
Lecture 11 
Tracking 

Davide Scaramuzza 



Lab Exercise 6 - Today 

 Room ETH HG E 33.1 from 14:15 to 16:00 

 Work description:  Lukas-Kanade template tracking 



Outline 

• What is Tracking? 

• Point tracking 

• Template tracking 

• Tracking by detection of local image features 



What is tracking? 

• Definition: Following of the motion of an image feature across an image 
sequence 



Point Tracking 



• Problem: given two images, estimate the motion of a pixel point from 
image 𝐼0 to image 𝐼1 

 

 

 

 

 

 

 

Point Tracking 

𝐼0(𝑥, 𝑦) 



• Problem: given two images, estimate the motion of a pixel point from 
image 𝐼0 to image 𝐼1 

 

 

 

 

 

 

 

Point Tracking 

𝐼1(𝑥, 𝑦) 



• Problem: given two images, estimate the motion of a pixel point from 
image 𝐼0 to image 𝐼1 

 

 

 

 

 

 

 

• Two approaches exist, depending on the amount of motion between the 
frames 

– Block-based methods 

– Differential methods 

Point Tracking 

𝐼0(𝑥, 𝑦) 

(𝑢, 𝑣): optical flow vector 



Point Tracking 
• Consider the motion of the following corner 



Point Tracking 
• Consider the motion of the following corner 



Point Tracking with Block Matching 
• Search for the corresponding patch in a neighborhood around the point. 

• Use SSD, SAD, or NCC to search for corresponding patches in a local 
neighborhood of the point. The search region is usually a 𝐷 × 𝐷 squared 
patch. 

 Search region 

Patch to track 



Point Tracking with Differential Methods 

• Looks at the local brightness changes at the same location. No patch shift 
is performed! 



Point Tracking with Differential Methods 

• Looks at the local brightness changes at the same location. No patch shift 
is performed! 



Point Tracking with Differential Methods 

Assumptions: 

1. Photo consistency 

2. Temporal persistency 

3. Spatial coherency 



Photo Consistency 

• A particular point in image 𝐼0 should have the same intensity as its 
corresponding point in image 𝐼1 

 



Temporal Persistency (Short Base-Line) 

• The motion between the two frames must be small 



Spatial Coherency 

• Neighboring pixels belonging to the same surface have similar motion 



Applying the Spatial Coherency 

• Assume that pixels in local neighborhood have the same motion (same 𝑢 
and 𝑣) (usually,  a square patch of 𝑛 × 𝑛 pixels is used) 

 

• We want to find the motion vector (𝑢, 𝑣) that minimizes the Sum of 
Squared Differences (SSD): 

𝑆𝑆𝐷 = (𝐼0 𝑥, 𝑦 − 𝐼1 𝑥 + 𝑢, 𝑦 + 𝑣 )2 

≅ (𝐼0 𝑥, 𝑦 − 𝐼1 𝑥, 𝑦 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣)
2 

= (∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣)
2 

This is a simple quadratic function in two variables (𝑢, 𝑣) 



Computing the Motion Vector 

• To minimize the SSD, we differentiate E with respect to (𝑢, 𝑣) and equate 
it to zero 

𝜕𝐸

𝜕𝑢
= 0 ,  

𝜕𝐸

𝜕𝑣
= 0 

 
𝜕𝐸

𝜕𝑢
= 0     − 2 𝐼𝑥(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣) = 0 

𝜕𝐸

𝜕𝑣
= 0     − 2 𝐼𝑦 ∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 = 0 

E= SSD=  (∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣)
2  



Computing the Motion Vector 

• Linear system of two equations in two unknowns 

• We can write them in matrix form: 

𝜕𝐸

𝜕𝑢
= 0     − 2 𝐼𝑥(∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣) = 0 

𝜕𝐸

𝜕𝑣
= 0     − 2 𝐼𝑦 ∆𝐼 − 𝐼𝑥𝑢 − 𝐼𝑦𝑣 = 0 

 𝐼𝑥𝐼𝑥  𝐼𝑥𝐼𝑦

 𝐼𝑥𝐼𝑦  𝐼𝑦𝐼𝑦

𝑢
𝑣

=

 𝐼𝑥∆𝐼

 𝐼𝑦∆𝐼

     
𝑢
𝑣

=

 𝐼𝑥𝐼𝑥  𝐼𝑥𝐼𝑦

 𝐼𝑥𝐼𝑦  𝐼𝑦𝐼𝑦

−1

 𝐼𝑥∆𝐼

 𝐼𝑦∆𝐼

 

M matrix 
Haven’t we seen this matrix already? 

Recall Harris detector! 



For M to be invertible, its determinant has to be non zero 

2 

1 and 2 are small 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 1 

“Corner” 

1 and 2 are large and 

So is det(M) 

𝑀 =

 𝐼𝑥𝐼𝑥  𝐼𝑥𝐼𝑦

 𝐼𝑥𝐼𝑦  𝐼𝑦𝐼𝑦

 • In practice, det(M) should 
be as large as possible, 
which means that its 
eigenvalues should be large 
(i.e., not a flat region, not 
an edge) -> in practice, it 
should be a corner or more 
generally contain texture! 
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Point Tracking 
Edge – Low texture – High texture 



Simple 1D interpretation of Point Tracking 
 

𝐼1(𝑥 + 𝑢) 



Simple 1D interpretation of Point Tracking 
Sum of Squared Differences  

u 

𝐸 = (𝐼0 𝑥 − 𝐼1 𝑥 + 𝑢 )2 
 

≅ 𝐼0 𝑥 − 𝐼1 𝑥 − 𝑢𝐼1
′ 𝑥

2
 

𝑑𝐸

𝑑𝑢
≅ −2𝐼1

′(𝑥)(𝐼0 𝑥 − 𝐼1 𝑥 − 𝑢𝐼1
′ 𝑥 ) 

𝑢 ≅
𝐼0 𝑥 − 𝐼1 𝑥

𝐼1
′(𝑥)

 

𝐼1(𝑥 + 𝑢) 



Simple 1D interpretation of Point Tracking 
Interpretation 

𝑢 ≅
𝐼0 𝑥 − 𝐼1 𝑥

𝐼′(𝑥)
 

𝐼1(𝑥 + 𝑢) 

u 



Aperture Problem 
• Consider the motion of the following corner 



Aperture Problem 
• Consider the motion of the following corner 



Aperture Problem 
• Looks at the local brightness changes through a small aperture 



Aperture Problem 
• Looks at the local brightness changes through a small aperture 



Aperture Problem 
• Looks at the local brightness changes through a small aperture 

• We cannot always determine the motion direction -> Infinite motion 
solutions may exist! 

• Solution? 



Aperture Problem 
• Looks at the local brightness changes through a small aperture 

• We cannot always determine the motion direction -> Infinite motion 
solutions may exist! 

• Solution?: Increase 
aperture size! 



• Optical flow or optic flow is the pattern of apparent motion of objects in a visual 
scene caused by the relative motion between the observer (an eye or a camera) 
and the scene 

• Tracks the motion of every pixels (or a grid of pixels) between two consecutive 
frames 

• For each pixel, a motion vector  is computed: 
• Vector direction represents motion direction 
• Vector length represents the amount of movement 

Application of Differential Methods: 
Optical Flow calculation 



Optical Flow 

[Tao et al., Eurographics 2012] 



Optical Flow 

[Tao et al., Eurographics 2012] 



Optical Flow 

[Tao et al., Eurographics 2012] 



Optical Flow example 



Optical flow issue: choosing the right patch size 



Application to Corner Tracking 

Color encodes motion 
direction 



Block-based vs. Differential methods 

• Block-based methods: search for the corresponding patch in a 
neighborhood of the point to be tracked. The search region is usually a 
square of 𝑛 × 𝑛 pixels.  
– Robust to large motions 

– Can be computationally expensive (𝑛 × 𝑛 validations need to be made for a 
single point to track) 

 

• Differential methods:  
– Works only for small motions (e.g., high frame rate). For larger motion, multi-

scale implementations are used but are more expensive 

– Much more efficient than block-based methods. Thus, can be used to track the 
motion of every pixel in the image (i.e., optical flow). It avoids searching in the 
neighborhood of the point by analyzing the local intensity changes (i.e., 
differences) of an image patch at a specific location (i.e., no search is performed).  



Outline 

• What is Tracking? 

• Point tracking 

• Review of 2D image transformations and Jacobians 

• Template tracking 

• Tracking by detection of local image features 



Transformations – 2D  



Summary of displacement models (2D transformations) 

• Translation 

 

 

• Euclidean 

 

• Affine 

 

 

• Projective 
(homography) 

𝑥′ = 𝑥 + 𝑎1 
𝑦′ = 𝑦 + 𝑎2 

 

𝑥′ = 𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1 
𝑦′ = 𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2 

 
𝑥′ = 𝑎1𝑥 + 𝑎3𝑦 + 𝑎5 
𝑦′ = 𝑎2𝑥 + 𝑎4𝑦 + 𝑎6 

𝑥′ =
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3
𝑎7𝑥 + 𝑎8𝑦 + 1

 

 

𝑦′ =
𝑎4𝑥 + 𝑎5𝑦 + 𝑎6
𝑎7𝑥 + 𝑎8𝑦 + 1

 



Summary of displacement models (2D transformations) 

• Translation 

 

 

• Euclidean 

 

 

 

• Affine 

 

 

• Projective 

𝑊 𝐱, 𝐩 =
𝑥 + 𝑎1
𝑦 + 𝑎2

=
1 0 𝑎1
0 1 𝑎2

𝑥
𝑦
1

 

𝑊 𝐱,𝐩 =
𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1
𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2

=
𝑐𝑎3 −𝑠𝑎3 𝑎1
𝑠𝑎3 𝑐𝑎3 𝑎2

𝑥
𝑦
1

 

 

𝑊 𝐱,𝐩 =
𝑎1𝑥 + 𝑎3𝑦 + 𝑎5
𝑎2𝑥 + 𝑎4𝑦 + 𝑎6

=
𝑎1 𝑎3 𝑎5
𝑎2 𝑎4 𝑎6

𝑥
𝑦
1

 

Homogeneous coordinates 

𝑊 𝒙 , 𝐩 =

𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 1

𝑥
𝑦
1

 

We call the transformation Warping W 𝐱,𝐩  and p the set of parameters  𝑝 =
(𝑎1, 𝑎2, … , 𝑎𝑛) 



𝑊 𝐱, 𝐩 =
1 0 𝑎1
0 1 𝑎2

𝑥
𝑦
1

 

𝑊 𝐱, 𝐩 =
𝑐𝑎3 −𝑠𝑎3 𝑎1
𝑠𝑎3 𝑐𝑎3 𝑎2

𝑥
𝑦
1

 

 

𝑊 𝐱, 𝐩 =
𝑎1 𝑎3 𝑎5
𝑎2 𝑎4 𝑎6

𝑥
𝑦
1

 

𝑊 𝒙 ,𝐩 =

𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 1

𝑥
𝑦
1

 

𝑊 𝐱,𝐩 = λ
𝑐𝑎3 −𝑠𝑎3 𝑎1
𝑠𝑎3 𝑐𝑎3 𝑎2

𝑥
𝑦
1

 

 

Summary of displacement models (2D transformations) 



Derivative and gradient 

• Function: 𝑓 𝑥  

 

• Derivative: 𝑓′ 𝑥 =
𝑑𝑓

𝑑𝑥
 , where 𝑥 is a scalar 

 

 

• Function: 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 ) 

 

• Gradient: ∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛 )= 
𝜕𝑓

𝜕𝑥1
,
𝜕𝑓

𝜕𝑥2
, … ,

𝜕𝑓

𝜕𝑥𝑛
  



Jacobian 

• 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛 ) =
𝑓1(𝑥1, 𝑥2, … , 𝑥𝑛 )

⋮
𝑓𝑚(𝑥1, 𝑥2, … , 𝑥𝑛 )

 

 

Vector-valued function 

 

Derivative? 

 

 

 

 

𝐽 𝐹 = ∇𝐹 =  

𝜕𝑓1
𝜕𝑥1

, … ,
𝜕𝑓1
𝜕𝑥𝑛

⋮
𝜕𝑓𝑚
𝜕𝑥1

, … ,
𝜕𝑓𝑚
𝜕𝑥𝑛

 

Carl Gustav Jacob (1804-1851) 



Displacement-model Jacobians 

• Translation 

 

 

 

• Euclidean 

 

 

 

• Affine 

𝑊 𝐱, 𝐩 =
𝑥 + 𝑎1
𝑦 + 𝑎2

 

𝑊 𝐱, 𝐩 =
𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3) + 𝑎1
𝑥𝑠𝑖𝑛(𝑎3) + 𝑦𝑐𝑜𝑠(𝑎3) + 𝑎2

 

𝑊 𝐱, 𝐩 =
𝑎1𝑥 + 𝑎3𝑦 + 𝑎5
𝑎2𝑥 + 𝑎4𝑦 + 𝑎6

 

∇𝑊𝑝 

∇𝑊𝑝=

𝜕𝑊1

𝜕𝑎1

𝜕𝑊1

𝜕𝑎2
𝜕𝑊2

𝜕𝑎1

𝜕𝑊2

𝜕𝑎2

=
1 0
0 1

  

𝑝 = (𝑎1, 𝑎2, … , 𝑎𝑛) 

∇𝑊𝑝=
1 0 −𝑥𝑠𝑖𝑛(𝑎3) − 𝑦𝑐𝑜𝑠(𝑎3)
0 1 𝑥𝑐𝑜𝑠(𝑎3) − 𝑦𝑠𝑖𝑛(𝑎3)

  

∇𝑊𝑝=
𝑥 0 𝑦
0 𝑥 0

   
0 1 0
𝑦 0 1

 



Outline 

• What is Tracking? 

• Point tracking 

• Review of 2D image transformations and Jacobians 

• Template tracking: Lucas-Kanade algorithm 

• Tracking by detection of local image features 



Template tracking 

Definition: follow a template image in a video sequence by estimating the 
warp 

Template image 



The Lucas-Kanade tracker  

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo 
vision. Proceedings of Imaging Understanding Workshop, pages 121--130 

http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf
http://www-cse.ucsd.edu/classes/sp02/cse252/lucaskanade81.pdf


Template warping 

• Given the template image 𝑇(𝐱) 

• Take all pixels from the template image 𝑇(𝐱) and warp them using the 
function 𝑊 𝐱, 𝐩 parameterized in terms of parameters 𝐩 

Template image 

𝑇(𝐱)  

𝑊 𝐱, 𝐩  

warp 

𝐼(𝑥 ) 



Template Tracking: Problem Formulation 

• The goal of template-based tracking is to find the set of warp parameters 
p such that: 
 
 
 
 
This is solved by determining p that minimizes the Sum of Squared 
Differences 

𝐼 𝑊 𝐱, 𝐩 = 𝑇(𝐱) 

𝐸 = 𝑆𝑆𝐷 = 𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱) 
𝟐

𝐱∈𝐓

 



Assumptions 

• No errors in the template image 
boundaries: only the appearance of 
the object to be tracked appears in 
the template image 

 

• No occlusion: the entire template is 
visible in the input image 

 

• Brightness constancy assumption: 
the intensity of the object 
appearance is always the same. 



The Lucas-Kanade tracker 

• Uses the Gauss-Newton method for minimization, that is: 

– Applies a first-order approximation of the warp 

– Attempts to minimize the SSD iteratively 



Derivation of the Lucas-Kanade algorithm 

• Assume that an initial estimate of p is known. Then, we want to find the 
increment ∆𝐩 that minimizes 

 

 

 

• First-order Taylor approximation of 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩  yelds to: 

 

 

 

 

 

 

𝐸 = 𝐼 𝑊 𝐱, 𝐩 − 𝑇(𝐱) 
𝟐

𝐱∈𝐓

 

 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 − 𝑇(𝐱) 
𝟐

𝐱∈𝐓

 

𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 ≅ 𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 

𝛻𝐼 = 𝐼𝑥, 𝐼𝑦 = Image gradient evaluated at 𝑊(𝐱, 𝐩) Jacobian of the warp 𝑊(𝐱, 𝐩) 

How do I get the initial estimate? 



Derivation of the Lucas-Kanade algorithm 

• By replacing 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩  with its 1st order approximation, we get 

 

 

 

 

• How do we minimize it? 

• We differentiate E with respect to ∆𝐩 and we equate it to zero, i.e.,  

 

 

 

 

𝐸 = 𝐼 𝑊 𝐱, 𝐩 + ∆𝐩 − 𝑇(𝐱) 
𝟐

𝐱∈𝐓

 

𝐸 = 𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱) 

𝟐

𝐱∈𝐓

 

𝜕𝐸

𝜕∆𝐩
= 0 



Derivation of the Lucas-Kanade algorithm 

 

 

 

 

 

 

 

 

𝜕𝐸

𝜕∆𝐩
= 2 𝛻𝐼

𝜕𝑊

𝜕𝐩

T

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱) 

𝐱∈𝐓

 

𝜕𝐸

𝜕∆𝐩
= 0 

2 𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱) 

𝐱∈𝐓

= 0    

𝐸 = 𝐼 𝑊 𝐱, 𝐩 +𝛻𝐼
𝜕𝑊

𝜕𝐩
∆𝐩 − 𝑇(𝐱) 

𝟐

𝐱∈𝐓

 



Derivation of the Lucas-Kanade algorithm 

 

 

 

 

 

 

 

 

  ∆𝐩 = 𝐻−1 𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝑇 𝐱  − 𝐼 𝑊 𝐱, 𝐩

𝐱∈𝐓

=   

𝐻 = 𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝛻𝐼
𝜕𝑊

𝜕𝐩
𝐱∈𝐓

 

Second moment matrix (Hessian) of the warped image 

What does H look like when the warp is a pure translation? 



Lucas-Kanade algorithm 

1. Warp 𝐼(𝐱) with 𝑊(𝐱, 𝐩)   𝐼 𝑊 𝐱, 𝐩  

2. Compute the error: subtract 𝐼 𝑊 𝐱, 𝐩  from 𝑇(𝐱) 

3. Compute warped gradients: 𝛻𝐼 = 𝐼𝑥, 𝐼𝑦 , evaluated at 𝑊(𝐱, 𝐩) 

4. Evaluate the Jacobian of the warping: 
𝜕𝑊

𝜕𝐩
 

5. Compute steepest descent: 𝛻𝐼
𝜕𝑊

𝜕𝐩
 

6. Compute Inverse Hessian: 𝐻−1 =  𝛻𝐼
𝜕𝑊

𝜕𝐩

T
𝛻𝐼

𝜕𝑊

𝜕𝐩𝐱∈𝐓

−1

 

7. Multiply steepest descend with error:  𝛻𝐼
𝜕𝑊

𝜕𝐩

T
𝑇 𝐱  − 𝐼 𝑊 𝐱,𝐩𝐱∈𝐓  

8. Compute ∆𝐩 

9. Update parameters: 𝐩 𝐩 + ∆𝐩 

10. Repeat until ∆𝐩 < 𝜺 

  ∆𝐩 = 𝐻−1 𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝑇 𝐱  − 𝐼 𝑊 𝐱, 𝐩

𝐱∈𝐓

 



Lucas-Kanade algorithm 

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo 
vision. Proceedings of Imaging Understanding Workshop, pages 121--130 

∆𝐩 = 𝐻−1 𝛻𝐼
𝜕𝑊

𝜕𝐩

T

𝑇 𝐱  − 𝐼 𝑊 𝐱, 𝐩

𝐱∈𝐓

   

6x1 
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Lucas-Kanade algorithm: Discussion 

Lucas-Kanade follows a predict-correct cycle 

• A prediction 𝐼 𝑊 𝐱, 𝐩  of the warped image is computed from an initial 

estimate 

• The correction parameter ∆𝐩 is computed as a function of the error 

𝑇 𝐱  − 𝐼 𝑊 𝐱, 𝐩  between the prediction and the template 

• The larger this error, the larger the correction applied 

predict correct 



Lucas-Kanade algorithm: Discussion 

• How to get the initial estimate p? 

• When does the Lucas-Kanade fail? 

– If the initial estimate is too far, then the linear approximation does not 
longer hold -> solution? 

• Pyramidal implementations (see next slide) 

• Other problems: 

– Deviations from the mathematical model: object deformations, 
illumination changes, etc. 

– Occlusions 

– Due to these reasons, tracking may drift -> solution? 

• Update the template with the last image 

 



Coarse-to-fine estimation 
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Coarse-to-fine estimation 
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Generalization of Lucas-Kanade 

• The same concept (predict/correct) can be applied to tracking of 3D 
object (in this case, what is the transformation to etimate? What is the 
template?) 



Generalization of Lucas-Kanade 

• The same concept (predict/correct) can be applied to tracking of 3D 
object (in this case, what is the transformation to etimate? What is the 
template?) 

• In order to deal with wrong prediction, it can be implemented in a 
Particle-Filter fashion (using multiple hipotheses that need to be 
validated) 



Outline 

• What is Tracking? 

• Review of 2D image transformations and Jacobians 

• Point tracking 

• Template tracking 

• Tracking by detection of local image features 



Tracking by detection of local image features 

Step 1: Keypoint detection and matching 
• invariant to scale, rotation, or perspective 

 
 

Template image with the object to detect Current test image 
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Tracking by detection of local image features 

Step 1: Keypoint detection and matching 
• invariant to scale, rotation, or perspective 

 
Step 2: Geometric verification (RANSAC) 
 

Template image with the object to detect Current test image 



Tracking by detection of local image features 



Tracking issues 

• How to segment the object to track from background? 

 

• How to initialize the warping? 

 

• How to handle occlusions 

 

 

• How to handle illumination changes and non modeled effects? 
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Implementations 

• OpenCV implementation :  
http://docs.opencv.org/modules/video/doc/motion_analysis_and_object
_tracking.html?highlight=lucas%20kanade  

• Some Matlab implementation: 

– Lucas Kanade with Pyramid 
http://www.mathworks.com/matlabcentral/fileexchange/30822  

– Affine tracking: 
http://www.mathworks.com/matlabcentral/fileexchange/24677‐lucas‐
kanade‐affine‐template‐tracking 
http://vision.eecs.ucf.edu/Code/Optical_Flow/Lucas%20Kanade.zip 
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