We did this by creat-
ing separate source branches10 of LISA, with one individual part of the library
code replaced by a more common, less optimized implementation, and then
compiling a drop-in replacement JAR used during the computation. Thus, we
introduced the following handicaps:

10 These are the handicap-* branches visible in the LISA open source repository

Redundancy-free Analysis of Multi-revision Software Artifacts 31

Table 3: Impact of redundancy removal techniques on total execution time.

Variant Runtime [hh:mm] Slowdown factor

Optimized LISA 0:15h 1.0

Analyzing revisions individually (A) 15:09h 57.8

Parsing sources in sequence (B) 0:42h 2.7

Not filtering AST node types (C) 2:25h 7.1

(A) checking out each revision into a working directory, instead of reading
them directly as blobs from the Git database, and thus analyzing each
revision in sequence,

(B) parsing source code of different revisions in sequence, instead of paral-
lelizing the parsing across all revisions,

(C) loading all AST vertices provided by a parser into the graph instead of
discarding irrelevant nodes.

Effectiveness of different techniques. The results of all comparisons summa-
rized in Table 3 highlight that each individual technique contributes signifi-
cantly to the runtime reduction.

Specifically, from the runtime statistics, we learn that by sharing state
across multiple revisions at the level of AST nodes, LISA represents the com-
plete state of the project in every revision using just 0.3% of the nodes that
are actually present across all revisions, without any information loss. We also
learn that by not parsing and analyzing each revision individually, only 0.7%
of files and 2.8% of lines (those with actual changes) needed to be read.

Handicapped variant A needs over 15 hours to analyze all 7,947 revisions
of Reddit in sequence, compared to LISA’s 16 minutes, a factor of 57.8. All
else being equal, parsing source code of different revisions in sequence as done
by handicapped variant B impacts the analysis duration by a factor of 3.2:
the handicapped variant needs 37 minutes to parse all revisions, while LISA
only needs about 12 minutes. This affects the total runtime by a factor of
2.7, as the handicapped variant needs 42 minutes to execute. By not filtering
those AST nodes which are unnecessary for a particular analysis, 4.2 times
more nodes needed to be stored and involved in the computation, as done by
handicapped variant C. The execution needed 3.5 times more operations and
took 7.1 times longer, for a total runtime of 2 hours and 25 minutes instead
of LISA’s 16 minutes.

3.4 Resource requirements

LISA stores the entire multi-revision graph and all computed data in memory.
The majority of projects on GitHub, even among popular ones, are fairly small
and could be analyzed on commodity hardware. However, projects with many
revisions or a large code base can require significant amounts of memory and
it is hard to guess, how much is needed, exactly. To better estimate how many

32 Carol V. Alexandru et al.

resources in terms of memory and CPU power LISA requires for analyzing a
particular project, we designed the following three experiments.

Experiments. We designed two experiments to learn about LISA’s memory
consumption and one to determine the impact of available CPU power. Pro-
filing memory consumption of the JVM is non-trivial mainly due to the au-
tonomy of its garbage collectors in deciding how to manage memory and the
possibility of transparently shared memory (e.g., when using Strings or other
immutables). In LISA, we use the G1 garbage collector (G1GC) as we found
it to provide the best performance. However, this concurrent garbage collector
(GC) behaves differently under different circumstances. It desperately tries
to free memory even when almost no ‘real’ work is being done and memory
allocation largely depends on the amount of available memory. Furthermore,
the JVM over-allocates memory in batches. Memory consumption could be
monitored by simply observing the consumption of the JVM at the operating
system level, but this would be inaccurate because of how the JVM over-
allocates memory. GUI tools such as VisualVM or JProfiler could be used, but
this would be hard to automate. Another option would be to write a custom
java agent to read out memory statistics using the Java Management Exten-
sions (JMX), but finally we chose to use the GC log and simply observe how
much memory the GC recognizes as containing ‘live objects’. This gives a fairly
reliable reading because the measurement is done directly during garbage col-
lection. Based on this, we performed the following three experiments on a
subset of the projects in our large-scale study:

1. Experiment 1 (full memory): We re-ran the analysis of each project
providing the full 512 GB of memory and 32 cores, like in the original large-
scale study. We enabled GC logging and stored the logs for each analysis.
This allows us to observe how much memory LISA allocates and uses under
ideal circumstances.

2. Experiment 2 (limited memory): Here, we re-ran the analyses three
times, again providing 32 cores, but lowering the available memory to
128 GB, 32 GB and 8 GB. We also limited the total runtime to 3 hours.
This allows us to observe behavior when memory availability is low, namely
(i) projects that can no longer be analyzed within reasonable time, and
(ii) the impact on resource allocation, garbage collection, and hence, over-
all performance.

3. Experiment 3 (limited CPU): In this last experiment, we provided the
full 512 GB for all analyses, but limited the number of available CPU cores
to 16, 8 and 2, respectively. This allows us to accurately determine how
well LISA makes use of additional computing resources.

All experiments were performed on the same hardware as the large-scale study.
Even though memory and CPU cores have been reserved for exclusive use,
some variability is expected, because the infrastructure is still a shared envi-
ronment with other users running compute jobs on the same hardware.

Redundancy-free Analysis of Multi-revision Software Artifacts 33

Table 4: Projects selected for the resource study

Metric Size Java C# JavaScript Python

Lines
Parsed

150M Alluxio Mono Develop Yui3 Saltstack

15M Terasology PowerShell Plotly Ansible

1.5M JetBrains IdeaVim AspNet OpenIdConnect.Server Leaflet Eventlet

150K Crawler4J EntityFramework.Extended noVNC Facebook PathPicker

15K Android AppMsg RaspberryPi.Net Parse Server Jinja Assets Compressor

Revisions

25K Elasticsarch DotNet Corefx Yui3 Theano

13K Apache Groovy MediaBrowser Emby Jquery Mobile Mozilla Kuma

7K QueryDSL Castleproject Core Paper.js Boto

3.5K Google J2ObjC AspNet MVC Unitech PM2 Thunder

1.5K Bukkit Newtonsoft.json Parsley.js Pika

Project selection. We wanted to select projects for each language across a wide
range of sizes, including both small and very large projects. However, we also
wanted to compare the resource consumption across different languages, thus
the selected projects from different languages should be comparable in size.
To achieve both these goals, we applied the following selection strategy:

1. For each of the four programming languages in our large-scale study, we
sorted the projects twice: once according to the number of revisions ana-
lyzed, and once according to the total number of files parsed during the
analysis. We believe that these two metrics may serve as good proxies for
the total amount of work necessary.

2. For each of these two metrics, we compared the four resulting sorted lists
and determined the maximum value for which comparable project exist in
every language. For both the number of revisions and the number of files
parsed, the Yui3 project turned out to be the largest JavaScript project
available (whereas larger projects exist for the other languages, which we
did not include in the study because JavaScript projects of corresponding
size were not available).

3. We selected projects with comparable metrics for the other three languages.
These projects serve as the upper bound within each metric.

4. Finally, we selected 4 additional projects for each language and metric,
each successive one being smaller by a constant factor. We found that 2
for the number of revisions and 10 for the number of lines parsed gave us
a good distribution across all project sizes.

As such, we ended up with 10 projects per language, where 5 were selected
according to the number of revisions and 5 according to the number of lines
parsed and the requirement to have a similarly-sized counterpart in the other
3 languages. Table 4 displays the selected projects.

Note that the smallest projects included in this study are still compara-
tively big. 75% to 81% of projects in our dataset have fewer than 1.5K revisions.
In terms of lines parsed, 7% to 40% of projects (depending on the language)
are smaller. We did not choose even smaller projects, because in our experi-
ence, LISA can easily deal with smaller projects even on low-end machines,
which we confirm in this study.

34 Carol V. Alexandru et al.

Fig. 7: Peak size of allocated objects on the heap as reported by the G1 garbage
collector for projects of different sizes. Note that the number of lines refers
to the amount of code actually parsed for the analysis. The real amount of
source code represented by all revisions is larger by several orders of magnitude
as described in Table 2.

 0:00

 0:05

 0:10

 0:15

 0:20

 0:25

 0:30

 0:35

 0:40

 0:45

512 128 32 8

D
u
ra

ti
o
n
 (

h
)

Available memory (gigabytes)

git clone
git metadata extraction
parsing
computation
persisting data

Fig. 8: Analysis runtimes for the medium-sized PowerShell C# project (5,554
revisions, 17,330,091 lines parsed representing 3,263,786,422 lines in all revi-
sions) on server instances with different amounts of memory, all running on
32 CPU cores.

 0:00
 0:10
 0:20
 0:30
 0:40
 0:50
 1:00
 1:10
 1:20
 1:30
 1:40
 1:50

32 16 8 2

D
u
ra

ti
o
n
 (

h
)

Number of CPU cores

git clone
git metadata extraction
parsing
computation
persisting data

Fig. 9: Analysis runtimes for the medium-sized Mozilla Kuma Python project
(13,954 revisions, 1,231,549 lines parsed representing 1,304,524,320 lines in all
revisions) on server instances with different numbers of cores, all running with
512 GB of memory.

Redundancy-free Analysis of Multi-revision Software Artifacts 35

Experimental results. Figure 7 displays the results of the first experiment. Un-
surprisingly, larger projects need significantly more memory to be processed.
That said, the memory requirements for different projects with similar size
metrics may still heavily diverge. For example, the four projects with roughly
15M lines parsed required between 40 GB and 220 GB of memory during
analysis. From the second experiment, we learn that additional memory does
not accelerate the computation for projects where more memory is available
than required. Figure 8, however, shows that when the available memory is
just barely sufficient, the processing time increases significantly. Analyzing the
medium-sized PowerShell project with only 8 GB of memory available doubled
the processing time, since the garbage collector needed to constantly free up
memory. Larger projects either crashed with an out-of-memory error or timed
out after 3 hours, which is reflected in Figs. 10 and 11. In terms of size, it
appears that projects with up to 3,000 revisions and 1.5M lines parsed can be
analyzed on basic commodity hardware (this covers 82% of the 4,000 projects
we analyzed). The third experiment gave us both expected and unexpected
results. Figure 9 shows that the total processing time steadily decreases from
1:40h using 2 cores to 30min using 8 cores and 15min using 16 cores. Surpris-
ingly, using 32 cores increased the processing time. A similar trend is visible
in Figs. 12 and 13. Even more surprisingly, the computation time shown in
Figure 9 was halved from 16 to 32 cores, while the parsing time doubled. We
discovered that this was caused by a flaw in the configuration of LISA, in that
it uses a fixed-size pool of 28 workers to parallelize parsing (while during the
computation, it uses a number of workers equal to the number of available
cores). It appears that this causes no problems when there is a lower number
of cores available, i.e., some workers share the same core. However, when there
is a larger number of CPUs available, performance is negatively impacted.
This might simply be due to the workers not getting pinned to a specific core
which reduces the efficiency in memory access and caching. We plan to further
investigate this issue and mitigate it in a future release of LISA.

Memory is the main limiting factor in analyzing large projects using LISA.
However, it remains difficult to estimate in advance, how much memory is
needed. We discuss possible solutions to this problem in Section 4.2.

3.5 Adapting LISA to other programming languages

As a final demonstration of LISA’s adaptability, we go through the process of
adding support for another programming language, namely Lua, to LISA.11 As
discussed in Section 2.3, programming languages share some similarities, espe-
cially regarding structure (like how different AST node types are nested), even
though they use different grammars and absolutely differ in certain ways. For
example, Lua does not have classes as a language-level concept. Nevertheless,

11 This demonstration is part of the lisa-quickstart repository: https://bitbucket.org/
sealuzh/lisa-quickstart/

https://bitbucket.org/sealuzh/lisa-quickstart/
https://bitbucket.org/sealuzh/lisa-quickstart/

36 Carol V. Alexandru et al.

 0:00

 0:30

 1:00

 1:30

 2:00

 2:30

 3:00

512 128 32 8

D
u

ra
ti
o

n
 (

h
)

Available memory (gigabytes)

15K
150K
1.5M
15M

150M

Fig. 10: Runtimes of JS projects with
a different number of lines parsed.

 0:00

 0:30

 1:00

 1:30

 2:00

 2:30

 3:00

512 128 32 8

D
u

ra
ti
o

n
 (

h
)

Available memory (gigabytes)

1.5K
3K
7K

13K
25K

Fig. 11: Runtimes of C# projects with
a different number of revisions.

 0:00

 0:30

 1:00

 1:30

 2:00

 2:30

 3:00

32 16 8 2

D
u

ra
ti
o

n
 (

h
)

Available CPU cores

15K
150K
1.5M
15M

150M

Fig. 12: Runtimes of JS projects with
a different number of lines parsed.

 0:00

 0:30

 1:00

 1:30

 2:00

 2:30

 3:00

32 16 8 2

D
u

ra
ti
o

n
 (

h
)

Available CPU cores

1.5K
3K
7K

13K
25K

Fig. 13: Runtimes of C# projects with
a different number of revisions.

other object-oriented analyses implemented in LISA still apply, for example
counting attributes or computing cyclomatic complexity of functions and files.

Implementation. Listing 5 contains the complete implementation and demon-
strates how little work is necessary to support additional languages in LISA.
The following steps are necessary.

1. Copying an existing ANTLRv4 grammar into the src/main/antlr4 di-
rectory. We used the grammar made available at https://github.com/

antlr/grammars-v4.
2. Defining a language mapping from the symbols used by the object-oriented

analysis suite to the labels used in the grammar (lines 15 to 26).
3. Defining the boilerplate class which integrates the ANTLR-generated

parser in LISA (lines 28 to 33).

The implementation took us roughly 30 minutes, mainly to look up and map
the labels used by the ANTLR grammar. Using this minimal implementation,
LISA’s generic analyses (which are part of the UniversalAnalysisSuite used
on line 44) can thus be applied to Lua projects. Metrics for any matching
node types (i.e., methods, blocks and files) will be computed. Nothing more
is necessary to persist these metrics at the file level. However, if the goal is to
persist metrics for individual functions, a little more work is necessary. The
problem is, that in this Lua grammar, function names are not stored as literals
of the function nodes (labeled “Function” by the grammar). Instead, they
are stored in child nodes, labeled “Funcname”, beneath the function nodes.
This means that to identify function nodes by their name, it is necessary to
signal the function name from the “Funcname” to the actual “Function” nodes,

https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4

Redundancy-free Analysis of Multi-revision Software Artifacts 37

Listing 5: Adding Lua support in LISA

1 package org.example
2 import ch.uzh.ifi.seal.lisa.core._
3 import ch.uzh.ifi.seal.lisa.core.public._
4 import ch.uzh.ifi.seal.lisa.antlr._
5 import ch.uzh.ifi.seal.lisa.module.analysis._
6 import ch.uzh.ifi.seal.lisa.module.persistence.CSVPersistence
7 // Parser classes generated by ANTLRv4. Beyond copying the grammar into
8 // the correct directory , no additional effort is necessary , as LISA
9 // automatically generates parsers for available grammars.

10 import org.example.parser.LuaLexer
11 import org.example.parser.LuaParser
12 // Mapping semantic concepts used by the existing object -oriented
13 // analyses (Scala symbols on the left) to parser -specific labels , as
14 // found in the Lua grammar file (sets of strings on the right).
15 object LuaParseTree extends Domain {
16 override val mapping = Map(
17 'file -> Set("Chunk"),
18 'block -> Set("Block"),
19 'statement -> Set("Stat"),
20 'fork -> Set("DoStat", "WhileStat", "RepeatStat", "IfStat",
21 "ForStat", "ForInStat"),
22 'method -> Set("Function"),
23 'variable -> Set("Var"),
24 'field -> Set("Field")
25)
26 }
27 // Boilerplate wrapping the ANTLR generated parser for use with LISA
28 object AntlrLuaParser extends AntlrParser[LuaParser](LuaParseTree) {
29 override val suffixes = List(".lua") // which blobs to read from Git
30 override def lex(input: ANTLRInputStream) = new LuaLexer(input)
31 override def parse(tokens: CommonTokenStream) = new LuaParser(tokens)
32 override def enter(parser: LuaParser) = parser.chunk()
33 }
34 // This remaining code is not necessary for adding support. It simply
35 // shows how the newly added parser is used to analyze a Lua project.
36 // The UniversalAnalysisSuite contains LISA's object -oriented analyses
37 // which operate on the semantic concepts mapped above.
38 object LuaAnalysis extends App {
39 val url = "https: // github.com/Mashape/kong.git"
40 implicit val uid = "Mashape_kong"
41 val gitLocalDir = s"/tmp/lisa/git/$uid"
42 val targetDir = s"/tmp/lisa/results/$uid"
43 val parsers = List[Parser](AntlrLuaParser)
44 val analyses = UniversalAnalysisSuite
45 val persistence = new CSVPersistence(targetDir)
46 val sources = new GitAgent(parsers , url , gitLocalDir)
47 val c = new LisaComputation(sources , analyses , persistence)
48 c.execute
49 }

where the metrics are computed. This requires an additional 18 lines of code.
See https://goo.gl/YnNd7j for an extended version of the Lua support that
includes name resolution. Note that this really is only necessary if functions
need to be identified in the resulting data set.

Discussion. Whereas the formulation of analyses can be rather verbose, as in-
dicated in Section 3.1, adding support for additional languages is very straight-
forward and simple in LISA. Besides the redundancy removal techniques, the
flexibility to easily support additional languages is a major benefit of using
LISA. That said, in our experience, the performance of ANTLR-generated
parsers can vary significantly. Sometimes, it is better to use a native or oth-

https://goo.gl/YnNd7j

38 Carol V. Alexandru et al.

erwise optimized parser. Adding an external parser is more work than just
copying a grammar file, but LISA’s interface is straight-forward to imple-
ment. For reference, integrating the native Python parser required 134 lines of
Scala and 80 lines of Python code. Integrating the JRE’s Nashorn JavaScript
parser required 168 lines of Scala code. That said, especially for exploratory
research in the beginning of a study, having the option of simply dropping in
an ANTLR grammar to apply LISA is a significant advantage.

3.6 Threats to validity

We presented several experiments that demonstrate the effectiveness of the
redundancy removal techniques we describe in Section 2 and thus, the ca-
pabilities and usefulness of LISA. Our conclusions in these experiments rely
on our tooling and the experimentation methodology applied. Even though
we designed the experiments diligently, their validity might be threatened for
several reasons.

Internal validity. This relates to factors or effects on the experiments that
influence the results, but that are not controlled. Ignoring these factors can
change the interpretation of the results and the conclusion.

Our findings are based on metrics that we compute using LISA for a large
number of projects and we rely on the correctness of these computations. We
ensure their correctness by running them in a controlled environment and by
comparing the results to manually calculated results. Human calculation errors
have been mitigated by double-checking of the results.

In the same way, it could be that we are missing an effect that would lead
to an incorrect measurement of the reported runtimes for the experiments.
However, as the same methodology is used to compare the runtimes of the
optimized and the handicapped version of the experiments, such an error would
not favor one approach over the other. We ran each experiment once only and
not several times (averaging the results), however we are still confident that
our measurements provide an accurate representation of how the handicapped
versions compare.

The hardware we ran our experiments on is a shared environment, and
even though resources are reserved for a process, other jobs running on the
same hardware can interfere with LISA’s performance. Furthermore, due to
an existing bug in LISA, performance benefits when using more than 28 cores
seem to be limited. However, all projects in the large-scale study were analyzed
using the same resources.

External validity. The generalizability of our findings to other experimental
settings are affected by threats to the external validity of our experiments.

The choice of projects used in our experiments might be biased and not rep-
resentative for other projects. To mitigate this issue, we selected a large sample
of popular open-source projects and we analyze four different programming
languages. Our sample covers a wide range of application domains, project

Redundancy-free Analysis of Multi-revision Software Artifacts 39

sizes, history sizes, and levels of activity, which makes us confident that our re-
sults generalize beyond our immediate findings. However, all selected projects
are open-source. While some of them are maintained by professional devel-
opers, we cannot assume that the same results will be found in closed-source
projects. Furthermore, since we chose projects based on popularity, it may
be that less popular projects behave differently or yield different aggregated
results. We may replicate our study for additional projects and programming
languages in future research to extend the generality of our findings.

All our experiments use the domain of static source-code analyses as a
means to evaluate LISA and we assume that these analysis tasks are repre-
sentative for other domains as well. Graphs that are constructed for answer-
ing different questions and which are based on artifacts other than plain-text
source code (e.g., bytecode or on-save snapshots from an IDE) may have dif-
ferent topologies which could impede the effectiveness of the algorithm and
lead to reduced performance. However, the underlying graph framework used
by LISA, Signal/Collect, does not impose any limitation on the kind of graph
that is processed. We do not expect that other kinds of analyses would benefit
less from using LISA.

4 Discussion

We have presented several techniques and demonstrated their effectiveness.
Here, we first reflect on what role a tool such as LISA plays in software evo-
lution research by reporting on two artifact studies we performed. We then
address how we can further improve LISA, and assess its potential for future
studies.

4.1 Artifact studies

While the focus of our research is on finding ways to reduce redundancies in
multi-revision analyses, thus accelerating them, the ultimate purpose of any
software analysis tool is to answer concrete questions. So far, we have used
LISA in two different artifact studies.

Study A: sampling revisions in software evolution research. In this first study,
we asked the question, how many revisions in the history of a project can
‘safely’ be skipped when doing software evolution research without losing too
much information. While LISA can perform certain analyses on every revision
of a project, other, more resource-intensive tools may not, such that researchers
will need to consider a trade-off between the number of revisions effectively
analyzed and the time and resources available to them. Likewise, some in-
sights may be entirely unobservable without analyzing every revision. Thus,
we wanted to find out how much the temporal data diverges from the ‘true’,
high-resolution history with an increasing number of revisions skipped during
an analysis. We published the results of this study in previous work [9], and

40 Carol V. Alexandru et al.

have since replicated the study based on the new data we computed for 4,000
instead of 300 projects, also confirming the findings for an additional program-
ming language. We found that for object oriented metrics, the error – in terms
of difference of area under the curve (AUC) of the real history compared to
the sampled history - can be kept below 1% for 75% of projects by analyzing
every 20th revision. We also found that, due to using the AUC difference as
an error measure, projects with a large number of revisions can sustain much
larger sampling intervals, up to several 100 revisions skipped.

Study B: on the usage of Pythonic idioms. The term ‘Pythonic’ is frequently
used by Python developers on question-answering sites, forums and in live
interactions, when referring to the right, idiomatic way of writing Python
code. While research into this topic is in its infancy, a tentative catalogue of
Pythonic idioms exists [71]. We implemented detectors for these idioms as laid
out in Section 3.1 and using the resulting data, we mapped out how different
idioms were used over different time frames. This research is yet unpublished,
but we found that during the first year of development, only 3 out of 15 idioms
accounted for more than 90% of idioms used, while over several years, the share
of those same 3 idioms drops to just over 30%.

Contribution of our approach toward artifact studies. LISA enabled us to com-
pute object-oriented metrics for each and every revision of a large and diverse
sample of projects in little over eight days, spending 100ms on a single revi-
sion on average. Analyzing the complete source code of over 7 million program
revisions using traditional means would have been entirely unfeasible. LISA
allowed us to perform a controlled experiment where we were able to freely
choose how many revisions we include in a study. For the Pythonic study,
LISA also provided a fast, easy to use alternative to existing approaches. Pre-
vious work [71] utilized a text-based (as opposed to AST-based) analyzer that
is more complex, significantly slower and, naturally, only works on regular
files, i.e., on one revision at a time. Implementing the detectors for Pythonic
idioms as outlined in Section 3.1 was straight-forward and allowed us to go
from planning the experiment to executing it on 1000 Python projects within
two weeks.

That said, we analyzed the historical data computed by LISA using other
means in both artifact studies, mostly using R. Thus, at this time, LISA is
primarily a provider of raw data, rather than a tool to directly perform evo-
lutionary studies and derive higher-level results. We discuss how LISA could
be extended to support such studies directly in Section 4.2.

4.2 Future work

This paper presents a novel strategy for representing and analyzing software
artifacts from large repositories with long histories. The results in this paper
do not close this line of research and can benefit from several further improve-
ments.

Redundancy-free Analysis of Multi-revision Software Artifacts 41

Automated memory trade-off. As we discuss in Section 3.4, it can be difficult
to estimate in advance how much memory LISA needs for an analysis, because
it depends on multiple factors: the number of revisions, the code churn between
revisions, the size and number of individual files and the kinds of analyses to
be run on the graph. While over-provisioning is a working solution, it would
be better if LISA could avoid taking on more work than it can handle given
available resources, which is feasible given the following approach. After the
initial Git metadata extraction, where LISA creates the lists of code blobs
to be parsed from Git as explained in Section 2.1.2, instead of parsing files
from all revisions asynchronously, it could only parse a limited number of
revisions. Once it runs low on work (because it is still parsing files which
had a lot of changes, but stopped parsing others since they are out of the
limited range), LISA could check the current memory consumption and make
a decision whether or not to extend the limited range further and continue
parsing additional files. It could do so up until a pre-specified threshold chosen
by the analysts, for example 75% of available memory. The threshold would
need to be selected by the analyst because only they know how much additional
data is expected to be generated by the analyses to be run. Once the threshold
is reached, LISA would compute and persist data for the loaded revisions,
prune the graph to only hold the very last revision analyzed and then continue
parsing the next chunk incrementally using the same strategy, thus keeping a
low redundancy overhead.

Facilitating recurrent analyses. In the current implementation of LISA, the
graph representing the history of analyzed artifacts is transient and only kept
in memory. Analysis re-runs need to reconstruct the graph from the data
source, for example by parsing the source code once again. However, parsing –
the use case presented in this paper – requires a significant amount of time for
large projects. We tried several alternative graph databases, including Neo4J
and RDF4J12 as alternatives to Signal/Collect, but their performance, both
in terms of memory requirements and computation speed were subpar.

Thus, we still need to find a way to persist and incrementally update LISA’s
graphs such that recurrent analyses do not need to load them from the orig-
inal data source again. This would either require a rigid entity mapping or
disabling the filter on the data source altogether, such that the entire source
is represented in the graph (similarly to how BOA stores ASTs [27]). How-
ever, storing complete trees significantly inflates memory requirements and
computational load: Section 3.3 has shown a seven-fold increase in runtime
when analyzing the Reddit project without the analysis-specific AST filter.
One possible workaround to at least mitigate the computational load would
be to add additional edges which could serve as ‘shortcuts’ or ‘fast-lanes’ for
analysis signals to skip irrelevant nodes where possible, although this would
further increase the amount of information needed to be stored in the graph.

Analysis formulation. Analyses in LISA need to be formulated using LISA’s
adaptation of the Signal/Collect paradigm, i.e., involving individual vertices

12 https://neo4j.com/, http://rdf4j.org/

https://neo4j.com/
http://rdf4j.org/

42 Carol V. Alexandru et al.

sending and receiving information. While this paradigm itself is straight-
forward, there are two opportunities for improvement. First, a lot of boil-
erplate code is required. Thus, it would make sense to develop a DSL for LISA
to remove all but the most essential parts of what constitutes a graph analysis.
Second, a higher-level query language could simplify many common operations
that now need to be implemented as separate Signal/Collect analyses (for ex-
ample resolving method names contained in child nodes, as described in Sec-
tion 3.5 regarding Lua). Other graph databases provide such query languages,
but as discussed above, their performance was inferior to Signal/Collect.

Direct analysis of evolutionary aspects. Graph analyses, which are formulated
with only one revision in mind, are transparently applied to revisions and
revision ranges by LISA. The computed data is persisted, for example to .csv
files or a database, and needs to be analyzed using other means in order to
answer specific research questions (e.g., by using R for applying statistical tests
to the collected data). It would, however, be possible to add a second way of
formulating analyses involving multiple revisions, because all necessary data
is present in LISA, such that evolutionary aspects could be analyzed directly,
instead of having to post-process the data using other means.

In addition to these immediate improvements of the LISA framework, we also
envision several future applications, which are either enabled through LISA or
that could highly-benefit from using it.

Different data sources and problem domains. LISA’s core is completely generic
and agnostic to the kinds of multi-revision graphs it stores and analyzes and
there are many opportunities for loading other kinds of data into LISA. For
example, several tools exist that can capture on-save snapshots of source code
under development directly in the IDE (e.g., [74]). These snapshots contain
compiled representations of the project, including fully resolved types for all
objects. It would be possible to load such graphs into LISA and perform more
in-depth analyses (such as call graph-, coupling- and dependency analyses) on
these snapshots compared to parsed ASTs. It may also be possible to store
and analyze byte- or decompiled code of binary versions of a program where
the source is unavailable. Beyond program analysis, LISA could be used to
analyze multi-revision graphs of arbitrary content, for example evolving social
networks or multi-versioned RDF data.

Multi-revision compilation. Typically, source code representations with fully
resolved typing information are obtained using a compiler. However, compil-
ers are not typically designed to handle multiple revisions simultaneously. It
may, however, be possible to integrate LISA’s multi-revision approach with
an existing compiler. In essence, this would entail replacing all state stored
internally during compilation with a multi-revision variant. Just like in LISA,
code fragments which are unchanged in multiple revision would only be com-
piled once. It would also be necessary to handle dependencies the same way,
since different program revisions may need different versions of the dependen-
cies. The engineering effort would likely be significant, but the result would

Redundancy-free Analysis of Multi-revision Software Artifacts 43

be a ‘multi-revision’ compiler that can generate fully connected source code
representations for multiple revisions at once.

Cross-language analyses. We have shown in this paper that LISA can analyze
projects that use multiple programming languages, i.e., when we computed
metrics for both JavaScript and Python code of the Reddit project in Section 2.
However, in the large-scale study, we only analyzed files for one language per
project, because we wanted to identify language-specific recommendations for
appropriate sampling intervals. That said, all source code is represented within
the same graph in LISA and it is possible to create additional edges to connect
different components in the graph that come from different languages. For
example, an analysis involving JavaScript, HTML and CSS files could search
for HTML identifiers (e.g., "#main-nav-bar") in the entire graph and connect
nodes parsed from different languages using additional edges. In future work
we plan to work on analyses that cross language boundaries.

Implementing additional MSR research techniques. Besides analyzing meta-
data and computing code metrics, MSR research sometimes involves other
kinds of code analysis techniques, for example code clone detection or program
slicing. In general, LISA could be used to perform any kind of analysis, however
the additional development effort to formulate appropriate analyses in Signal/-
Collect can be substantial. We previously implemented a cross-language code
clone [15] analyzer in LISA13 which hashes sub-trees and connects AST ver-
tices with matching hashes via additional edges in the graph, thus identifying
code clones across programming languages. This works for simple examples14

but further work is needed to determine the effectiveness of this technique in
real-world projects. Program slicing [17] refers to the identification of parts
of source code that influence a specific variable or return value. Dependency
analysis (i.e., tracing the control flow and assignments influencing a variable
or statement) is typically used towards this goal. Since LISA so far works on
uncompiled code, creating control-flow and dependency graphs can be chal-
lenging. Implementing these would require creating additional vertices and
edges to connect related AST nodes. Points-to analyses [56] represent another,
related task which is easier to perform on compiled code.

5 Related work

Scaling software analysis and the inclusion of multiple programming languages
are ongoing efforts, but rarely are these two topics combined like in the case of
our research. Where the problem of covering multiple languages is explored,
scale is not an issue and where large-scale analyses are performed, they are
mostly restricted to a single language. In this section, we first relate LISA to
existing code analysis tools and also discuss how LISA’s light-weight mappings
differ from traditional metamodels.

13 http://goo.gl/aWWCkN
14 http://goo.gl/VftJUW

http://goo.gl/aWWCkN
http://goo.gl/VftJUW

44 Carol V. Alexandru et al.

5.1 Code analysis frameworks and multi-revision analysis

Static analysis tools like Soot [51] provide building blocks for new static analy-
ses (e.g., points-to analyses). Reusing these building blocks allows researchers
to reduce their own effort when writing these analyses. However, compared to
LISA, such toolkits are not designed to efficiently analyze multiple revisions.

A whole line of research is dedicated to analyzing historic data of soft-
ware projects. Fischer et al. [30] track revisions and bug reports for a soft-
ware project in a common database. Information can be requested in simple
queries to facilitate the anticipation of future evolution. Bevan et al. [16] in-
troduced the software analysis framework “Kenyon” that provides a flexible
infrastructure for common logistical issues, e.g., configuration retrieval or tool
invocation, to facilitate software evolution research. Along similar lines, Gall
et al. [31,32] developed Evolizer, a platform for mining software archives, and
ChangeDistiller, a change extraction tool that compares ASTs of two different
versions, together enabling the retrospective analysis of a software system’s
evolution, improving upon previous algorithms for extracting changes [23].
Ghezzi et al. presented a service-oriented framework called SOFAS, enabling
collaborative analyses of software projects and facilitating the replication of
mining studies [34]. Successively, Ghezzi et al. [35] analyzed several studies that
mine software repositories and found that less than one third of them are fully
replicable, indicating that replicability and generalizability remain important
issues in software engineering research. In the same vein, González-Barahona
et al. develop a methodology for assessing the replicability of empirical soft-
ware engineering studies [37]. Zimmermann et al. [92] propose ‘ROSE’, which
analyzes the full history of a project to predict the location of most likely
further changes.

Compared to such frameworks, which have a strong focus on conceptual
models, e.g., providing a specific query language or involving different artifact
types such as bug reports and version control metadata, LISA is a much more
narrowly targeted (with the primary goal of reducing redundancies in analyz-
ing multi-versioned graphs), but also much more generic tool. It essentially
offers recipes and constructs to perform arbitrary graph analyses, while these
frameworks usually have a very specific use case within the software evolution
research community.

Several approaches exist that try to improve the scalability of static analy-
ses. To enable the large-scale analysis of repository metadata, Dyer et al. have
developed Boa, an infrastructure, backed by a Hadoop cluster, for performing
large-scale studies via a web interface, IDE plugin or web API [27,28]. It con-
tains the commit data of over 8 million projects which can be analyzed using a
domain specific language. More recently it provides access to the ASTs of Java
code contained in all releases of numerous projects, which can be analyzed us-
ing visitor patterns. Compared to LISA, which is a stand-alone library, BOA
is also a server infrastructure and uses a concrete, fixed model for Java only.

Redundancy-free Analysis of Multi-revision Software Artifacts 45

Allamanis and Sutton [10] propose a novel approach, obtained by building
a probabilistic language model of source code based on 352 million LOC of
Java, which provides a new way for analyzing software projects. In particular,
it enables the definition of new complexity metrics based on the statistical
model, that allow the detection of reusable utility classes from the program’s
core logic.

Le et al. [55] present a technique to merge control-flow graphs of multi-
ple versions of a software system. They do not apply this technique for de-
duplication though, but use it for patch verification across a small number
of control flow graphs (CFGs). A general approach could lift this idea to ar-
bitrary artifacts and scale it to hundreds of thousands of revisions. Another
example for a similar technique can be found in TypeChef [43], which uses
a variability-aware parser to analyze multiple configurations of C programs
(i.e., #ifdefs) in a shared graph. Compared to LISA, TypeChef targets type
checking and other architecture aspects in a multi-configuration context rather
than the generic analysis of artifacts in a multi-revision context.

An indirect way to improve the scalability of static analysis is to use cu-
rated datasets that either make it easy to compile programs (e.g., [81]), that
already contain fully-qualified typing information [72] (which makes compila-
tion unnecessary), or which consist of pre-computed data as opposed to the
original source code (e.g., [7]). Creating and maintaining these datasets in-
volves manual work though, which is why their size is typically limited.

5.2 Multi-language analysis

Given the multi-language nature of today’s software projects, researchers have
been working on approaches for multi-language program analysis [11, 26, 50].
These approaches are typically built on metamodels [26, 78] that enable the
analysis and manipulation of multi-language software code, thus allowing the
generalization of specific static analyses and other software recommendations.

Tichelaar et al. [82] proposed the source code metamodel FAMIX to aid
the refactoring of source code of different languages. FAMIX defines concepts
such as classes, methods, attributes, invocations and inheritance. Source code
in a given language is transformed into a concrete FAMIX instance, which can
be used to perform analyses or give refactoring advice. The authors note that
any code metamodel represents a trade-off between being too coarse-grained
to be useful for a wide range of problems and being too fine-grained to remain
sufficiently language-independent. FAMIX has since been used as a metamodel
by other tools [34,52] and later extensions also model changes (i.e., Hismo [36]
and Orion [54]), which allow the analysis of source code evolution. Strein et
al. have developed a metamodel for capturing multi-language relationships in
source code [78] not dissimilar to FAMIX, but with the added idea of enabling
cross-language refactorings, for example renaming variables both in the front-
and back-end of a multi-language project. Another example is Rakić et al.’s
framework for language-independent software analysis [75]. Using an ANTLR

46 Carol V. Alexandru et al.

parser, it transforms the source code of different languages into a so-called
enriched Concrete Syntax Tree (eCST), which is stored as XML, and then
re-read to calculate basic code metrics. The eCST is more fine-grained than a
FAMIX model. Heavyweight models similar to FAMIX, such as KDM [4] or
ASTM [3] as well as general-purpose models such as RSF [45] or GXL [86]
model not only the kinds of nodes, but also their relationships and structure
explicitly. The same is true for M3 [41], which is specifically designed for use
with Rascal Metaprogramming Language [40] and which also includes non-
code concepts such as physical and logical source locations. In addition, recent
work proposed rather different approaches focused on the execution of specific
static analyses on multi-language programs such as the detection of software
vulnerabilities [38] and changes in software licenses [21]).

All metamodels that we have described in this section have only been ap-
plied in single-revision, single-project settings and, contrary to our lightweight
approach, do not aim to be practical in large-scale analyses, where performance
is crucial. Thus, the biggest difference comparing our lightweight mappings to
existing metamodels is the fact that the latter always imply a transformation
of a source data structure (e.g., an AST) to a concrete instance of the meta-
model. In LISA however, the mappings themselves only influence the types
of source nodes which are loaded into the graph. The structure of the graph,
however, will be identical to the original structure provided by the data source,
minus any nodes which are not mapped. It is only in the context of a particu-
lar analysis that the mappings of individual nodes gain meaning. As such, our
lightweight mappings can be considered a view onto an existing graph struc-
ture, rather than a metamodel. Furthermore, code models typically come with
predefined entity types and relationships, whereas our lightweight mappings
are formulated in the context of a particular analysis.

6 Conclusion

Current research on software evolution is limited by the time and effort re-
quired to analyze many revisions of a large and diverse sample of projects. No
existing tools focus both on analyzing the source code of many revisions as well
as different programming languages. To solve this issue, we have presented our
open-source tool, the Lean Language-Independent Software Analyzer (LISA),
a generic framework for representing and analyzing multi-revisioned software
artifacts. It employs a redundancy-free, multi-revision representation for arti-
facts and avoids re-computation by only analyzing changed artifact fragments
at the sub-graph level. It features several distinct redundancy removal tech-
niques that, in combination, facilitate the rapid analysis of artifacts contained
in 100,000s of commits. In addition, it allows using lightweight mappings in-
stead of traditional metamodels for static, structural analyses of source code
written in different languages. The lightweight mappings not only represent a
flexible, analysis-specific bridge between different languages and formats, but
they also play an important role in improving LISA’s performance, as they

Redundancy-free Analysis of Multi-revision Software Artifacts 47

enable the filtering of unnecessary source data without sacrificing knowledge
relevant to analyses. After formulating a particular analysis, the selection of
projects, the creation of language mappings and the automated execution of
analyses using LISA are straightforward and enable the quick extraction of
fine-grained software evolution data from existing artifacts. Our evaluation
demonstrates the performance, resource requirements and adaptability of our
approach. LISA supports varying kinds of code analyses, exhibits high speed,
and implements several individual redundancy removal techniques, each of
which is highly effective on its own. On average, LISA can represent the full
history projects using only 4% of the space that would be required to repre-
sent all individual revisions. For very large projects, this ratio can be as low
as 0.0053%. Consequently, it can analyze a large number of revisions orders
of magnitude faster than traditional approaches, on average at around 100ms
per revision, even for very large projects. Furthermore, we’ve shown that the
majority of popular projects on GitHub can be analyzed on commodity hard-
ware while describing how larger projects could be analyzed both on high-
and low-memory instances. Finally, we’ve shown how easily LISA can apply
existing analyses to additional programming languages.

LISA fills a unique niche in the landscape of software analysis tools, occupy-
ing the space between language-specific tooling used for the in-depth analysis
of individual projects and releases, and traditional software repository mining,
where code analysis is typically restricted to merely counting files and lines
of code. The techniques discussed in this paper could be adapted for existing
solutions individually, but LISA also offers clean and easy-to-implement in-
terfaces for additional version control systems, data sources, storage methods,
and analyses.

Acknowledgements We thank the reviewers for their valuable feedback. This research is
partially supported by the Swiss National Science Foundation (Projects №149450 – “White-
board” and №166275 – “SURF-MobileAppsData”) and the Swiss Group for Original and
Outside-the-box Software Engineering (CHOOSE).

References

1. Awesome python. https://github.com/vinta/awesome-python. Accessed: 2017-06-20.
2. infusion by Intooitus s.r.l. http://www.intooitus.com/products/infusion. Accessed:

2014-03-30.
3. OMG: ASTM. http://www.omg.org/spec/ASTM/1.0/. Accessed: 2016-10-06.
4. OMG: KDM. http://www.omg.org/spec/KDM/1.3/. Accessed: 2016-10-06.
5. The top 500 sites on the web. http://web.archive.org/web/20170626103223/http:

//www.alexa.com/topsites. Accessed: 2017-06-26.
6. We analyzed 30,000 GitHub projects – here are the top 100 libraries in Java, JS and

Ruby. http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the
-top-100-libraries-in-java-js-and-ruby/. Accessed: 2016-03-20.

7. The Promise repository of empirical software engineering data, 2015.
8. C. V. Alexandru and H. C. Gall. Rapid multi-purpose, multi-commit code analysis. In

Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, volume 2, pages 635–638, May 2015.

https://github.com/vinta/awesome-python
http://www.intooitus.com/products/infusion
http://www.omg.org/spec/ASTM/1.0/
http://www.omg.org/spec/KDM/1.3/
http://web.archive.org/web/20170626103223/http://www.alexa.com/topsites
http://web.archive.org/web/20170626103223/http://www.alexa.com/topsites
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/
http://blog.takipi.com/we-analyzed-30000-github-projects-here-are-the-top-100-libraries-in-java-js-and-ruby/

48 Carol V. Alexandru et al.

9. C. V. Alexandru, S. Panichella, and H. C. Gall. Reducing redundancies in multi-revision
code analysis. In IEEE 24th International Conference on Software Analysis, Evolution
and Reengineering, SANER 2017, Klagenfurt, Austria, 2017, 2017.

10. M. Allamanis and C. A. Sutton. Mining source code repositories at massive scale using
language modeling. In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR ’13, San Francisco, CA, USA, 2013, 2013.

11. T. Arbuckle. Measuring multi-language software evolution: A case study. In Proceedings
of the 12th International Workshop on Principles of Software Evolution and the 7th
Annual ERCIM Workshop on Software Evolution, pages 91–95, 2011.

12. G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. The evolution of
project inter-dependencies in a software ecosystem: The case of Apache. In 2013 IEEE
International Conference on Software Maintenance, pages 280–289, 2013.

13. G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella. How the Apache
community upgrades dependencies: an evolutionary study. Empirical Software Engi-
neering, pages 1–43, 2014.

14. G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, and D. Binkley. An empirical analysis of
the distribution of unit test smells and their impact on software maintenance. In 28th
IEEE International Conference on Software Maintenance, ICSM 2012, Trento, Italy,
September 23-28, 2012, pages 56–65, 2012.

15. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In Software Maintenance, 1998.

16. J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating software evolution
research with kenyon. pages 177–186, 2005.

17. D. Binkley, N. Gold, S. Islam, J. Krinke, and S. Yoo. Tree-oriented vs. line-oriented
observation-based slicing. In 2017 IEEE 17th International Working Conference on
Source Code Analysis and Manipulation (SCAM), pages 21–30, Sept 2017.

18. C. Bird, N. Nagappan, P. T. Devanbu, H. C. Gall, and B. Murphy. Does distributed
development affect software quality? an empirical case study of Windows Vista. In
31st International Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, pages 518–528, 2009.

19. C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent social structure
in open source projects. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT ’08/FSE-16, pages 24–
35, New York, NY, USA, 2008. ACM.

20. B. D. Bois, P. V. Gorp, A. Amsel, N. V. Eetvelde, H. Stenten, and S. Demeyer. A
discussion of refactoring in research and practice. Technical report, 2004.

21. F. Boughanmi. Multi-language and heterogeneously-licensed software analysis. In 2010
17th Working Conference on Reverse Engineering, pages 293–296, Oct 2010.

22. S. Chacon and B. Straub. Pro Git. Apress, 2014.
23. S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change detection

in hierarchically structured information. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’96, pages 493–504, 1996.

24. M. D’Ambros, H. C. Gall, M. Lanza, and M. Pinzger. Analysing software repositories
to understand software evolution. In Software Evolution, pages 37–67. 2008.

25. F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner, B. M. y Parareda, and M. Pizka.
Tool support for continuous quality control. IEEE software, 2008.

26. L. Deruelle, N. Melab, M. Bouneffa, and H. Basson. Analysis and manipulation of dis-
tributed multi-language software code. In Proceedings First IEEE International Work-
shop on Source Code Analysis and Manipulation, pages 43–54, 2001.

27. R. Dyer. Bringing Ultra-large-scale Software Repository Mining to the Masses with
Boa. PhD thesis, Ames, IA, USA, 2013. AAI3610634.

28. R. Dyer, H. Rajan, and T. N. Nguyen. Declarative visitors to ease fine-grained source
code mining with full history on billions of ast nodes. pages 23–32, 2013.

29. M. D’Ambros, M. Lanza, and R. Robbes. Evaluating defect prediction approaches: a
benchmark and an extensive comparison. Empirical Software Engineering, 2012.

30. M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from ver-
sion control and bug tracking systems. In Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on, pages 23–32, 2003.

Redundancy-free Analysis of Multi-revision Software Artifacts 49

31. B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change distilling: Tree differencing for
fine-grained source code change extraction. IEEE Trans. Softw. Eng., 33(11), 2007.

32. H. Gall, B. Fluri, and M. Pinzger. Change analysis with Evolizer and ChangeDistiller.
Software, IEEE, 26(1):26–33, 2009.

33. H. C. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Software evolution observa-
tions based on product release history. In 1997 International Conference on Software
Maintenance (ICSM ’97), Proceedings, page 160, 1997.

34. G. Ghezzi and H. Gall. Sofas: A lightweight architecture for software analysis as a
service. In Software Architecture (WICSA), 2011 9th Working IEEE/IFIP Conference
on, pages 93–102, June 2011.

35. G. Ghezzi and H. Gall. Replicating mining studies with SOFAS. In Mining Software
Repositories (MSR), 2013 10th IEEE Working Conference on, pages 363–372, 2013.

36. T. Gı̂rba and S. Ducasse. Modeling history to analyze software evolution. Journal of
Software Maintenance and Evolution: Research and Practice, 18(3):207–236, 2006.

37. J. M. González-Barahona and G. Robles. On the reproducibility of empirical software
engineering studies based on data retrieved from development repositories. Empirical
Software Engineering, 17(1):75–89, Feb 2012.

38. R. Hadjidj, X. Yang, S. Tlili, and M. Debbabi. Model-checking for software vulnera-
bilities detection with multi-language support. In 2008 Sixth Annual Conference on
Privacy, Security and Trust, pages 133–142, Oct 2008.

39. L. Hernandez and H. Costa. Identifying similarity of software in Apache ecosystem – an
exploratory study. In 2015 12th International Conference on Information Technology
- New Generations, pages 397–402, April 2015.

40. M. Hills, P. Klint, and J. J. Vinju. Program Analysis Scenarios in Rascal, pages 10–30.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

41. A. Izmaylova, P. Klint, A. Shahi, and J. J. Vinju. M3: an open model for measuring
code artifacts. CoRR, abs/1312.1188, 2013.

42. E. Juergens, F. Deissenboeck, and B. Hummel. Code similarities beyond copy & paste.
In Software Maintenance and Reengineering (CSMR), 2010 14th European Conference
on, 2010.

43. C. Kästner, P. G. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and T. Berger.
Variability-aware parsing in the presence of lexical macros and conditional compila-
tion. In Proceedings of the 2011 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’11, pages 805–824, New
York, NY, USA, 2011. ACM.

44. D. Kawrykow and M. P. Robillard. Non-essential changes in version histories. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 351–360, 2011.

45. H. M. Kienle and H. A. Müller. Rigi—an environment for software reverse engineering,
exploration, visualization, and redocumentation. Science of Computer Programming,
75(4):247 – 263, 2010.

46. M. Kim, J. Nam, J. Yeon, S. Choi, and S. Kim. Remi: Defect prediction for efficient
API testing. In Proceedings of the IEEE/ACM International Conference on Automated
Software Engineering, page To Apper. ACM, 2010.

47. M. Kim and D. Notkin. Program element matching for multi-version program analyses.
In Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR ’06, pages 58–64, New York, NY, USA, 2006. ACM.

48. S. Kim, K. Pan, and E. E. J. Whitehead, Jr. Memories of bug fixes. In Proceedings of
the 14th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, SIGSOFT ’06/FSE-14, pages 35–45. ACM, 2006.

49. E. Kocaguneli, T. Menzies, and J. Keung. On the value of ensemble effort estimation.
Software Engineering, IEEE Transactions on, 38(6):1403–1416, 2012.

50. K. Kontogiannis, P. K. Linos, and K. Wong. Comprehension and maintenance of large-
scale multi-language software applications. In 22nd IEEE International Conference on
Software Maintenance (ICSM 2006), 24-27 September 2006, Philadelphia, Pennsylva-
nia, USA, pages 497–500, 2006.

51. P. Lam, E. Bodden, O. Lhotak, and L. Hendren. The Soot framework for Java pro-
gram analysis: A retrospective. In Cetus Users and Compiler Infastructure Workshop,
CETUS’11, 2011.

50 Carol V. Alexandru et al.

52. M. Lanza, S. Ducasse, H. Gall, and M. Pinzger. Codecrawler - an information visual-
ization tool for program comprehension. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages 672–673, May 2005.

53. M. Lanza, R. Marinescu, and S. Ducasse. Object-Oriented Metrics in Practice. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

54. J. Laval, S. Denier, S. Ducasse, and J.-R. Falleri. Supporting simultaneous versions for
software evolution assessment. Science of Computer Programming, 76(12), 2011.

55. W. Le and S. D. Pattison. Patch verification via multiversion interprocedural control
flow graphs. In Proceedings of the 36th International Conference on Software Engi-
neering, ICSE 2014, pages 1047–1058, New York, NY, USA, 2014. ACM.

56. J. Lundberg and W. Löwe. Points-to analysis: A fine-grained evaluation. 18, 12 2012.
57. R. Marinescu. Detection strategies: metrics-based rules for detecting design flaws. In

Software Maintenance, 2004. Proceedings. 20th IEEE International Conference on,
pages 350–359, 2004.

58. T. McCabe. A complexity measure. Software Engineering, IEEE Transactions on,
SE-2(4):308–320, Dec 1976.

59. T. Mende and R. Koschke. Revisiting the evaluation of defect prediction models. In
Proceedings of the 5th International Conference on Predictor Models in Software En-
gineering, PROMISE ’09, pages 7:1–7:10. ACM, 2009.

60. T. Mens. Introduction and roadmap: History and challenges of software evolution. In
Software Evolution, pages 1–11. Springer Berlin Heidelberg, 2008.

61. T. Mens, M. Claes, P. Grosjean, and A. Serebrenik. Studying evolving software ecosys-
tems based on ecological models. In Evolving Software Systems, pages 297–326. 2014.

62. T. Mens and T. Tourwe. A survey of software refactoring. Software Engineering, IEEE
Transactions on, 30(2):126–139, 2004.

63. N. Moha, Y. Guéhéneuc, L. Duchien, and A. L. Meur. DECOR: A method for the
specification and detection of code and design smells. IEEE Trans. Software Eng.,
36(1):20–36, 2010.

64. M. Munro. Product metrics for automatic identification of “bad smell” design problems
in Java source-code. In Software Metrics, 2005. 11th IEEE International Symposium,
pages 15–15, 2005.

65. M. Nagappan, T. Zimmermann, and C. Bird. Representativeness in software engineering
research. Technical report, Microsoft Research, 2012.

66. N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In
Proceedings of the 28th International Conference on Software Engineering, ICSE ’06,
pages 452–461. ACM, 2006.

67. A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast, E. Rademacher, T. N.
Nguyen, and D. Dig. API code recommendation using statistical learning from fine-
grained changes. In International Symposium on Foundations of Software Engineering.
ACM, 2016.

68. H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, and H. Rajan. A study of
repetitiveness of code changes in software evolution. In 2013 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), Nov 2013.

69. J. Oosterman, W. Irwin, and N. Churcher. EvoJava: A tool for measuring evolving soft-
ware. In Proceedings of the Thirty-Fourth Australasian Computer Science Conference
- Volume 113, ACSC ’11, pages 117–126. Australian Computer Society, Inc., 2011.

70. S. Panichella, V. Arnaoudova, M. D. Penta, and G. Antoniol. Would static analysis tools
help developers with code reviews? In 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2015, Montreal, QC, Canada, March
2-6, 2015, pages 161–170, 2015.

71. J. J. M. Picazo. Analisis y busqueda de idioms procedentes de repositorios escritos en
python. Master’s thesis, Universidad Rey Juan Carlos, Madrid, Spain, 2016.

72. S. Proksch, S. Amann, S. Nadi, and M. Mezini. A dataset of simplified syntax trees for
C#. In International Conference on Mining Software Repositories. ACM, 2016.

73. S. Proksch, J. Lerch, and M. Mezini. Intelligent code completion with bayesian networks.
Transactions of Software Engineering and Methodology. ACM, 2015.

74. S. Proksch, S. Nadi, S. Amann, and M. Mezini. Enriching in-IDE process information
with fine-grained source code history. In International Conference on Software Analysis,
Evolution, and Reengineering, 2017.

Redundancy-free Analysis of Multi-revision Software Artifacts 51

75. G. Rakić, Z. Budimac, and M. Savić. Language independent framework for static code
analysis. In Proceedings of the 6th Balkan Conference in Informatics, BCI ’13, pages
236–243, New York, NY, USA, 2013. ACM.

76. B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann. The uniqueness of
changes: Characteristics and applications. In 2015 IEEE/ACM 12th Working Confer-
ence on Mining Software Repositories, pages 34–44, May 2015.

77. B. V. Rompaey, B. D. Bois, S. Demeyer, and M. Rieger. On the detection of test smells:
A metrics-based approach for general fixture and eager test. IEEE Trans. Software
Eng., 33(12):800–817, 2007.

78. D. Strein, H. Kratz, and W. Lowe. Cross-language program analysis and refactoring. In
Source Code Analysis and Manipulation, 2006. SCAM ’06. Sixth IEEE International
Workshop on, pages 207–216, Sept 2006.

79. P. Stutz, A. Bernstein, and W. Cohen. Signal/collect: Graph algorithms for the (se-
mantic) web. In Proceedings of the 9th International Semantic Web Conference on The
Semantic Web - Volume Part I, ISWC’10, pages 764–780. Springer-Verlag, 2010.

80. G. Szőke, C. Nagy, R. Ferenc, and T. Gyimóthy. A case study of refactoring large-
scale industrial systems to efficiently improve source code quality. In Computational
Science and Its Applications – ICCSA 2014, volume 8583 of Lecture Notes in Computer
Science, pages 524–540. Springer, 2014.

81. E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton, and J. Noble.
Qualitas corpus: A curated collection of Java code for empirical studies. In 2010 Asia
Pacific Software Engineering Conference (APSEC2010), 2010.

82. S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz. A meta-model for language-
independent refactoring. In Principles of Software Evolution, 2000. Proceedings. Inter-
national Symposium on, pages 154–164, 2000.

83. N. Tsantalis and A. Chatzigeorgiou. Identification of move method refactoring oppor-
tunities. IEEE Trans. Software Eng., 35(3):347–367, 2009.

84. M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and D. Poshy-
vanyk. When and why your code starts to smell bad. In Software Engineering (ICSE),
2015 IEEE/ACM 37th IEEE International Conference on, volume 1, pages 403–414,
May 2015.

85. M. VanHilst, S. Huang, J. Mulcahy, W. Ballantyne, E. Suarez-Rivero, and D. Harwood.
Measuring effort in a corporate repository. In IRI, pages 246–252. IEEE Systems, Man,
and Cybernetics Society, 2011.

86. A. Winter, B. Kullbach, and V. Riediger. An overview of the GXL graph exchange
language. In Revised Lectures on Software Visualization, International Seminar, pages
324–336, London, UK, UK, 2002. Springer-Verlag.

87. W. Wu, F. Khomh, B. Adams, Y.-G. Guéhéneuc, and G. Antoniol. An exploratory
study of API changes and usages based on Apache and Eclipse ecosystems. Empirical
Software Engineering, 21(6):2366–2412, 2016.

88. W. Yang, S. Horwitz, and T. Reps. A program integration algorithm that accommodates
semantics-preserving transformations. ACM Trans. Softw. Eng. Methodol., 1(3):310–
354, July 1992.

89. Y. Yu, T. T. Tun, and B. Nuseibeh. Specifying and detecting meaningful changes
in programs. In Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, ASE ’11, pages 273–282, Washington, DC, USA,
2011. IEEE Computer Society.

90. A. Zaidman, B. V. Rompaey, A. van Deursen, and S. Demeyer. Studying the co-evolution
of production and test code in open source and industrial developer test processes
through repository mining. Empirical Software Engineering, 16(3):325–364, 2011.

91. T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy. Cross-project defect
prediction: A large scale experiment on data vs. domain vs. process. In Proceedings of
the the 7th Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on The Foundations of Software Engineering, ESEC/FSE
’09, pages 91–100, New York, NY, USA, 2009. ACM.

92. T. Zimmermann, A. Zeller, P. Weissgerber, and S. Diehl. Mining version histories to
guide software changes. Software Engineering, IEEE Transactions on, 31(6):429–445,
2005.

