
Mini project: A Visual Odometry pipeline! 
This document describes the goal of the mini-project, the expected result, and gives you a 
number of guidelines regarding what to do and where to start. 

1 Preliminaries 

 
A Youtube playlist with our progress on the reference implementation can be found at 
https://www.youtube.com/playlist?list=PLI5XgAFFHqZiAg6yd0XKOTRgkCE4QTm54​ . 

1.1 Goal of the project 
The goal of this mini-project is to implement a simple, monocular, visual odometry (VO) pipeline 
with the most essential features: initialization of 3D landmarks, keypoint tracking between two 
frames, pose estimation using established 2D  3D correspondences, and triangulation of new↔  
landmarks. 
 
You will use the knowledge acquired during the class, and specifically the different modules 
developed during the exercise sessions. 
 
1.2 Datasets 
 
You are provided with three datasets to test your pipeline: 

https://www.youtube.com/playlist?list=PLI5XgAFFHqZiAg6yd0XKOTRgkCE4QTm54


● The parking dataset (monocular) 
● The ​KITTI​ dataset (stereo) 
● The ​Malaga​ dataset (stereo) 

1.3 Grading 
 
You will be graded according to three things: 

1) The quality of the pose estimation from your VO pipeline. 
2) The text report that you will have to hand in. 
3) Whether you implemented one or multiple bonus features, or did something in addition to 

the basic requirements (and explained it in the report). A (non-exhaustive) list of ideas is 
given later. 

 
1) We will ​not​ do a strict quantitative evaluation of the quality of your VO pipelines. Instead, we 
will run your code on several datasets, and judge it from a qualitative point of view, paying 
particular attention to the following points (sorted by decreasing order of importance): 
 

● The features you implemented. A  can only be achieved with a completely monocular6  
pipeline. If your pipeline requires stereo frames in continuous operation, your grade will 
be . If your pipeline requires stereo frames for initialization only, your grade will be.5≤ 4  

. Note that no penalty is given if a bonus feature (see below) requires stereo frames.≤ 5  
● How far does the pipeline go without failing or deviating significantly from the ground 

truth. Note that with the KITTI and Malaga sequences, scale drift will be difficult to avoid, 
we will take that into account when judging your VO pipelines). 

● How fast does your code run (in particular for Matlab code, we will check whether you 
paid attention to using vectorized operations instead of for loops whenever possible). 

 
2) and 3): The project report should summarize the work that you did and specify exactly what 
your VO pipeline does. For example, whether it is monocular or stereo, and how well it performs 
on the provided datasets (with plots). The project report is also the place to describe the 
(eventual) bonus features that you implemented, or the additional work you did that over the 
basic VO pipeline required, and how this impacts the quality of your VO pipeline. Note that 
having implemented an additional feature which degrades the quality of your VO pipeline will be 
accepted and valued as long as i) the implemented feature is properly motivated and described, 
and ii) an analysis showing the effect of your additional feature is provided in the report. You 
should also upload or attach a video of your working pipeline. 
 
(Non-exhaustive) list of bonus features/improvements (order by increasing weight in 
terms of bonus points) 
 

● Any idea that you come up with and think will improve the quality of your VO 
pipeline (you may write an email to us for confirmation). 

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.mrpt.org/MalagaUrbanDataset


● Refine the estimated pose (after P3P) by minimizing the reprojection error in a nonlinear 
fashion. This will be more clear after lecture 13 about Bundle Adjustment. 

● Record your own dataset - with your smartphone’s camera (that you will have calibrated 
beforehand using the ​Matlab toolbox​). 

● Propose and implement improvements to combat scale drift (without using stereo 
frames). 

● Detailed, quantitative analyses that compare several approaches that can be applied to 
the same component of the VO. 

● Structure-Only Bundle Adjustment (i.e. refinement of landmark positions). 
● Full Bundle Adjustment (motion and structure) on a selected set of recent frames 

(keyframes), to improve the current estimate. 
● Loop detection using a Bag of Words approach (see the upcoming lecture 12 and 

exercise 9) + include the loop closure constraints in your Bundle Adjustment step. 

1.4 Code building blocks and use of external libraries 
You can of course use the modules that you built during the exercise sessions. However, we 
would highly recommend you to use the implementation provided to you to limit the potential 
amount of bugs. For your convenience, you will find packaged in the provided archive the code 
from all the previous classes. 
 
External libraries 
 
Although we encourage you to use the modules that have been developed during the exercises 
sessions, you are allowed to use external functions (for example, functions from Matlab or 
OpenCV) for everything that has been covered during the exercises. For example, for 
estimating the fundamental matrix, you can either use the function 
fundamentalEightPoint_normalized ​ developed during the exercises, or the function 
estimateFundamentalMatrix​  from Matlab’s Computer Vision System Toolbox. 
 
We won’t provide help with using external functions or libraries. 
 
Note that we will ask you detailed questions about the theory of the separate modules during 
the oral exam, so implementing them (as was done during the exercises) is a good idea to 
prepare optimally for the exams. 

1.5 Hand-out 
Code 
 

● Matlab 
 

https://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.vision.caltech.edu/bouguetj/calib_doc/
https://www.vision.caltech.edu/bouguetj/calib_doc/


You should provide A ZIP archive containing a ​main.m​ file which we can run directly without 
any change in the code. Please also indicate which version of Matlab you are using in case of 
incompatibilities. 
 
Note that we will set the variables corresponding to the dataset paths (e.g. ​parking_path​, 
kitti_path​, ​malaga_path​ prior to running your code. 
 

● Other languages 
 
You are allowed to use any language of your choice (for example Python, C++, etc.). However, 
it is your responsibility to ensure that we can run your code with minimal effort, on Ubuntu 14.04 
(with Python 2.7 and gcc 4.9.2). As mentioned above, you are allowed to use external 
dependencies (such as OpenCV for example) provided that the functions you use have been 
implemented in the exercises. 
 
In any case, you must: 

● Provide detailed explanations regarding how to run your code (provide a Makefile for 
C/C++ for example, list the necessary dependencies and how to install them). 

● Make sure that the necessary dependencies are easy to install (e.g. we can just use 
sudo apt-get install [lib​ ]). 

 
Report and Video 
 
The content of the report has been detailed above. Note that the ​maximum number of pages 
allowed for the report is 5 pages​ (excluding plots, images and installation/run instructions). If 
you have a working pipeline, you should also upload or attach a video of it. 

2 Overview of the proposed pipeline 
We first give a global overview of the proposed pipeline and the different components involved. 
We will then go into more details separately into each component. 
 
Notations 
 
Throughout the next section, we will use the following notations: 

● We denote the set of all  frames in a dataset by: ,N I (t )}{ i ≡ I i
i=1..N  

● We denote the pose of the camera at time  by .ti T iWC  
 
Overview 
 
The proposed pipeline is composed of two main components: 
 



● An initialization module that extracts an initial set of 2D  3D correspondences from the↔  
first frames of the sequence. 

● A continuous VO module that processes each frame , estimates the current pose ofI i  
the camera  (using an existing set of landmarks), and regularly triangulates newT iWC  
landmarks. 

 
These two modules can be developed independently from one another, although to test the 
continuous VO module, you will need to have a working initialization module (see next section 
“Initialization”; for KITTI, you may use the 2D  3D correspondences provided in the RANSAC↔  
exercise). 

3 Initialization 
 
The continuous VO pipeline described below requires, for initialization, a set of keypoint ↔  
landmarks (i.e. 2D  3D) correspondences.↔  
We propose two different ways to extract such an initial set of correspondences: the first uses a 
stereo pair of images to triangulate landmarks, while the second uses two-view geometry. 
 
We suggest you to proceed as follows: 

- Implement the first initialization approach (which is easier to implement; or use the data 
given for KITTI in the RANSAC exercise). 

- Implement the continuous VO pipeline (described in the next section). 
- Test it (with the first initialization approach, you need a stereo dataset, e.g. either the 

KITTI or the Malaga dataset). 
- Once the continuous pipeline works correctly, implement the second initialization 

approach, which is more general and works for monocular VO as well. 
 
3.1 Initialization from a stereo pair of images 
 
Although your VO pipeline will be monocular, i.e. using only the left frames of the sequence 

, we propose, as a first approach, to use the first stereo pair of frames  toI }{ lef t
i I , }{ lef t

0 Iright
0  

initialize a set of 3D landmarks. Here is how you can proceed: 
● Extract a set of keypoints  in  (hint: ​exercise 3​).p }  { k,lef t k=1..K I lef t

0  
● Establish the correspondences  in  using stereo matching (hint:}{pk,lef t ↔ pk,right Iright

0  
exercise 4​). 

● Triangulate the keypoint correspondences  to get an initial set of 3D}{pk,lef t ↔ pk,right  
landmarks  (see ​exercise 4​).X }{ k

0  
 
You can now Initialize the continuous VO pipeline with the newly established set of keypoint ↔  
landmark correspondences .p }{ k,lef t ↔ Xk

0  

http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise3.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise4.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise4.zip


 
3.2 Initialization using two-view geometry, for monocular VO 
 
As you learnt in ​lecture 6​, an alternative way to proceed is to use two-view geometry to estimate 
the relative pose between two (sufficiently distant) frames, and triangulate a point cloud of 
landmarks. 
You can proceed as follows: 

● Manually select two frames  and  at the beginning of the dataset.I i0 I i1  
● Establish keypoint correspondences between these two frames (hint: ​exercise 3​). 
● Estimate the relative pose between the frames and triangulate a point cloud of 3D 

landmarks (hint: ​exercise 5​). Since the keypoint correspondences from the previous step 
will inevitably contain some outliers, you will need to use RANSAC (some hints are given 
below) to filter them out. 

● Initialize the continuous VO pipeline with the inlier keypoints and their associated 
landmarks. 

 
Implementation hints: 

● Make sure that the baseline between the two initialization frames is large (i.e. it is better 
not to use two adjacent frames). Don’t pick too distant frames either, otherwise it 
becomes more difficult to establish keypoint correspondence. For the KITTI dataset, we 
obtained good results using frame 1 and frame 3 ( and ).i0 = 1 i1 = 3  

● Eight-point algorithm with RANSAC​: ​you have seen how to implement robust model 
estimation with RANSAC in ​exercise 6​. A key ingredient of RANSAC is a way to decide 
whether a given sample should be considered an inlier, given a model. In the case of 
RANSAC for fundamental matrix estimation, you can use the epipolar line distance (see 
lecture 8​, page 35) to discriminate inliers from outliers. Specifically, for a given candidate 
fundamental matrix F, a point correspondence should be considered an inlier if the 
epipolar line distance is less than a threshold (a threshold of 1 px should give good 
results). 

● Implementing the eight-point algorithm with RANSAC can be quite tricky, so make sure 
you do proper testing before plugging your initialization code into the continuous VO 
pipeline. One way you can do this is extend ​exercise 5​ to work with RANSAC. To test it, 
you may add artificial outliers to the supplied inlier keypoint correspondences. 

 

4 Continuous operation 
The continuous VO pipeline is the core component of the proposed VO implementation. Its 
responsibilities are three-fold: 

1) Update the set of keypoints  landmarks correspondences across frames.↔  
2) Estimate the current camera pose based on an incoming frame and the current set of 

keypoints  landmarks (2D  3D) correspondences.↔ ↔  

http://rpg.ifi.uzh.ch/docs/teaching/2016/08_multiple_view_geometry_2.pdf
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise3.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise5.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise6.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/08_multiple_view_geometry_2.pdf
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise5.zip


3) Regularly triangulate new landmarks for use in the subsequent frames. 
 
Step 1) can be carried out by propagating the 2D  3D correspondences across keyframes↔  
through keypoint tracking between successive frames. 
Step 2) can be achieved using PnP (see ​lecture 3​). 
Step 3) can be done by maintaining ​keypoint tracks​, i.e. sequences of keypoints that are 
matched in multiple subsequent frames, but which do not yet have an associated 3D landmark. 
These tracks can be later used to triangulate a new 3D landmarks as soon as this can be done 
reliably enough. 
 
Steps 1) and 2) are sufficient to make a VO pipeline with basic functionality (i.e. which will use 
the landmarks triangulated in the initialization phase only), while step 3) is needed for doing VO 
on a larger scale. For this reason, we suggest to implement first steps 1) and 2), test them on 
the beginning of the datasets, and then implement step 3). 
 
4.1 Steps 1) and 2) 
 
To start with, let us introduce the following notations: 

● We denote the set of frames in a dataset by: ,I (t )}{ i = I i
i=1..N  

● the set of 2D keypoints (that have an associated landmark) at time  by ,ti p }{ i
k k=1..K  

● and the set of associated 3D landmarks by .X }{ i
k k=1..K  

 
Additionally, let us denote the pose of the camera at time  by .ti T iWC  

 
To perform steps 1) and 2) for every incoming frame, we propose to implement a single function 
processFrame​  which will be called for every frame in the dataset, with the following inputs and 
outputs: 
 

 
 
where the state of a frame at time , , contains the following data:ti Si  

● A set of 2D keypoints  (each one of them is associated to a 3D landmark).p }{ i
k k=1..K  

● The associated set of 3D landmarks .X }{ i
k k=1..K  

 
Said otherwise, the function ​processFrame​  has the following form: 
 

S , ] rocessF rame(I , , )[ i T iWC = p i I i−1 Si−1  

http://rpg.ifi.uzh.ch/docs/teaching/2016/03_image_formation_2.pdf
https://www.lucidchart.com/documents/edit/4305d02c-43d5-44a5-9798-1d00a827a90a/0?callback=close&v=1431&s=488


 
The key idea in this design is that the function inputs solely depend on the output of the 
previous function call (and the new frame to process), i.e. it has the Markov property. That 
means we don’t need to build a data structure to maintain the history of the past frames, all that 
is needed is contained in the current state. 
 
As discussed before, ​processFrame​  should do two things: 

1) Propagate the keypoint  landmark correspondences from  to  , i.e. propagate the↔ I i−1 I i  
state  to .Si−1 Si  

2) Estimate the current camera pose  based on the new state .T iWC Si  
 
We now give further indications for each step. 
 

1) State propagation 
 
To propagate the 2D  3D associations  (that were established in ) to the next↔ pi−1

k ↔ X i−1
k I i−1  

frame , we first establish correspondences  by tracking the keypoints  fromI i pi−1
k ↔ pki pi−1

k  
frame  to frame . Since the landmarks  do not change between frames ( = ), allI i−1 I i X  

k X ik X i−1
k  

that is left to do is to update the associations .pki ↔ X ik  
 
You can proceed as follows: 

● For every keypoint , track that point to the next frame  (to obtain pi−1
k ∈ Si−1 I i pik

): 
○ Upon tracking success, update the association .pki ↔ X ik  
○ Upon tracking failure, discard the keypoint  and its associatedp 

k  
landmark , i.e. do not include them in the updated state .Xk Si  

 
2) Pose estimation 

 
Use the updated correspondences  to estimate the pose  using PnP andpki ↔ X ik T iWC  
RANSAC (this has been done exactly in ​exercise 6​). 
Implementation tip:​ In addition to estimating the pose, RANSAC provides you with a list of 
outlier correspondences. We suggest you to additionally discard these correspondences from 
the state .Si  
 
Keypoint tracking between successive keyframes 
 
You have two options to implement keypoint tracking between two successive keyframes: 
 

http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise6.zip


1) Use the KLT algorithm, that you will learn about in lecture 11 and implement in exercise 
8. If you use Matlab. you can use the ​KLT algorithm​ implementation from the Computer 
Vision System Toolbox meanwhile. 

 
2) Use the keypoint description and matching algorithms implemented in ​exercise 3​ . For 

best results, you may modify the function ​matchKeypoints​  to search for matches in the 
next frame only in a small neighborhood of the keypoint in the current frame. This works 
because frame-to-frame motion is limited. ​Implementation hint​: to save computations, 
you may also store the descriptors associated with each keypoint in the state to reuse 
them when trying to match keypoints in the next frame. 

 
We recommend using the first option (KLT tracker), since it should be more robust, and it can 
also provide matches with subpixel-accuracy. 
 
Pose estimation from a set of 2D 3D correspondences↔   
 
You have implemented exactly this in ​exercise 6​, using P3P and RANSAC. In this exercise, we 
had suggested to refine the P3P guess with a DLT solution for all inliers, once the maximum set 
of inliers has been determined. However, while developing the reference VO, we have found 
that the DLT solution is very often worse than the P3P guess. 
 
Data storage for the state 
 
Although we said that the state should contain “sets” (i.e. collections of objects), keep in mind 
that, in Matlab, all the necessary data can be stored as simple 2D matrices (see also 
implementation tips in the next section). 
 
 
4.2 Step 3): Triangulating new landmarks 
 
So far, the pipeline can use the landmarks  from the initialization phase to localizeXk  
subsequent frames. However, once the camera has moved far enough, these landmarks might 
not be visible any more. It is thus necessary to continuously create new landmarks. 
 
We propose an approach which maintains the Markov property of our design and provides new 
landmarks asynchronously, as soon as they can be triangulated reliably. 
 
The idea is to initialize, for each new frame , a set of ​candidate keypoints (​which of courseI  
do not have an associated landmark yet), and try to track them through the next frames. 
Thus, at every point in time, we maintain a set of candidate keypoints  ​which havec }{ m

i 
m=1..M  

been tracked from previous frames. For every candidate keypoint ​, we call the sequencecmi
  

https://www.mathworks.com/help/vision/ref/vision.pointtracker-class.html
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise3.zip
http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise6.zip


} of tracked keypoints from frame  to frame  a ​keypoint trackc , , ..,Γm = { i−Lmm ci−L +1m m . cim I i−Lm I i  
(of length ).Lm  
 
As soon as a given keypoint track  meets some conditions (more details on that below), weΓm  
can reliably triangulate a new landmark from the keypoint observations },c , , ..,{ i−Lmm ci−L +1m m . cim  
and the camera poses }.T , , ..,{ WC

i−Lm
 T

i−L +1m
WC . TWC

i
   

 
In order to keep the Markov property of the design, we assume that the best triangulation for a 
given track can be achieved using the most recent observation , the first ever observation ofci m  
the keypoint , and the poses  and .ci−Lm TWC

i
 TWC

i−L
  

Hence, all we need to remember for a given keypoint track  is the first observation andΓm ci−Lm  
the camera pose at the time of the observation .TWC

i−L
   

 
We can ​add​ the following data to the state  to reflect this:Si  

● A set of candidate keypoints .c }{ m
i 
m=1..M  

● A set containing the first observations for each keypoint track :  .Γm c }{ m
i−Lm 

m=1..M  
● For each candidate keypoint ​, the camera pose  at the first observation of thecmi

 TWC
i
  

keypoint (see the implementation tips further for suggestions regarding efficient storage 
of these data). 

 
Again, we do not store the entire keypoint tracks , but only the first observation and theΓm  
associated camera pose. 
 
We now detail the necessary steps to complete step 3). 
 

3) Keypoint track initialization and landmark triangulation 
 
Update the function ​ ​ to perform the following additional steps. afterrocessF rame(I , I , )p i  i−1 Si−1  
steps 1) and 2): 
 

● Detect new candidate keypoints   ​in  to initialize new keypoint tracks (see belowc }{ m
i  I i  

for hints regarding the number of keypoints to detect). 
● For every newly initialized keypoint ​, remember in the state  that this is the firstcmi

 Si  
observation of the new keypoint track  , i.e. store  and ​ in the state.Γm cim TWC 

i  
● For every candidate keypoint ​ (in frame ), try to track it to the currentcmi−1 

∈ Si−1 I i−1  
frame: 

○ Upon tracking success, update the current state with the tracked keypoint ​.cmi
  

○ Upon tracking failure, discard the keypoint track .Γm  



● Check the triangulability of every candidate keypoint ​, using the first observationcmi
  

 ​and the camera pose  ​stored in the state (see below for hints regardingcmi−Lm
 TWC 

i−Lm 
 

the triangulability check) 
○ If it is possible, triangulate a new landmark using , ​,  ​andX i cmi cmi−Lm TWC 

i  
. Update the state as follows: i) add the newly establishedTWC 

i−Lm  
correspondence  ​to the state (i.e. update the list of keypoints  andcmi ↔ X i }{pik  
landmarks , ii) discard the keypoint track .}{X ik Γm  

○ If triangulation is not possible yet, do nothing. 

Implementation hints 
Data storage 
 

● although in the description we separated the current keypoints into two sets (the ones 
that have an associated landmark, and the candidate keypoints that are waiting to be 
triangulated), you may consider using a single 2D matrix (of length  where  isK +M K  
the current number of keypoints with landmarks, and  the number of current candidateM  
keypoints) to store all the keypoints jointly. In this case, you can store the current 
landmarks as a 3D matrix of length  and mark with NaN values the entriesK +M  
corresponding to keypoints that do not have an associated landmark yet (e.g. the i-th 
column of the landmark matrix contains a NaN value if the i-th keypoint does not have an 
associated landmark). This implementation has the advantage that it avoid copying or 
moving data around too much.  

 
● to store the first observation of every candidate keypoint ​, you have multiple options:cmi  

○ Record directly  ​and  ​in the state. To store the latter with a singlecmi−Lm TWC 
i−Lm  

matrix, you can reshape the  transformation matrix  ​to a 4 × 4 TWC 
i−Lm 61 × 1  

vector and store all the transformation matrices in a  matrix (where  is6M × 1 M  
the current number of keypoint tracks). 

○ Instead of recording  ​and ​ , you can alternatively compute and storecmi−Lm TWC 
i−Lm  

a 3D ​bearing vector  ​(express it in the world frame), which will encodebmi−Lm  
directly the direction of the 3D ray corresponding to ​. In that case, you willcmi−Lm  
also need to store the 3D position of the camera center (expressed in the world 
frame). 

 
Triangulation 
 

● Use the linear triangulation algorithm developed in ​exercise 5​ to triangulate new 
landmarks. 

● Triangulability check: a simple way to check whether a keypoint track is ready for good 
triangulation is to check the angle between the bearing vector of the first observation, 

http://rpg.ifi.uzh.ch/docs/teaching/2016/exercise5.zip


and the current bearing vector. If it is above some threshold, triangulation will be likely to 
yield a good 3D landmark). 

● You can be pretty sure that a landmark triangulated behind the camera is incorrect; 
discard it. 

 
General hints 
 

● In general, proceed step by step and verify your intermediate results visually. Concretely, 
make sure matching, localization and landmark propagation work properly before 
triangulating new landmarks. 

 
● We have given pseudo-code indicating what you should do on a keypoint-per-keypoint 

basis, for clarity. Of course, you should batch these operations for all keypoints. The 
page ​Mastering indexing​ in Matlab will be very handy for this. We strongly recommend to 
read ALL of this. Note that indexing can be used both on the right and the left hand side 
of assignments. Also note that you can index recursively: If you have e.g. A = [1 12 14 
17], then B(A([2 4])) will access the 12th and 17th elements of B. Note that this might not 
work as expected when A is a logical index - use the ​find​  function in that case. 

https://ch.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

