
Lecture 09 
Multiple View Geometry 3 

Davide Scaramuzza 



Lab Exercise 6 - Today 
 Room ETH HG E 33.1 from 14:15 to 16:00 

 Work description:  P3P algorithm and RANSAC 



Outline 

• Bundle Adjustment 

• SFM with 𝑛 views 



Bundle Adjustment (BA) 

• Non-linear, simultaneous refinement of structure and motion (i.e., 𝑅, 𝑇, 𝑃𝑖) 

• It is used after linear estimation of R and T (e.g., after 8-point algorithm) 

• Computes 𝑅, 𝑇, 𝑃𝑖 by minimizes the Sum of Squared Reprojection Errors: 
 
 
 
 
NB: here, by 𝐶1, 𝐶2 we denote the pose each camera in the world frame 

• Can be minimized using Levenberg–Marquardt (more robust than Gauss-Newton 
to local minima) 

• In order to not get stuck in local minima, the initialization should be close the 
minimum 
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Minimizes the Sum of Squared Reprojection Errors over each view 𝒌 

... 
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Bundle Adjustment (BA) for 𝑛 Views 



Outline 

• Bundle Adjustment 

• SFM with 𝑛 views 



Structure From Motion with 𝑛 Views 

• Compute initial structure and motion 
– Hierarchical SFM 

– Sequential SFM 

• Refine simultaneously structure and motion through BA 



Hierarchical SFM 

1. Extract and match feature between nearby frames 



Hierarchical SFM 

1. Extract and match feature between nearby frames 

2. Identify clusters consisting of 3 nearby frames: 

3. Compute SFM for 3 views 
1. Compute SFM for 2 views 

2. Add 3rd view: 
1. SFM between 1 and 2 

2. SFM between 2 and 3 

3. Then merge 1-2 with 2-3 

 



Hierarchical SFM 

1. Extract and match feature between nearby frames 

2. Identify clusters consisting of 3 nearby frames: 

3. Compute SFM for 3 views 
1. Compute SFM for 2 views 

2. Add 3rd view: 
1. SFM between 1 and 2 

2. SFM between 2 and 3 

3. Then merge 1-2 with 2-3 

4. Merge clusters pairwise and refine (BA) both structure and motion 

 



Hierarchical SFM 

1. Extract and match feature between nearby frames 

2. Identify clusters consisting of 3 nearby frames: 

3. Compute SFM for 3 views 
1. Compute SFM for 2 views 

2. Add 3rd view: 
1. SFM between 1 and 2 

2. SFM between 2 and 3 

3. Then merge 1-2 with 2-3 

4. Merge clusters pairwise and refine (BA) both structure and motion 
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 Reconstruction from 3 million images from Flickr.com 

 Cluster of 250 computers, 24 hours of computation! 

 Paper: “Building Rome in a Day”, ICCV’09 

 

 

Hierarchical SFM: Example 



Structure From Motion with 𝑛 Views 

• Compute initial structure and motion 
– Hierarchical SFM 

– Sequential SFM 

• Refine simultaneously structure and motion through BA 



Sequential SFM - also called Visual Odometry (VO) 

 Initialize structure and motion from 2 views (bootstrapping) 

 For each additional view 
 Determine pose (localization) 

 Extend structure (i.e., extract and triangulate new features) 

 Refine both pose and structure (BA) 

 

 



Monocular VO (i.e., with a single camera) 

 Bootstrapping 
 Initialize structure and motion from 2 views: e.g., 8-point algorithm + RANSAC 

 Refine structure and motion (BA) 

 How far should the two frames (i.e., keyframes) be? 

Keyframe 1 Keyframe 2 

Initial pointcloud 
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

 

Small baseline → large depth uncertainty Large baseline → small depth uncertainty 
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 When frames are taken at nearby positions compared to the scene distance, 3D 
points will exibit large uncertainty 

 One way to avoid this consists of skipping frames until the average uncertainty of 
the 3D points decreases below a certain threshold. The selected frames are 
called keyframes 

 Rule of the thumb: add a keyframe when  

. . .  

average-depth 

keyframe distance 
> threshold (~10-20 %) 



Monocular VO (i.e., with a single camera) 

 Localization 
 Determine the pose of each additional view 

 How? 

 How long can I do that? 

Keyframe 1 Keyframe 2 

Initial pointcloud 

Current frame 



Localization 

 Compute camera pose from known 3D-to-2D feature 
correspondences 
 Extract correspondences (how?) 

 Solve for 𝑅 and 𝑡 (𝐾 is known) 

 

 

 

 

 

 What’s the minimal number of required point correspondences? 
 Lecture 3: 

6 for linear solution (DLT algorithm) 

3 for a non linear solution (P3P algorithm) 
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Extend Structure 

 Extract and triangulate new features 
 Is it necessary to do this for every frame or can we just do it for keyframes? 

 What are the pros and cons? 

 

Keyframe 1 Keyframe 2 

Initial pointcloud New triangulated points 

New keyframe 



Monocular Visual Odometry: putting all pieces together 

time 

• After bootstrapping, determine the pose 𝑇𝑘 of each additional view 
(keyframe) by Localization (feature matching and P3P or DLT + RANSAC) 
 

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

 

 
• By concatenation of all these single movements, the full trajectory of 

the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1 
 

• A non-linear refinement (BA) over the last 𝑚 poses (+ visible structure) 
can be performed to get a more accurate  estimate of the local 
trajectory 
 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 

m-poses windowed bundle adjustment 
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  Relocalization problem:  

 During VO, tracking can be lost (due to occlusions, low 
texture, quick motion, illumination change) 

 

 Solution: Re-localize camera pose and continue 

 

 Loop closing problem 

 When you go back to a previously mapped area: 

 Loop detection: to avoid map duplication 

 Loop correction: to compensate the accumulated drift 

 In both cases you need a place recognition technique 

 

 We will address place recognition in a later lecture 
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 Visual Odometry 

 Focus on incremental estimation/local 
consistency 

 Visual SLAM: Simultaneous Localization And 
Mapping 

 Focus on globally consistent estimation 

 Visual SLAM = visual odometry + loop detection 
+ graph optimization 

 

 VO trades off consistency for real-time 
performance, without the need to keep track of all 
the previous history of the camera. 

Visual odometry 

Visual SLAM 

Image courtesy from [Clemente et al., RSS’07] 



Open Source Monocular VO and SLAM algorithms 

 PTAM [Klein, 2007] -> Oxford, Murray’s lab 

 ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab 

 SVO [Forster, ICRA’14]  -> Zurich, Scaramuzza’s lab 

 LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab 

 DSO [Engel’16] -> Munich, Cremers’ lab 

 



PTAM: Parallel Tracking and Mapping for Small AR Workspaces 
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 Monocular Visual Odometry plus:  

 Loop closing 

 Relocalization (DBoW) 

 Final optimization (BA) 

 

 ORB: FAST corner + Oriented Rotated Brief descriptor 

 Binary descriptor 

 Very fast to compute and compare 

 

 Real-time (30Hz) 
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Feature-based methods 

1. Extract & match features (+RANSAC) 

2. Minimize Reprojection error 
     minimization 

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖  Σ

2

𝑖

 

Direct methods 

1. Minimize photometric error 

𝑇𝑘,𝑘−1 = ? 

𝒑𝑖 

𝒖′𝑖 𝒖𝑖 

𝑇𝑘,𝑘−1 =  argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎

2

𝑖

 

 

where   𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑  

𝑇𝑘,𝑘−1 

𝐼𝑘 
𝒖′𝑖 

𝒑𝑖 

𝒖𝑖 
𝐼𝑘−1 

𝑑𝑖 

[Jin,Favaro,Soatto’03] [Silveira, Malis, Rives, TRO’08], [Newcombe et al., ICCV ‘11], 
[Engel et al., ECCV’14], [Forster et al., ICRA’14] 
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[Jin,Favaro,Soatto’03] [Silveira, Malis, Rives, TRO’08], [Newcombe et al., ICCV ‘11], 
[Engel et al., ECCV’14], [Forster et al., ICRA’14] 

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖  Σ

2

𝑖

 

𝑇𝑘,𝑘−1 =  argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖) 𝜎

2

𝑖

 

 

where   𝒖′𝑖 = 𝜋 𝑇 ∙ 𝜋−1 𝒖𝑖 ∙ 𝑑  

 Large frame-to-frame motions 

 Accuracy: Efficient optimization of 
structure and motion (Bundle Adjustment)  

 Slow due to costly feature extraction 
and matching 

 Matching Outliers (RANSAC) 

 All information in the image can be 
exploited (precision, robustness) 

 Increasing camera frame-rate 
reduces computational cost per 
frame 

 Limited frame-to-frame motion 

 Joint optimization of dense structure 
and motion too expensive 

Feature-based methods 

1. Extract & match features (+RANSAC) 

2. Minimize Reprojection error 
     minimization 

Direct methods 

1. Minimize photometric error 
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 Monocular Visual Odometry plus:  

 Loop closing 

 Relocalization (DBoW) 

 Final optimization (BA)  

 Semi-dense: tracks all pixels on strong edges 

 Direct: minimizes photometric error 

 Real-time (30Hz) 

 



Edgelet                          Corner      

 Monocular Visual Odometry only: 

 No loop closing 

 Sparse: corners and edgelets 

 Semi-Direct  

 Direct: for Frame-to-Frame motion 
estimation 

 Features: for Frame-to-Keyframe 
pose refinement 

 Mapping 

 Probabilistic depth estimation 

- depth uncertainty and  

- inlier probability) 

 Super fast (Hz) 



Euroc 

RMS Error 

Timing  CPU @ 20 fps 

SVO 0.07 m  5.25 ms 72 % 

ORB SLAM 0.19 m 29.81 ms 187 % 

LSD SLAM 0.43 m 23.23 ms 236 % 

Intel i7, 2.80 GHz 

Accuracy and Timing 

[Forster, et al., «SVO: Semi Direct Visual Odometry for Monocular and Multi-Camera Systems», TRO’16] 

 



Processing Times of SVO 

Laptop (Intel i7, 2.8 GHz)       

Embedded ARM Cortex-A9, 1.7 GHz 

400 frames per second 

Up to 70 frames per second 

Why so fast? 



SVO [Forster et al. 2014, TRO’16] 
100-200 features   x   4x4 patch  
~ 2,000 pixels 
 

Dense vs Semi-Dense vs Sparse 

DTAM [Newcombe et al. ‘11] 
300’000+ pixels 

LSD  [Engel et al. 2014] 
~10’000 pixels 

Dense  Semi-Dense  Sparse 

We will see this in the next lecture 



SVO [Forster et al. 2014] 
100-200 features   x   4x4 patch  
~ 2,000 pixels 

 

DTAM [Newcombe et al. ‘11] 
300,000+ pixels 

LSD-SLAM  [Engel et al. 2014] 
~10,000 pixels 

Dense  Semi-Dense  Sparse 

Dense vs Semi-Dense vs Sparse 

We will see this in the next lecture 



SVO for Autonomous Drone Navigation 

RMS error: 5 mm, height: 1.5 m – Down-looking camera 

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D 

Mapping with a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015. 

Speed: 4 m/s, height: 1.5 m – Down-looking camera 



Tech Transfer activities 



Application: Autonomous Inspection of Bridges and Power Masts 

Project with Parrot: Autonomous vision-based navigation 

Albris drone 



Dacuda VR solutions 

 Fully immersive virtual reality with 6-DoF for VR and AR content (running on 

iPhone) 

 Powered by SVO 

Dacuda 



Spinoff: Zurich-Eye – www.zurich-eye.com 

Vision-based Localization and Mapping Solutions for Mobile Robots  

Founded in Sep. 2015, became Facebook-Oculus R&D Zurich in Sep. 2016 


