
Lecture 09
Multiple View Geometry 3

Davide Scaramuzza

Lab Exercise 6 - Today
 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: P3P algorithm and RANSAC

Outline

• Bundle Adjustment

• SFM with 𝑛 views

Bundle Adjustment (BA)

• Non-linear, simultaneous refinement of structure and motion (i.e., 𝑅, 𝑇, 𝑃𝑖)

• It is used after linear estimation of R and T (e.g., after 8-point algorithm)

• Computes 𝑅, 𝑇, 𝑃𝑖 by minimizes the Sum of Squared Reprojection Errors:

NB: here, by 𝐶1, 𝐶2 we denote the pose each camera in the world frame

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton
to local minima)

• In order to not get stuck in local minima, the initialization should be close the
minimum





N

1i

2

2

i

2

i

2

2

1

i

1

i

1,,
)C,(Pπ-p)C,(Pπ-pminarg),,(iPTR

iPTR

Minimizes the Sum of Squared Reprojection Errors over each view 𝒌

...
𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏





k 1i

2

k

i

k,
),(π-pminarg),(k

i

CXk

i CXCX
k

i

Bundle Adjustment (BA) for 𝑛 Views

Outline

• Bundle Adjustment

• SFM with 𝑛 views

Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA

Hierarchical SFM

1. Extract and match feature between nearby frames

Hierarchical SFM

1. Extract and match feature between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views
1. Compute SFM for 2 views

2. Add 3rd view:
1. SFM between 1 and 2

2. SFM between 2 and 3

3. Then merge 1-2 with 2-3

Hierarchical SFM

1. Extract and match feature between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views
1. Compute SFM for 2 views

2. Add 3rd view:
1. SFM between 1 and 2

2. SFM between 2 and 3

3. Then merge 1-2 with 2-3

4. Merge clusters pairwise and refine (BA) both structure and motion

Hierarchical SFM

1. Extract and match feature between nearby frames

2. Identify clusters consisting of 3 nearby frames:

3. Compute SFM for 3 views
1. Compute SFM for 2 views

2. Add 3rd view:
1. SFM between 1 and 2

2. SFM between 2 and 3

3. Then merge 1-2 with 2-3

4. Merge clusters pairwise and refine (BA) both structure and motion

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Reconstruction from 3 million images from Flickr.com

 Cluster of 250 computers, 24 hours of computation!

 Paper: “Building Rome in a Day”, ICCV’09

Hierarchical SFM: Example

Structure From Motion with 𝑛 Views

• Compute initial structure and motion
– Hierarchical SFM

– Sequential SFM

• Refine simultaneously structure and motion through BA

Sequential SFM - also called Visual Odometry (VO)

 Initialize structure and motion from 2 views (bootstrapping)

 For each additional view
 Determine pose (localization)

 Extend structure (i.e., extract and triangulate new features)

 Refine both pose and structure (BA)

Monocular VO (i.e., with a single camera)

 Bootstrapping
 Initialize structure and motion from 2 views: e.g., 8-point algorithm + RANSAC

 Refine structure and motion (BA)

 How far should the two frames (i.e., keyframes) be?

Keyframe 1 Keyframe 2

Initial pointcloud

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 When frames are taken at nearby positions compared to the scene distance, 3D
points will exibit large uncertainty

Small baseline → large depth uncertainty Large baseline → small depth uncertainty

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 When frames are taken at nearby positions compared to the scene distance, 3D
points will exibit large uncertainty

 One way to avoid this consists of skipping frames until the average uncertainty of
the 3D points decreases below a certain threshold. The selected frames are
called keyframes

 Rule of the thumb: add a keyframe when

. . .

average-depth

keyframe distance
> threshold (~10-20 %)

Monocular VO (i.e., with a single camera)

 Localization
 Determine the pose of each additional view

 How?

 How long can I do that?

Keyframe 1 Keyframe 2

Initial pointcloud

Current frame

Localization

 Compute camera pose from known 3D-to-2D feature
correspondences
 Extract correspondences (how?)

 Solve for 𝑅 and 𝑡 (𝐾 is known)

 What’s the minimal number of required point correspondences?
 Lecture 3:

6 for linear solution (DLT algorithm)

3 for a non linear solution (P3P algorithm)

 




































1

1
w

w

w

Z

Y

X

TRKv

u



Extend Structure

 Extract and triangulate new features
 Is it necessary to do this for every frame or can we just do it for keyframes?

 What are the pros and cons?

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

New keyframe

Monocular Visual Odometry: putting all pieces together

time

• After bootstrapping, determine the pose 𝑇𝑘 of each additional view
(keyframe) by Localization (feature matching and P3P or DLT + RANSAC)

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

• By concatenation of all these single movements, the full trajectory of

the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1

• A non-linear refinement (BA) over the last 𝑚 poses (+ visible structure)
can be performed to get a more accurate estimate of the local
trajectory

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

m-poses windowed bundle adjustment

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

  Relocalization problem:

 During VO, tracking can be lost (due to occlusions, low
texture, quick motion, illumination change)

 Solution: Re-localize camera pose and continue

 Loop closing problem

 When you go back to a previously mapped area:

 Loop detection: to avoid map duplication

 Loop correction: to compensate the accumulated drift

 In both cases you need a place recognition technique

 We will address place recognition in a later lecture

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Visual Odometry

 Focus on incremental estimation/local
consistency

 Visual SLAM: Simultaneous Localization And
Mapping

 Focus on globally consistent estimation

 Visual SLAM = visual odometry + loop detection
+ graph optimization

 VO trades off consistency for real-time
performance, without the need to keep track of all
the previous history of the camera.

Visual odometry

Visual SLAM

Image courtesy from [Clemente et al., RSS’07]

Open Source Monocular VO and SLAM algorithms

 PTAM [Klein, 2007] -> Oxford, Murray’s lab

 ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab

 SVO [Forster, ICRA’14] -> Zurich, Scaramuzza’s lab

 LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab

 DSO [Engel’16] -> Munich, Cremers’ lab

PTAM: Parallel Tracking and Mapping for Small AR Workspaces

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Monocular Visual Odometry plus:

 Loop closing

 Relocalization (DBoW)

 Final optimization (BA)

 ORB: FAST corner + Oriented Rotated Brief descriptor

 Binary descriptor

 Very fast to compute and compare

 Real-time (30Hz)

28

Feature-based methods

1. Extract & match features (+RANSAC)

2. Minimize Reprojection error
 minimization

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖 Σ

2

𝑖

Direct methods

1. Minimize photometric error

𝑇𝑘,𝑘−1 = ?

𝒑𝑖

𝒖′𝑖 𝒖𝑖

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎

2

𝑖

where 𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑

𝑇𝑘,𝑘−1

𝐼𝑘
𝒖′𝑖

𝒑𝑖

𝒖𝑖
𝐼𝑘−1

𝑑𝑖

[Jin,Favaro,Soatto’03] [Silveira, Malis, Rives, TRO’08], [Newcombe et al., ICCV ‘11],
[Engel et al., ECCV’14], [Forster et al., ICRA’14]

29

[Jin,Favaro,Soatto’03] [Silveira, Malis, Rives, TRO’08], [Newcombe et al., ICCV ‘11],
[Engel et al., ECCV’14], [Forster et al., ICRA’14]

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖 Σ

2

𝑖

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎

2

𝑖

where 𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑

 Large frame-to-frame motions

 Accuracy: Efficient optimization of
structure and motion (Bundle Adjustment)

 Slow due to costly feature extraction
and matching

 Matching Outliers (RANSAC)

 All information in the image can be
exploited (precision, robustness)

 Increasing camera frame-rate
reduces computational cost per
frame

 Limited frame-to-frame motion

 Joint optimization of dense structure
and motion too expensive

Feature-based methods

1. Extract & match features (+RANSAC)

2. Minimize Reprojection error
 minimization

Direct methods

1. Minimize photometric error

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Monocular Visual Odometry plus:

 Loop closing

 Relocalization (DBoW)

 Final optimization (BA)

 Semi-dense: tracks all pixels on strong edges

 Direct: minimizes photometric error

 Real-time (30Hz)

Edgelet Corner

 Monocular Visual Odometry only:

 No loop closing

 Sparse: corners and edgelets

 Semi-Direct

 Direct: for Frame-to-Frame motion
estimation

 Features: for Frame-to-Keyframe
pose refinement

 Mapping

 Probabilistic depth estimation

- depth uncertainty and

- inlier probability)

 Super fast (Hz)

Euroc

RMS Error

Timing CPU @ 20 fps

SVO 0.07 m 5.25 ms 72 %

ORB SLAM 0.19 m 29.81 ms 187 %

LSD SLAM 0.43 m 23.23 ms 236 %

Intel i7, 2.80 GHz

Accuracy and Timing

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16]

Processing Times of SVO

Laptop (Intel i7, 2.8 GHz)

Embedded ARM Cortex-A9, 1.7 GHz

400 frames per second

Up to 70 frames per second

Why so fast?

SVO [Forster et al. 2014, TRO’16]
100-200 features x 4x4 patch
~ 2,000 pixels

Dense vs Semi-Dense vs Sparse

DTAM [Newcombe et al. ‘11]
300’000+ pixels

LSD [Engel et al. 2014]
~10’000 pixels

Dense Semi-Dense Sparse

We will see this in the next lecture

SVO [Forster et al. 2014]
100-200 features x 4x4 patch
~ 2,000 pixels

DTAM [Newcombe et al. ‘11]
300,000+ pixels

LSD-SLAM [Engel et al. 2014]
~10,000 pixels

Dense Semi-Dense Sparse

Dense vs Semi-Dense vs Sparse

We will see this in the next lecture

SVO for Autonomous Drone Navigation

RMS error: 5 mm, height: 1.5 m – Down-looking camera

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D

Mapping with a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015.

Speed: 4 m/s, height: 1.5 m – Down-looking camera

Tech Transfer activities

Application: Autonomous Inspection of Bridges and Power Masts

Project with Parrot: Autonomous vision-based navigation

Albris drone

Dacuda VR solutions

 Fully immersive virtual reality with 6-DoF for VR and AR content (running on

iPhone)

 Powered by SVO

Dacuda

Spinoff: Zurich-Eye – www.zurich-eye.com

Vision-based Localization and Mapping Solutions for Mobile Robots

Founded in Sep. 2015, became Facebook-Oculus R&D Zurich in Sep. 2016

