
Mini project: Your own Visual Odometry pipeline!

Contents
1 Preliminaries 1

1.1 Additional resources . 1
1.2 Goal of the project . 2
1.3 Datasets . 2
1.4 Grading . 2

1.4.1 Code building blocks and use of external libraries 4
1.4.2 Hand-out . 4

2 Overview of the proposed pipeline 5
2.1 Notations . 5
2.2 Overview . 5

3 Initialization 5
3.1 Initialization from a stereo pair of images . 6
3.2 Initialization using two-view geometry, for monocular VO 6

3.2.1 Implementation hints . 6

4 Continuous operation 7
4.1 Steps 1. and 2. 7

4.1.1 State propagation . 7
4.1.2 Pose estimation . 8
4.1.3 Implementation tips . 8

4.2 Step 3.: Triangulating new landmarks . 8
4.2.1 Keypoint track initialization and landmark triangulation 9
4.2.2 Implementation hints . 10

This document describes the goal of the mini-project, the expected result, and gives you a number
of guidelines regarding what to do and where to start.

1 Preliminaries
The electronic version of this document contains some additional links that you might find useful.
Please consult it in addition to your (eventual) printed copy.

1.1 Additional resources
• A Youtube playlist (link in electronic version) showing our progress on the reference implemen-

tation is available.

• You might also want to check regularly the FAQ page (link in electronic version) where we will
give some answers to the most frequently asked questions about the mini-project

1

https://www.youtube.com/playlist?list=PLI5XgAFFHqZiAg6yd0XKOTRgkCE4QTm54
https://docs.google.com/document/d/1RiG-70-2xwgPcNLGuMzIm5BZ4n8TPx_bFLPe546079E/edit?usp=sharing

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

Figure 1: Preview of our implementation on the KITTI dataset.

1.2 Goal of the project
The goal of this mini-project is to implement a simple, monocular, visual odometry (VO) pipeline
with the most essential features: initialization of 3D landmarks, keypoint tracking between two
frames, pose estimation using established 2D ↔ 3D correspondences, and triangulation of new land-
marks.

You will use the knowledge acquired during the class, and specifically the different modules
developed during the exercise sessions.

1.3 Datasets
You are provided with three datasets to test your pipeline:

• The parking dataset (monocular)

• The KITTI 00 dataset (stereo)

• The Malaga 07 dataset (stereo)

1.4 Grading
You will be graded according to three things:

1. The quality of the pose estimation from your VO pipeline. We will run your code, and read it
(please note that particularly unreadable code will be penalized).

2. The text report that you will have to hand in.

3. Whether you implemented one or multiple bonus features, or did something in addition to the
basic requirements (and explained it in the report). A (non-exhaustive) list of ideas is given in
1.4.

We will not do a strict quantitative evaluation of the quality of your VO pipelines (i.e. we will not
compute any positional error compared to the ground truth). Instead, we will run your code on
several datasets, and judge it from a qualitative point of view, paying particular attention to the
following points (sorted by decreasing order of importance):

2

http://rpg.ifi.uzh.ch/docs/teaching/2016/parking.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/kitti00.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/malaga-urban-dataset-extract-07.zip

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

• The features you implemented. The maximum grade can only be achieved with a completely
monocular pipeline.

– If your pipeline requires stereo frames in continuous operation, your grade will be ≤ 4.5.

– If your pipeline requires stereo frames for initialization only, your grade will be ≤ 5. Note
that no penalty is given if a bonus feature (see 1.4) requires stereo frames.

• How far does the pipeline go without failing or deviating significantly from the ground truth.
Note that with the KITTI and Malaga sequences, scale drift will be difficult to avoid, we will
take that into account when judging your VO pipelines).

• How fast does your code run (in particular for Matlab code, we will check whether you paid
attention to using vectorized operations instead of for loops whenever possible).

Project report The project report should summarize the work that you did and specify exactly
what your VO pipeline does. For example, whether it is monocular or stereo, and how well it
performs on the provided datasets (with plots showing the trajectory estimated). The project report
is also the place to describe the (eventual) bonus features that you implemented, or the additional
work you did beyond the basic VO pipeline required, and how this impacts the quality of your VO
pipeline. Note that having implemented an additional feature which degrades the quality of your VO
pipeline will be accepted and valued as long as: i) the implemented feature is properly motivated
and described, and ii) an analysis showing the effect of your additional feature is provided in the
report. You should also upload or attach a video of your working pipeline.

(Non-exhaustive) list of bonus features/improvements This list is ordered by increasing
weight in terms of bonus points.

• An custom, appealing plotting of your results (trajectory, 3D landmarks, keypoints being
tracked, etc.).

• Any idea that you come up with and think will improve the quality of your VO pipeline (you
may write an email to us for confirmation).

• An automatic way to select the frames that will be used for initialization (in the basic VO
pipeline, these frames are hard-coded).

• Refine the estimated pose (after P3P) by minimizing the reprojection error in a nonlinear
fashion. This will be more clear after lecture 13 about Bundle Adjustment.

• Record your own dataset - with your smartphone’s camera (that you will have calibrated
beforehand using the Matlab camera calibration toolbox).

• Propose and implement improvements to combat scale drift (without using stereo frames).

• A detailed, quantitative analysis that compares several approaches that can be applied to the
same component of the VO (for example, keypoint tracking via block matching versus KLT
tracker - what is the impact on speed, accuracy, etc.).

• Using your VO pipeline for some specific application (for example, estimating the pose for an
virtual/augmented reality headset).

• Structure-Only Bundle Adjustment (i.e. refinement of landmark positions).

• Full Bundle Adjustment (motion and structure) on a selected set of recent frames (keyframes),
to improve the current estimate.

• Loop detection using a Bag of Words approach (see the upcoming lecture 12 and exercise 9) +
include the loop closure constraints in your Bundle Adjustment step.

3

https://www.vision.caltech.edu/bouguetj/calib_doc/

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

1.4.1 Code building blocks and use of external libraries

You can of course use the modules that you built during the exercise sessions. However, we would
highly recommend you to use the implementation provided to you to limit the potential amount of
bugs. For your convenience, you will find packaged in the provided archive the code from all the
previous classes.

External libraries Although we encourage you to use the modules that have been developed
during the exercises sessions, you are allowed to use external functions (for example, functions from
Matlab or OpenCV) for everything that has been covered during the exercises. For example, for
tracking a keypoint between two successive frames, you can either use the Lucas-Kanade tracker
developed during exercise 8, or the vision.PointTracker in Matlab’s Computer Vision System Toolbox,
or OpenCV’s implementation.

Exception: Fundamental matrix estimation with RANSAC You are not allowed to use an
external function to estimate the fundamental (or essential) matrix using the 8-point algorithm and
RANSAC (such as Matlab’s estimateFundamentalMatrix or OpenCV’s findFundamentalMat with
the flags CV_FM_RANSAC or CV_FM_MEDS). Some implementation hints to help you with this task are
given in Paragraph 3.2.1.
The reason for that is that the 8-point algorithm in conjunction with RANSAC has not been covered
during the exercises, and is an important part of the VO pipeline that we want you to implement
from scratch. Of course, you are allowed to reuse some code from exercise 6 (which combines P3P
and RANSAC).

We won’t provide help with using external functions or libraries.

Note that we will ask you detailed questions about the theory of the separate modules during the
oral exam, so implementing them (as was done during the exercises) is very a good idea to prepare.

1.4.2 Hand-out

Code

Matlab You should provide A ZIP archive containing a main.m file which we can run directly
without any change in the code. Please also indicate in the report and in the code which version of
Matlab you are using. Note that we will set the variables corresponding to the dataset paths (e.g.
parking_path, kitti_path, malaga_path) prior to running your code.

Since we will go through your code, we will also penalize particularly unreadable code.
Make sure to use concise variable names, and regularly remove code that doesn’t do anything.

Other languages You are allowed to use any language of your choice (for example Python,
C++, etc.). However, it is your responsibility to ensure that we can run your code with minimal
effort, on Ubuntu 14.04 (with Python 2.7 and gcc 4.9.2). As mentioned above, you are allowed to
use external dependencies (such as OpenCV for example) provided that the functions you use have
been implemented in the exercises. In that case, you must:

• Provide detailed explanations regarding how to run your code (provide a Makefile for C/C++
for example, list the necessary dependencies and how to install them).

• The necessary dependencies must be installable with apt-get or pip, otherwise you need to
request for an exception beforehand (ask the TAs).

Report and Video The content of the report has been detailed above. Note that the maximum
number of pages allowed for the report is 5 pages (excluding plots, images and installation/run
instructions). If you have a working pipeline, you should also upload or attach a video of it.

4

http://rpg.ifi.uzh.ch/docs/teaching/2016/all_solns.zip
https://ch.mathworks.com/help/vision/ref/vision.pointtracker-class.html?requestedDomain=www.mathworks.com
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_lucas_kanade.html

Robotics and Perception Group,
University of Zurich. 3 INITIALIZATION

2 Overview of the proposed pipeline
We first give a global overview of the proposed pipeline and the different components involved. We
will then go into more details.

2.1 Notations
Throughout the next section, we will use the following notations:

• We denote the set of all N frames in a dataset by {Ii , I(ti)}i=1..N ,

• We denote the pose of the camera at time ti by WT i
C .

2.2 Overview
The proposed pipeline is illustrated in Figure 2, and is composed of two main components:

• An initialization module that extracts an initial set of 2D↔ 3D correspondences from the first
frames of the sequence.

• A continuous VO module that processes each frame Ii, estimates the current pose of the camera
WT i

C (using an existing set of landmarks), and regularly triangulates new landmarks.

These two modules can be developed independently from one another, although to test the continuous
VO module, you will need to have a working initialization module (see section 3); for KITTI, you
may use the 2D ↔ 3D correspondences provided in the RANSAC exercise.

initializeVO processFrame

{I i}i≥i1

I i0

I i1 Si

WT i
C

WT i1
C

Si1

Figure 2: Overview of the proposed VO pipeline. The initialization module (function initializeVO)
takes as input two (user-selected) frames Ii0 and Ii1 , and returns the first state Si1 (that contains the
first set of 2D↔ 3D correspondences), and the first camera pose WT i1

C . The function processFrame
is called iteratively for all the remaining frames {Ii}i≥i1 and estimates the camera pose WT i

C for
every frame. Note that processFrame propagates the state Si to the next frame (see section 4 for
more details).

3 Initialization
The continuous VO pipeline described below requires, for initialization, a set of keypoint landmarks
(i.e. 2D ↔ 3D) correspondences. We propose two different ways to extract such an initial set of
correspondences: the first uses a stereo pair of images to triangulate landmarks, while the second
uses two-view geometry.

We suggest you to proceed as follows:

• Implement the first initialization approach (which is easier to implement; or use the data given
for KITTI in the RANSAC exercise).

• Implement the continuous VO pipeline (described in the next section).

5

Robotics and Perception Group,
University of Zurich. 3 INITIALIZATION

• Test it (with the first initialization approach, you need a stereo dataset, e.g. either the KITTI
or the Malaga dataset).

• Once the continuous pipeline works correctly, implement the second initialization approach,
which is more general and works for monocular VO as well.

3.1 Initialization from a stereo pair of images
Although your VO pipeline will be monocular, i.e. using only the left frames of the sequence {Iileft},
we propose, as a first approach, to use the first stereo pair of frames {I0left, I0right} to initialize a set
of 3D landmarks.

Here is how you can proceed:

• Extract a set of keypoints {pk,left}k=1..K in I0left (hint: exercise 3).

• Establish the correspondences {pk,left ↔ pk,right} in I0right using stereo matching (hint: exercise
4).

• Triangulate the keypoint correspondences {pk,left ↔ pk,right} to get an initial set of 3D land-
marks {X0

k} (see exercise 4).

You can now initialize the continuous VO pipeline with the newly established set of keypoint land-
mark correspondences {pk,left ↔ X0

k}.

3.2 Initialization using two-view geometry, for monocular VO
As you learnt in lecture 6, an alternative way to proceed is to use two-view geometry to estimate
the relative pose between two (sufficiently distant) frames, and triangulate a point cloud of landmarks.

You can proceed as follows:

• Manually select two frames Ii0 and Ii1 at the beginning of the dataset (at times i0 and i1).

• Establish keypoint correspondences between these two frames (hint: exercise 3).

• Estimate the relative pose between the frames and triangulate a point cloud of 3D landmarks
(hint: exercise 5).

• Since the keypoint correspondences from the previous step will inevitably contain some outliers,
you will need to use RANSAC (some hints are given below) to filter them out.

You can now initialize the continuous VO pipeline with the inlier keypoints and their associated
landmarks.

3.2.1 Implementation hints

Make sure that the baseline between the two initialization frames is large (i.e. it is better not to use
two adjacent frames). Don’t pick too distant frames either, otherwise it becomes more difficult to
establish keypoint correspondence. For the KITTI dataset, we obtained good results using frame 1
and frame 3 (i0 = 1 and i1 = 3).

Eight-point algorithm with RANSAC You have seen how to implement robust model estima-
tion with RANSAC in exercise 6. A key ingredient of RANSAC is a way to decide whether a given
sample should be considered an inlier, given a model. In the case of RANSAC for fundamental matrix
estimation, you can use the epipolar line distance (see lecture 8, page 35) to discriminate inliers from
outliers. Specifically, for a given candidate fundamental matrix F, a point correspondence should be
considered an inlier if the epipolar line distance is less than a threshold (a threshold of 1 px should
give good results). Implementing the eight-point algorithm with RANSAC can be quite tricky, so
make sure you do proper testing before plugging your initialization code into the continuous VO
pipeline. One way you can do this is extend exercise 5 to work with RANSAC. To test it, you may
add artificial outliers to the supplied inlier keypoint correspondences.

6

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

4 Continuous operation
The continuous VO pipeline is the core component of the proposed VO implementation. Its respon-
sibilities are three-fold:

1. Update the set of keypoints landmarks correspondences across frames.

2. Estimate the current camera pose based on an incoming frame and the current set of keypoints
landmarks (2D 3D) correspondences.

3. Regularly triangulate new landmarks for use in the subsequent frames.

Step 1. can be carried out by propagating the 2D 3D correspondences across keyframes through
keypoint tracking between successive frames.
Step 2. can be achieved using PnP (see lecture 3).
Step 3. can be done by maintaining keypoint tracks, i.e. sequences of keypoints that are matched
in multiple subsequent frames, but which do not yet have an associated 3D landmark. These tracks
can be later used to triangulate a new 3D landmarks as soon as this can be done reliably enough.

Steps 1. and 2. are sufficient to make a VO pipeline with basic functionality (i.e. which will use
the landmarks triangulated in the initialization phase only), while step 3. is needed for doing VO
on a larger scale. For this reason, we suggest to implement first steps 1. and 2., test them on the
beginning of the datasets, and then implement step 3.

4.1 Steps 1. and 2.
To perform steps 1. and 2. for every incoming frame, we propose to implement a single function
processFrame which will be called for every frame Ii in the dataset, whose inputs and outputs are
given in Figure 2.

The state Si of a frame at time ti contains a set of K keypoint ↔ landmark correspondences
{pik ↔ Xk}k=1..K , where pik is a 2D keypoint extracted in frame Ii and Xk its corresponding land-
mark in the scene. Note that the landmarks {Xk} are fixed 3D points in the scene, and they do
not depend on the current camera pose; thus, they are not indexed by time and remain constant
throughout the frames.

Said otherwise, the function processFrame has the following form:

Si,W T i
C = processFrame(Ii, Ii−1, Si−1)

The key idea in this design is that the function inputs solely depend on the output of the previ-
ous function call (and the new frame to process), i.e. it has the Markov property. That means we
don’t need to build a data structure to maintain the history of the past frames, all that is needed is
contained in the current state.

As discussed before, processFrame should do two things:

• Propagate the keypoint landmark correspondences from time ti−1 to ti, i.e. propagate the state
Si−1 to Si.

• Estimate the current camera pose WT i
C based on the new state Si.

We now give further indications for each step.

4.1.1 State propagation

To propagate the 2D↔ 3D associations pi−1
k ↔ Xk (that were established at time ti−1 in frame Ii−1)

to the current frame Ii, we first establish correspondences pi−1
k ↔ pik by tracking the keypoints pi−1

k

from frame Ii−1 to frame Ii. Then, all that is left to do is to update the correspondences pi−1
k ↔ Xk

to pik ↔ Xk.

You can proceed as follows:

7

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

• For every keypoint pi−1
k ∈ Si−1, track that keypoint (4.1.3) to the current frame Ii (to obtain

pik):

– Upon tracking success, update the correspondence pik ↔ Xk.

– Upon tracking failure, discard the correspondence pk and its associated landmark Xk, i.e.
do not include them in the updated state Si.

4.1.2 Pose estimation

Use the updated correspondences pik ↔ Xi
k to estimate the pose WT i

C using PnP and RANSAC (this
has been done exactly in exercise 6). In addition to estimating the pose, RANSAC provides you with
a list of outlier correspondences. We suggest you to additionally discard these correspondences from
the state Si.

4.1.3 Implementation tips

Keypoint tracking between successive keyframes You have two options to implement key-
point tracking between two successive keyframes:

• Use the KLT algorithm, that you will learn about in lecture 11 and implement in exercise 8.
If you use Matlab. you can use the KLT algorithm implementation from the Computer Vision
System Toolbox meanwhile.

• Use the keypoint description and matching algorithms implemented in exercise 3 . For best
results, you may modify the function matchKeypoints to search for matches in the next frame
only in a small neighborhood of the keypoint in the current frame. This works because frame-
to-frame motion is limited. Implementation hint: to save computations, you may also store
the descriptors associated with each keypoint in the state to reuse them when trying to match
keypoints in the next frame.

We recommend using the first option (KLT tracker), since it is computationally more efficient, and
it can also provide matches with subpixel-accuracy.

Pose estimation from a set of 2D ↔ 3D correspondences You have implemented exactly
this in exercise 6, using P3P and RANSAC. In this exercise, we had suggested to refine the P3P guess
with a DLT solution for all inliers, once the maximum set of inliers has been determined. However,
while developing the reference VO, we have found that the DLT solution is very often worse than
the P3P guess.

Data storage for the state Although we described the state in terms of “sets” (i.e. collections
of objects), keep in mind that in Matlab all the necessary data can be stored as simple 2D matrices.

4.2 Step 3.: Triangulating new landmarks
So far, the pipeline can use the landmarks Xk from the initialization phase to localize subsequent
frames. However, once the camera has moved far enough, these landmarks might not be visible any
more. It is thus necessary to continuously create new landmarks.

We propose an approach which maintains the Markov property of our design and provides new
landmarks asynchronously, as soon as they can be triangulated reliably. The idea is to initialize,
for each new frame I, a set of candidate keypoints (which of course do not have an associated
landmark yet), and try to track them through the next frames.

Thus, at every point in time, we maintain a set of M candidate keypoints {cim}m=1..M which
have been tracked from previous frames. For every candidate keypoint cim, we call the sequence
Γm = {ci−Lm

m , ci−Lm+1
m , . . . , cim} of tracked keypoints from frame Ii−Lm to frame Ii a keypoint track

(of length Lm). As soon as a given keypoint track Γm meets some conditions (more details given

8

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

in 4.2.2), we can reliably triangulate a new landmark from the keypoint observations Γm, and the
camera poses {WT i−Lm

C , · · · ,W T i
C}.

We assume that the best triangulation for a given track can be achieved using the most recent
observation cim, the first ever observation of the keypoint ci−Lm

m , and the poses WT i
C and WT i−Lm

C .
Hence, all we need to remember for a given keypoint track Γm is the first observation ci−Lm

m and the
camera pose at the time of the observation WT i−Lm

C .

We can add the following data to the state Si to reflect this:

• The set of candidate keypoints {cim}m=1..M .

• A set containing the first observations for each keypoint track Γm: {ci−Lm
m }m=1..M .

• For each candidate keypoint cim, the camera pose WT i−Lm

C at the first observation of the
keypoint (see 4.2.2 for suggestions regarding efficient storage of these data).

Again, we do not store the entire keypoint tracks Γm, but only the first observation and the associ-
ated camera pose.

We now detail the necessary steps to complete step 3).

4.2.1 Keypoint track initialization and landmark triangulation

Update the function processFrame(Ii, Ii−1, Si−1) to perform the following additional steps after
steps 1. and 2.:

Initialization of new candidate keypoints

• Detect new candidate keypoints cim in Ii to initialize new keypoint tracks (the number of
keypoints to detect is up to you).

• For every newly initialized keypoint cim, remember in the state Si that this is the first ob-
servation of the new keypoint track Γm , i.e. add cim and WT i

C in the set of first keypoint
observations.

Triangulation of keypoint tracks

• For every candidate keypoint ci−1
m ∈ Si−1 (in frame Ii−1), try to track it to the current frame

Ii:

– Upon tracking success, update the current state with the tracked keypoint cim.

– Upon tracking failure, discard the keypoint track Γm.

• Check the triangulability of every candidate keypoint cim, using the first observation ci−Lm
m and

the camera pose WT i−Lm

C stored in the state (see 4.2.2 for the triangulability check). If it is
possible, triangulate a new landmark Xnew using cim, ci−Lm

m , WT i
C and WT i−Lm

C .

• Update the state as follows:

1. Add the newly established correspondence {cim ↔ Xnew} to the state (i.e. update the list
of keypoints {pik} and landmarks {Xk}.

2. Discard the keypoint track Γm. If triangulation is not possible yet, do nothing.

9

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

4.2.2 Implementation hints

Data storage

• To store the first observation of every candidate keypoint cim, you have multiple options: Record
directly ci−Lm

m and WT i−Lm

C in the state. To store the latter with a single matrix, you can
reshape the 4 × 4 transformation matrix WT i−Lm

C to a 16 × 1 vector and store all the trans-
formation matrices in a M × 16 matrix (where M is the current number of keypoint tracks).
Alternatively, you can compute and store a 3D bearing vector bi−Lm

m , which will encode directly
the direction of the 3D ray corresponding to ci−Lm

m (express it in the world frame). In that
case, you will also need to store the 3D position of the camera center (expressed in the world
frame) and modify a bit the linear triangulation algorithm.

Triangulation

• Use the linear triangulation algorithm developed in exercise 5 to triangulate new landmarks.

• A simple triangulability check to test whether a keypoint track is ready for good triangulation
is to compute the angle between the bearing vector of the first observation, and the current
bearing vector: if it is above some threshold, triangulation will be likely to yield a good 3D
landmark.

• You can be pretty sure that a landmark triangulated behind the camera is incorrect; discard
it.

General hints

• In general, proceed step by step and verify your intermediate results visually. Concretely, make
sure matching, localization and landmark propagation work properly before triangulating new
landmarks.

• We have given pseudo-code indicating what you should do on a keypoint-per-keypoint basis,
for clarity. Of course, you should batch these operations for all keypoints. The webpage
Matrix indexing in Matlab (link in electronic version) will be very handy for this. We strongly
recommend to read ALL of this page. Note that indexing can be used both on the right and
the left hand side of assignments. Also note that you can index recursively: if you have e.g. A
= [1 12 14 17], then B(A([2 4])) will access the 12th and 17th elements of B. Note that this
might not work as expected when A is a logical index - use the find function in that case.

10

https://ch.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

	Preliminaries
	Additional resources
	Goal of the project
	Datasets
	Grading
	Code building blocks and use of external libraries
	Hand-out

	Overview of the proposed pipeline
	Notations
	Overview

	Initialization
	Initialization from a stereo pair of images
	Initialization using two-view geometry, for monocular VO
	Implementation hints

	Continuous operation
	Steps 1. and 2.
	State propagation
	Pose estimation
	Implementation tips

	Step 3.: Triangulating new landmarks
	Keypoint track initialization and landmark triangulation
	Implementation hints

