

Lecture 09 Multiple View Geometry 3

Davide Scaramuzza

Lab Exercise 6 - Today

- > Room ETH HG E 33.1 from 14:15 to 16:00
- ➤ Work description: P3P algorithm and RANSAC

Outline

- Bundle Adjustment
- SFM with *n* views

Bundle Adjustment (BA)

- Non-linear, simultaneous refinement of structure and motion (i.e., R, T, P^i)
- It is used after linear estimation of R and T (e.g., after 8-point algorithm)
- Computes R, T, P^i by minimizes the Sum of Squared Reprojection Errors:

$$(R, T, P^{i}) = \operatorname{arg\,min}_{R, T, P^{i}} \sum_{i=1}^{N} \| \mathbf{p}_{1}^{i} - \pi_{1}(\mathbf{P}^{i}, \mathbf{C}_{1}) \|^{2} + \| \mathbf{p}_{2}^{i} - \pi_{2}(\mathbf{P}^{i}, \mathbf{C}_{2}) \|^{2}$$

NB: here, by C_1 , C_2 we denote the **pose** each camera in the **world** frame

 Can be minimized using Levenberg-Marquardt (more robust than Gauss-Newton to local minima)

• In order to not get stuck in local minima, the initialization should be close the

minimum

Bundle Adjustment (BA) for n Views

Minimizes the Sum of Squared Reprojection Errors over each view k

$$(X^{i}, C_{k}) = \arg\min_{X^{i}, C_{k}} \sum_{k} \sum_{i=1}^{k} \|p_{k}^{i} - \pi_{k}(X^{i}, C_{k})\|^{2}$$

Outline

- Bundle Adjustment
- SFM with *n* views

Structure From Motion with *n* Views

- Compute initial structure and motion
 - Hierarchical SFM
 - Sequential SFM
- Refine simultaneously structure and motion through BA

1. Extract and match feature between nearby frames

- 1. Extract and match feature between nearby frames
- 2. Identify clusters consisting of 3 nearby frames:
- 3. Compute SFM for 3 views
 - 1. Compute SFM for 2 views
 - 2. Add 3rd view:
 - 1. SFM between 1 and 2
 - 2. SFM between 2 and 3
 - 3. Then merge 1-2 with 2-3

- 1. Extract and match feature between nearby frames
- 2. Identify clusters consisting of 3 nearby frames:
- 3. Compute SFM for 3 views
 - 1. Compute SFM for 2 views
 - 2. Add 3rd view:
 - 1. SFM between 1 and 2
 - 2. SFM between 2 and 3
 - 3. Then merge 1-2 with 2-3
- 4. Merge clusters pairwise and refine (BA) both structure and motion

- 1. Extract and match feature between nearby frames
- 2. Identify clusters consisting of 3 nearby frames:
- 3. Compute SFM for 3 views
 - 1. Compute SFM for 2 views
 - 2. Add 3rd view:
 - 1. SFM between 1 and 2
 - 2. SFM between 2 and 3
 - 3. Then merge 1-2 with 2-3
- 4. Merge clusters pairwise and refine (BA) both structure and motion

Hierarchical SFM: Example

- > Reconstruction from 3 million images from Flickr.com
- > Cluster of 250 computers, 24 hours of computation!
- > Paper: "Building Rome in a Day", ICCV'09

Structure From Motion with n Views

- Compute initial structure and motion
 - Hierarchical SFM
 - Sequential SFM
- Refine simultaneously structure and motion through BA

Sequential SFM - also called Visual Odometry (VO)

- Initialize structure and motion from 2 views (bootstrapping)
- For each additional view
 - Determine pose (localization)
 - > Extend structure (i.e., extract and triangulate new features)
 - Refine both pose and structure (BA)

Monocular VO (i.e., with a single camera)

Bootstrapping

- ➤ Initialize structure and motion from 2 views: e.g., 8-point algorithm + RANSAC
- Refine structure and motion (BA)
- ➤ How far should the two frames (i.e., keyframes) be?

Skipping frames (Keyframe Selection)

When frames are taken at nearby positions compared to the scene distance, 3D points will exibit large uncertainty

Small baseline → large depth uncertainty

Large baseline → small depth uncertainty

Skipping frames (Keyframe Selection)

- When frames are taken at nearby positions compared to the scene distance, 3D points will exibit large uncertainty
- One way to avoid this consists of skipping frames until the average uncertainty of the 3D points decreases below a certain threshold. The selected frames are called keyframes
- > Rule of the thumb: add a keyframe when $\frac{keyframe\ distance}{average-depth}$ > threshold (~10-20 %)

Monocular VO (i.e., with a single camera)

> Localization

- Determine the pose of each additional view
 - ➤ How?
 - How long can I do that?

Localization

- Compute camera pose from known 3D-to-2D feature correspondences
 - Extract correspondences (how?)
 - \triangleright Solve for R and t (K is known)

$$\lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K[R \mid T] \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

- What's the minimal number of required point correspondences?
 - > Lecture 3:
 - ➤ 6 for linear solution (DLT algorithm)
 - ➤ 3 for a non linear solution (P3P algorithm)

Extend Structure

- Extract and triangulate new features
 - Is it necessary to do this for every frame or can we just do it for keyframes?
 - What are the pros and cons?

Monocular Visual Odometry: putting all pieces together

• After bootstrapping, determine the pose T_k of each additional view (keyframe) by Localization (feature matching and P3P or DLT + RANSAC)

$$T_k = \begin{bmatrix} R_{k,k-1} & t_{k,k-1} \\ 0 & 1 \end{bmatrix}$$

- By concatenation of all these single movements, the full trajectory of the camera can be recovered, i.e.: $C_k = T_{k,k-1}C_{k-1}$
- A non-linear refinement (BA) over the last m poses (+ visible structure)
 can be performed to get a more accurate estimate of the local
 trajectory

time

m-poses windowed bundle adjustment

Loop Closure Detection (i.e., Place Recognition)

> Relocalization problem:

- During VO, tracking can be lost (due to occlusions, low texture, quick motion, illumination change)
- > Solution: **Re-localize** camera pose and continue
- Loop closing problem
 - When you go back to a previously mapped area:
 - Loop detection: to avoid map duplication
 - Loop correction: to compensate the accumulated drift
 - In both cases you need a place recognition technique

We will address place recognition in a later lecture

VO vs. Visual SLAM

- Visual Odometry
 - Focus on incremental estimation/local consistency
- Visual SLAM: Simultaneous Localization And Mapping
 - Focus on globally consistent estimation
 - Visual SLAM = visual odometry + loop detection+ graph optimization
- VO trades off consistency for real-time performance, without the need to keep track of all the previous history of the camera.

Visual odometry

Image courtesy from [Clemente et al., RSS'07]

Open Source Monocular VO and SLAM algorithms

- > PTAM [Klein, 2007] -> Oxford, Murray's lab
- > ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos' lab
- > **SVO** [Forster, ICRA'14] -> Zurich, Scaramuzza's lab
- > LSD-SLAM [Engel, ECCV'14] -> Munich, Cremers' lab
- > **DSO** [Engel'16] -> Munich, Cremers' lab

PTAM: Parallel Tracking and Mapping for Small AR Workspaces

Parallel Tracking and Mapping for Small AR Workspaces

ISMAR 2007 video results

Georg Klein and David Murray Active Vision Laboratory University of Oxford

ORB-SLAM: Large-scale Feature-based SLAM

- Monocular Visual Odometry plus:
 - Loop closing
 - Relocalization (DBoW)
 - Final optimization (BA)
- > **ORB**: FAST corner + Oriented Rotated Brief descriptor
 - Binary descriptor
 - Very fast to compute and compare
- > Real-time (30Hz)

ORB-SLAM

Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós

{raulmur, josemari, tardos} @unizar.es

Feature-based methods

- 1. Extract & match features (+RANSAC)
- 2. Minimize **Reprojection error** minimization

$$T_{k,k-1} = \arg\min_{T} \sum_{i} ||\boldsymbol{u'}_{i} - \pi(\boldsymbol{p}_{i})||_{\Sigma}^{2}$$

Direct methods

1. Minimize photometric error

$$T_{k,k-1} = \arg\min_{T} \sum_{i} \|I_k(\boldsymbol{u'}_i) - I_{k-1}(\boldsymbol{u}_i)\|_{\sigma}^2$$
where $\boldsymbol{u'}_i = \pi (T \cdot (\pi^{-1}(\boldsymbol{u}_i) \cdot d))$

 I_{k-1} u_i u'_i u'_i d_i d_i p_i

[Jin, Favaro, Soatto'03] [Silveira, Malis, Rives, TRO'08], [Newcombe et al., ICCV '11], [Engel et al., ECCV'14], [Forster et al., ICRA'14]

Feature-based methods

- 1. Extract & match features (+RANSAC)
- 2. Minimize **Reprojection error** minimization

$$T_{k,k-1} = \arg\min_{T} \sum_{i} \|\boldsymbol{u'}_{i} - \pi(\boldsymbol{p}_{i})\|_{\Sigma}^{2}$$

- ✓ Large frame-to-frame motions
- ✓ Accuracy: Efficient optimization of structure and motion (Bundle Adjustment)
- Slow due to costly feature extraction and matching
- × Matching Outliers (RANSAC)

Direct methods

1. Minimize photometric error

$$T_{k,k-1} = \arg\min_{T} \sum_{i} ||I_{k}(\boldsymbol{u'}_{i}) - I_{k-1}(\boldsymbol{u}_{i})||_{\sigma}^{2}$$

where
$$\mathbf{u'}_i = \pi (T \cdot (\pi^{-1}(\mathbf{u}_i) \cdot d))$$

- ✓ All information in the image can be exploited (precision, robustness)
- ✓ Increasing camera frame-rate reduces computational cost per frame
- × Limited frame-to-frame motion
- Value of Joint optimization of dense structure and motion too expensive

[Jin, Favaro, Soatto'03] [Silveira, Malis, Rives, TRO'08], [Newcom [Engel et al., ECCV'14], [Forster et al., ICRA'14]

LSD-SLAM: Large-scale Semi-Dense SLAM

- Monocular Visual Odometry plus:
 - Loop closing
 - Relocalization (DBoW)
 - Final optimization (BA)
- > Semi-dense: tracks all pixels on strong edges
- > **Direct:** minimizes photometric error
- > Real-time (30Hz)

SVO: Semi-direct Visual Odometry

- Monocular Visual Odometry only:
 - No loop closing
- Sparse: corners and edgelets
- > Semi-Direct
 - Direct: for Frame-to-Frame motion estimation
 - Features: for Frame-to-Keyframe pose refinement
- Mapping
 - Probabilistic depth estimation
 - depth uncertainty and
 - inlier probability)
- Super fast (Hz)

SVO with a single camera on Euroc dataset

Accuracy and Timing

Intel i7, 2.80 GHz

	Euroc RMS Error	Timing	CPU @ 20 fps
SVO	0.07 m	5.25 ms	72 %
ORB SLAM	0.19 m	29.81 ms	187 %
LSD SLAM	0.43 m	23.23 ms	236 %

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO'16]

Processing Times of SVO

Laptop (Intel i7, 2.8 GHz)

400 frames per second

Embedded ARM Cortex-A9, 1.7 GHz

Up to 70 frames per second

Why so fast?

Dense vs Semi-Dense vs Sparse

Dense

DTAM [Newcombe et al. '11] 300'000+ pixels

Semi-Dense

LSD [Engel et al. 2014] ~10'000 pixels

Sparse

SVO [Forster et al. 2014, TRO'16] 100-200 features x 4x4 patch ~ 2,000 pixels

We will see this in the next lecture

Dense vs Semi-Dense vs Sparse

Dense

DTAM [Newcombe et al. '11] 300,000+ pixels

Semi-Dense

LSD-SLAM [Engel et al. 2014] ~10,000 pixels

Sparse

SVO [Forster et al. 2014] 100-200 features x 4x4 patch ~ 2,000 pixels

We will see this in the next lecture

SVO for Autonomous Drone Navigation

RMS error: 5 mm, height: 1.5 m – Down-looking camera

Speed: 4 m/s, height: 1.5 m – Down-looking camera

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle, **Journal of Field Robotics**, **2015**.

Tech Transfer activities

Application: Autonomous Inspection of Bridges and Power Masts

Project with Parrot: Autonomous vision-based navigation

Dacuda VR solutions

- Fully immersive virtual reality with 6-DoF for VR and AR content (running on iPhone)
- > Powered by SVO

Spinoff: Zurich-Eye — www.zurich-eye.com

Vision-based Localization and Mapping Solutions for Mobile Robots Founded in Sep. 2015, became Facebook-Oculus R&D Zurich in Sep. 2016

