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Lecture 12
Recognition

Davide Scaramuzza



Oral exam dates

* UZH
— January 19-20

e ETH
— 30.01 t0 9.02 2017 (schedule handled by ETH)

e Exam location

— Davide Scaramuzza’s office:
 Andreasstrasse 15, 2.10, 8050 Zurich



Course Evaluation

* Please fill the evaluation form you received by
email!

* Provide feedback on
— Exercises: good and bad

— Course: good and bad
— How to improve



Lab Exercise 6 - Today

» Room ETH HG E 33.1 from 14:15 to 16:00

» Work description: K-means clustering and Bag of Words place
recognition
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Outline

e Recognition applications and challenges

* Recognition approaches

* Classifiers

* K-means clustering

* Bag of words

* Oral Exam — Instructions and Example questions



Application: large-scale retrieval

Query image Results on a database of 100 Million images




Application: recognition for mobile phones
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 Smartphone:
— Lincoln Microsoft Research
— Point & Find, Nokia
— SnapTell.com (Amazon)
— Google Goggles



Application: Face recognition

See iPhoto, Google Photos, Facebook




Application: Face recognition

* Detection works by using four basic types of feature detectors

— The white areas are subtracted from the black ones.

— A special representation of the sample called the integral image makes feature
extraction faster.

P. Viola, M. Jones: Robust Real-time Object Detection, Int. Journal of Computer Vision 2001



Application: Optical character recognition (OCR)

Technology to convert scanned docs to text
 If you have a scanner, it probably came with OCR software
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Digit recognition, AT&T labs, using CNN, License plate readers
by Yann LeCun (1993) http://en.wikipedia.org/wiki/Automatic_number plate recognition

http://yann.lecun.com/



http://yann.lecun.com/
http://yann.lecun.com/
http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Application: pedestrian recognition

* Detector: Histograms of oriented
gradients (HOG)

Credit: Van Gool’s lab, ETH Zurich



Challenges: object intra-class variations

* How to recognize ANY car

* How to recognize ANY cow
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Challenges: object intra-class variations

* How to recognize ANY chair




Challenges: context and human experience

"




Outline

e Recognition challenges

* Recognition approaches

* Classifiers

* K-means clustering

* Bag of words

* Review of the course

* Evaluation of the course



Research progress in recognition

1960-1990 1990-2000 2000-today
Polygonal objects Faces, characters, Any kind of object

planar objects




Two schools of approaches

e Model based

— Tries to fit a model (2D or 3D)
using a set of corresponding
features (lines, point features)

* Example: SIFT matching and
RANSAC for model validation

* Appearance based CENmO e N
— The model is defined by a set of '
images representing the object ‘ ‘ ‘ ‘ ‘ ‘ ‘
* Example: template matching can be 2
thought as a simple object recognition w e N & S8 9 B

algorithm (the template is the object
to recognize); disadvantage of
template matching: it works only when
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the image matches exactly the query % pﬂ %




Example of 2D model-based approach

Q: Is this Book present in the Scene?
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Example of 2D model-based approach

Q: Is this Book present in the Scene?

Extract keypoints in
both images




Example of 2D model-based approach

Q: Is this Book present in the Scene?
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Look for corresponding
matches

Most of the Book’s keypoints are present in the Scene

= A: The Book is present in the Scene



Example of appearance-based approach:
Simple 2D template matching

* The model of the object is simply an image

 Asimple example: Template matching
— Shift the template over the image and compare (e.g. NCC or SSD)
— Problem: works only if template and object are identical
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Example of appearance-based approach:
Simple 2D template matching

* The model of the object is simply an image

 Asimple example: Template matching
— Shift the template over the image and compare (e.g. NCC or SSD)
— Problem: works only if template and object are identical
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Outline

e Recognition challenges
* Recognition approaches

e Classifiers

* K-means clustering

* Bag of words

* Review of the course

* Evaluation of the course



What is the goal of object recognition?

Goal: classify!
e Either
— say yes/no as to whether an object is present in an image
* Or
— categorize an object: determine what class it belongs to (e.g., car, apple, etc)

How to display the result to the user
* Bounding box on object
* Full segmentation

Is it or is it not a car? Bounding box on object Full segmentation



Detection via classification: Main idea

Basic component: a binary classifier
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Detection via classification: Main idea

More in detail, we need
to:

1. Obtain training data
2. Define features
3. Define classifier

Training examples
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Detection via classification: Main idea

* Consider all subwindows in an image
— Sample at multiple scales and positions

* Make a decision per window:
— “Does this contain object X or not?”

.

Car/non-car
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Generalization: the machine learning approach




Generalization: the machine learning approach

* Apply a prediction function to a feature representation of the
image to get the desired output:

f(E)

Ilapple”

f(§d) = “tomato”
f(gs) = “cow”



The machine learning framework

y = f(x)
AN

output  prediction Image
function feature

* Training: given a training set of labeled examples

{(x,y), ..., (xy, yN)}, estimate the prediction function f by
minimizing the prediction error on the training set

* Testing: apply f to a never-before-seen test example x and output the
predicted valuey = f(x)



Recognition task and supervision

* Images in the training set must be annotated with the “correct answer”
that the model is expected to produce

Contains a motorbike




Examples of possible features

 Blob features

* Image Histograms e Histograms of oriented gradients
(HOG)




Classifiers: Nearest neighbor

Features are represented in the descriptor space
(Ex. What is the dimensionality of the descriptor space for SIFT features?)
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f (x) = label of the training example nearest to x

* No training required!
* All we need is a distance function for our inputs

* Problem: need to compute distances to all training examples! (what if you have
1 million training images and 1 thousand features per image?)



Classifiers: Linear
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Find a linear function to separate the classes:

f(x) = sgn(w-x + b)



Classifiers: non-linear

Good classifier Bad classifier (over fitting)




Outline

e Recognition challenges
* Recognition approaches
* Classifiers

* K-means clustering

* Bag of words
e Review of the course
e Evaluation of the course



How do we define a classifier?

 We first need to cluster the training data

 Then, we need a distance function to determine to which cluster the query
image belongs to




K-means clustering

* k-means clustering is an algorithm to partition n observations into k clusters in
which each observation x; belongs to the cluster with center m,

* It minimizes the sum of squared Euclidean distances between points x; and
their nearest cluster centers m,

D(X,M) = Zk:zn:(xj —m;)?

i=1j=1

Algorithm:

* Randomly initialize k cluster centers original unciustered date I

* Iterate until convergence: ,

— Assign each data point x; to the nearest |
center m, B

— Recompute each cluster center as the
mean of all points assigned to it of




K-means demo
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Source: http://shabal.in/visuals/kmeans/1.html



http://shabal.in/visuals/kmeans/1.html
http://shabal.in/visuals/kmeans/1.html

Outline

e Recognition challenges
* Recognition approaches
* Classifiers

* K-means clustering

* Bag of words

e Review of the course
e Evaluation of the course



Review: Feature-based object recognition

Q: Is this Book present in the Scene?
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Look for corresponding
matches

Most of the Book’s keypoints are present in the Scene

= A: The Book is present in the Scene



Taking this a step further...

 Find an objectin an image

* Find an object in multiple images

* Find multiple objects in multiple images

As the number of images increases,
feature-based object recognition
becomes computationaly more and
more expensive




Application: large-scale image retrieval

Query image Results on a database of 100 million images




10U, Th,
MINUTE HF

£
.”P_
i
5]
25



'!' :',: ”
!

w AL

1

Slide Credit: Nister



(C) L.W. Wildervanck



Fast visual search

 Query in a database of 100 million images in 6 seconds

“Video Google”, Sivic and Zisserman, ICCV 2003
“Scalable Recognition with a Vocabulary Tree”, Nister and Stewenius, CVPR 2006.



Bag of Words

» Extension to scene/place recognition:
— Is this image in my database?

— Robot: Have | been to this place before?

(=

GO gle *JPG matterhorn mountain (0]

All Images News Shopping Maps More ~ Search tools

About 624 results (1.07 seconds)

Image size:
1501 x 999

Find other sizes of this image
All sizes - Medium - Large

Best guess for this image: matterhorn mountain

Matterhorn - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Matterhorn ~

Jump to Legacy-Beginning of Mountain Culture - [edit]. The first ascent of the
Matterhorn changed mountain culture. Whymper's book about his first ascent,

The Matterhorn Mountain in Switzerland, Zermatt
www.zermatt.ch/en/matterhorn ~

The Matterhorn is the Mountain of Mountains. Shaped like a jagged tooth, it's a
magnet for adventurers looking for a mythical climb in Switzerland

Visually similar images Report images




Visual Place Recognition

» Goal: find the most similar images of a query image in a database of N images

NZ-M?

» Complexity: feature comparisons (worst-case scenario)

Each image must be compared with all other images!

N is the number of all images collected by a robot

- Example: 1 image per meter of travelled distance over a 100m? house with one
robot and 100 feature per image - M = 100, N = 100 - N?M?/2=
~ 50 Million feature comparisons!

Solution: Use an inverted file index!
Complexity reducesto N - M

[“Video Google”, Sivic & Zisserman, ICCV’03]
[“Scalable Recognition with a Vocabulary Tree”, Nister & Stewenius, CVPR’06]
See also FABMAP and Galvez-Lopez’12’s (DBoW?2)]




Indexing local features: inverted file text

*  For text documents, an efficient way to find
all pages on which a word occurs is to use
an index

* We want to find all images in which a
feature occurs

e  How many distinct SIFT or BRISK features
exist?
— SIFT = Infinite
— BRISK-128 - 2128 =34 - 1038

* Since the number of image features may be
infinite, before we build our visual
vocabulary we need to map our features to
“visual words”

* Using analogies from text retrieval, we
should:
— Define a “Visual Word”
— Define a “vocabulary” of Visual Words
— This approach is known as “Bag of
Words” (BOW)

| Index

“Along I-T5," From Datroi b
Flerida; inside back cover
“Dirivie 195, Fram Boatan 1o
Flotida; inaide back cover
1634 Spanish Tral Roadway;
1071 102,104
511 Teallic Infonmation; 83
A1A [Barrier ki) - -85 Access; BS
AMA (and CAAY; B3
Ak hational Office; B8
Abbeeviations,
Colored 25 mile Maps; covar
Exit Sarvices; 196
Trawetogue; 85
Alrica; 177
Agriculural Inspaction Stre; 126
Ah-Tah-Thi-Ei Msaurn; 180
Air Conditioning, First; 112
Alabama; 124
Alachua; 152
County; 131
Alafia Fioar, 143
Alapaha, Name; 136
Alfred B Maclay Gardans; 106
Alligaior Alkey. 154-185
Alligater Farm, S1 Augusting; 169
Alligater Bole (dediniticn); 157
Alligaicer, Bupddy; 155
Alligatcns 100,135,138, 147,158
Anastasia laland; ¥70
Anhaiza; 108- 108,146
Apalachicola River: 112
Appleton Mus ol Arl: 136
Agquifer; 102
Argioian Mignts; 94
Art Musoum, Ringing; 147
Aruba Beach Cals: 183
Aucila River Project; 106
Baboock-Weh WA, 151
Eiahia Mar harioa; 184
Bakar Counly; 98
Barafoot Maliman; 182
Barge Canal; 137
Bae Line Expy, 80
Balz Owlied Mafi: 80
Barnard Caslre: 136
Big *I*; 1685
Big Cypiess; 155,156
Big Fool Monstar; 105
Bille Swamp Safasl; 160
Blackwator Rroar SF; 117
Bl Angels
PA-C Shoghawic 117
Arrium; 1
Bl Speings 5P; &7
Blue Star Mernaorial Highway; 125
Boca Giega; 189
Boca (Granda: 180

Butterfly Canter, MoGsng; 134
Gl (5em ARL)
COC, Thie: 111,112,115,135,142
Ca d'Zan; 147
Calopsahalches Rher; 152
Famea; 150
Canavaral Manl Seachare; 173
Gannon Creek Airpark; 130
Canopy Foad; 106,168
Cape Canaverad 174
Casilles Ban Marcoa; 160
Cave Diving: 131
Cayo Costa, Nama; 150
Colubration; 93
Charatbe County, 148
Charkothe Harbor 150
Chautaugua; 116
Chipday, 114
Mame; 115
Chactawaiches, Mama; 115
Circus Muspum, Ringling; 147
Citrus; 88,87 130,136, 140, 180
CRyPlace, ¥ Palm Beach: 180
City Maps,
Ft Laudmrdale Expawys; 1894186
JakEamille; 163
Kissimmes Expwys: 152183
iami Expressways: 194-195
Oulands Exprasseays: 152.183
Pangacola; 25
Telzhasses; 191
Tempa 51, Patersburg; 63
21, Augauting: 191
Cindl War: 100,108,127,138,141
Clemnvwater Maring Aquarkum; 187
Colliar County; 154
Collier, Barron; 152
Colenial Spanisn Quarlers; 168
Cohambin County: 101,128
Coquinn Building Material; 165
Corkscrésy Swarmp. Narma; 154
Cowbaoys; 85
Crab Trag 11; 144
Crackar, Flonida; 88,895,132
Crogstown Expy: 11,3588.143
Cuban Bread; 184
Dade Batiladield; 140
Dade, Maj. Frances; 135-140,161
Dania Beach Huricans: 184
Danbel Boane, Flarkda Walk: 117
Daytana Beach; 172173
Dz Land; 87
De Solo, Hermanda,
Anhalca: 108-109,146
County; 148
Explorar; 146
Landing; 146
Maohmoa: 109

Driving Lanes; 85
Durval Coundy; 163
Eau Galin: 178
Edigon, Thomas; 152
Eqglin AFE: 116116
Eight Rieale; 176
Ellenlan; 144-145
Emanuel Foint Wreck: 120
Emarngency Calibowes; 53
Epiphytes; 142,148,157,159
Eacambia Bay: 119
Bawclga (1-904; 118
County; 120
Estare; 153
Evarnglade, 80,85, 138-140,154-160
Drainfng of; 156,181
Widiida biA; 160
Wonder Gandens; 154
Falling Waters 5F; 115
Fanitasy od Flight; 95
Fayar Drplons SP; 171
Firas, Forast: 168
Firag, Prescribed | 1438
Flsherman's Vélage; 151
Flagher County; 171
Flagler, Heary; 97,165,167,171
Flarida Aguariem: 166
Flosida,
12,005 yoars ags; 147
Cawarn 5F; 114
Mag of all Expressways; 2-3
Mus of Matural History: 134
Matisnal Camateny - 141
Parl of Alrica; 177
Fiatonm; 187
Sheriffs Boys Camp; 126
Sparts Hall of Fame; 130
Sun 'n Fun Musaum: 97
Suprems Cowl; 107
Florida’s Turnpike (FTF), 178,189
25 mils Strip Maps: 66
Adminiatration; 185
Coin System; 150
Exil Sorvices; 185
HEFT: TG, 161,130
Histary; 189
Mamas; 189
Service Plazas; 190
Spur SRS TH
Ticket System; 150
Tk Plazas; 150
Fard, Henry, 182
Forl Barrancas; 122
Burled Alwa; 123
Fort Carcline; 1854
Fert Clinch 2F; 161
Fort De Soio & Egmont Key; 188
Fort Lausderdalee 161 187184



Building the Visual Vocabulary

Image Collection Extract Features Cluster Descriptors
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Inverted File index

* Inverted File Data Base (DB) lists all possible visual words
* Each word points to a list of images where this word occurs

* Voting array: has as many cells as images in the DB — each word in query

image votes for an image __ inverted FileDB \
Visual word List of images that this word appears in ‘
| 0o [—> |
101 — . - |
| 102 = P ;
Visual 103 - |
. ds i | 104 \ | |
Query image Q wordsinQ | \ | g
R R ‘ i 105 \ X \ i
s Ty, 101 | \ N
| R 3 3 103 \ ~-_-------j.... ____________________________________________________________________________________________ '
-~ [105 +1 +1 1
105 Voting Array for Q
180 Ll e ] HEN HER NN
180
180 , o




Populating the vocabulary
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Populating the vocabulary




Populating the vocabulary
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Populating the vocabulary




Populating the vocabulary
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Populating the vocabulary








































Building the inverted file index




Building the inverted file index




Building the inverted file index




Building the inverted file index
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Recognition



Robust object/scene recognition

Visual Vocabulary discards the spatial relationships between features

— Two images with the same features shuffled around will return a 100% match when
using only appearance information.

This can be overcome using geometric verification

— Test the h most similar images to the query image for geometric
consistency (e.g. using 5- or 8-point RANSAC) and retain the image
with the smallest reprojection error and largest number of inliers

— Further reading (out of scope of this course):
e [Cummins and Newman, IJRR 2011]

e [Stewénius et al, ECCV 2012]



Query region

~

Video Google System

1. Collect all words within query
region

2. Inverted file index to find relevant
frames

3. Compare word counts
Spatial verification

Sivic & Zisserman, ICCV 2003

e Demo online at:
http://www.robots.ox.ac.uk/~vgg/re
search/vgoogle/



http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/index.html
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/
http://www.robots.ox.ac.uk/~vgg/research/vgoogle/

FA B M A P [Cummins and Newman IJRR 2011]

* Place recognition for robot localization
* Use training images to build the BoW database

* Captures the dependencies of visual words to distinguish the most characteristic
structure of each scene
* Probabilistic model of the world. At a new frame, compute:
— P(being at a known place)
— P(being at a new place)

* Very high performance
e Binaries available online
* Open FABMAP

New Place
p=08119



http://www.robots.ox.ac.uk/~mjc/Software.htm
http://docs.opencv.org/2.4/modules/contrib/doc/openfabmap.html

