
Lecture 08 
Multiple View Geometry 2 

Davide Scaramuzza 

 



Lab Exercise 5 - Today afternoon 
 Room ETH HG E 33.1 from 14:15 to 16:00 

 Work description:  8-point algorithm 

Estimated poses and 3D structure 



 

 Depth from stereo (i.e., stereo vision) 

• Assumptions: K, T and R are known.  

• Goal: Recover the 3D structure from images 

 

 2-view Structure From Motion:  

• Assumptions: none (K, T,  and R are unknown).  

• Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and 
intrinsic parameters from two different views of the scene 

2-View Geometry: Recap 

𝐾1, 𝑅1,𝑇1 
𝐾2, 𝑅2,𝑇2 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖  

𝑃𝑖 =? 

𝐾1, 𝑅1,𝑇1 =? 
𝐾2, 𝑅2,𝑇2 =? 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖=? 

𝑃𝑖 =? 



Outline 

• Two-View Structure from Motion 

• Robust Structure from Motion 



• Problem formulation: Given 𝑛 points correspondence between two images, 

{𝑝𝑖1 = (𝑢𝑖1, 𝑣
𝑖
1),  𝑝

𝑖
2 = (𝑢𝑖2, 𝑣

𝑖
2)}, simultaneously estimate the 3D points 𝑷𝑖 , 

the camera relative-motion parameters (𝑹, 𝑻), and the camera intrinsics 𝑲1, 𝑲2 
that satisfy:  

 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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• Two variants exist: 

– Calibrated camera(s)   𝑲𝟏, 𝑲𝟐 are known 

– Uncalibrated camera(s)   𝑲𝟏, 𝑲𝟐 are unknown 

 
 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



• Let’s study the case in which the camera(s) is «calibrated» 

• For convenience, let’s use normalized image coordinates 

• Thus, we want to find 𝑹,𝑻, 𝑷𝒊 that satisfy 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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Scale Ambiguity 

If we rescale the entire scene by a constant factor (i.e., similarity 
transformation), the projections (in pixels) of the scene points in both 
images remain exactly the same: 

 



Scale Ambiguity 

• In monocular vision, it is impossible to recover the absolute scale of the scene! 

• Stereo vision? 

• Thus, only 5 degrees of freedom are measurable: 

• 3 parameters to describe the rotation 

• 2 parameters for the translation up to a scale (we can only compute the direction of 
translation but not its length) 



Structure From Motion (SFM) 

• How many knowns and unknowns? 

– 𝟒𝒏 knowns: 

• 𝑛 correspondences; each one (𝑢𝑖
1
, 𝑣𝑖1) and (𝑢𝑖

2
, 𝑣𝑖2), 𝑖 = 1…𝑛 

– 𝟓 + 𝟑𝒏 unknowns 

• 5 for the motion up to a scale (rotation-> 3, translation->2) 

• 3𝑛 = number of coordinates of the 𝑛 3D points 

 

• Does a solution exist? 

– If and only if  

number of independent equations ≥ number of unknowns 

  4𝑛 ≥ 5 + 3𝑛   n ≥ 𝟓 



Cross Product (or Vector Product) 

 
 

• Vector cross product takes two vectors and returns a third vector  
that is perpendicular to both inputs 
 
 
 
 

• So 𝒄 is perpendicular to both 𝒂 and 𝒃 (which means that the dot product is 0) 
• Also, recall that the cross product of two parallel vectors is 0 

 
• The cross product between a and b can also be expressed in matrix form as the 

product between the skew-symmetric matrix of a and a vector b 
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Epipolar Geometry 
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   epipolar plane 

𝑃 

𝑝1 𝑝2 

T

𝑝1, 𝑝2, 𝑇 are coplanar:  

0)'( 12  pTpT

𝑝′1  =  𝑅𝑝1 

0))(( 12  RpTpT

0 ][ 1

T

2   pRTp 0  12  pEpT

T essential matrix 

𝑛 

   02 npT

epipolar constraint 



0  12 pEpT
Epipolar constraint or Longuet-Higgins equation 

RT  ][ E Essential matrix 

Normalized image coordinates 

Epipolar Geometry 
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• The Essential Matrix can be computed from 5 point correspondences [Kruppa, 
1913]. The more the points, the higher the accuracy in presence of noise 
 

• The Essential Matrix can be decomposed into 𝑅 and 𝑇 recalling that  
Four distinct solutions for R and T are possible. 

RT  ][ E

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a 

scene from two projections". Nature 293 (5828): 133–135. PDF. 

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


Exercise 

• Compute the Essential matrix for the case of two rectified stereo images 

Rectified case 

T =
𝑏
0
0

  T × =
0 0 0
0 0 −𝑏
0 𝑏 0

 

T 

 𝐸 =
0 0 0
0 0 −𝑏
0 𝑏 0

 



How to compute the Essential Matrix? 

 If we don’t know R and T, can we estimate E from two images? 

 Yes, given at least 5 correspondences 

Image 1 Image 2 



How to compute the Essential Matrix? 

• The Essential Matrix can be computed from 5 image correspondences [Kruppa, 
1913]. However, this solution is not simple. It took almost one century until an 
efficient solution was found! [Nister, CVPR’2004] 

 

• The first popular solution uses 8 points and is called 8-point algorithm  
Longuet Higgins. A computer algorithm for reconstructing a scene from two projections. Nature 
(1981) 

 



• The Essential matrix E is defined by 

 

     

for any pair of matches 𝑝 1 and 𝑝 2 in the two images. 

• Let 
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The 8-point algorithm 
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• For 𝑛 points, we can write  

 

     

The 8-point algorithm 
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Q (this matrix is known)                               

𝐸  (this matrix is unknown) 



Minimal solution 

• 𝑄(𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution𝐸  

• Each point correspondence provides 1 independent equation 

• Thus, 8  point correspondences are needed 

Over-determined solution 

• n > 8 points 

• A solution is to minimize | 𝑄𝐸 |2 subject to the constraint | 𝐸 |2 = 1.  
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix 
𝑄𝑇𝑄  (because it is the unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥).  

• It can be solved through Singular Value Decomposition (SVD).  Matlab instructions: 

• [U,S,V] = svd(Q); 

• Eh = V(:,9); 

• F = reshape(Eh,3,3)'; 

 

The 8-point algorithm 

0EQ 



8-point algorithm: Matlab code 

• A few lines of code. Go to the exercise this 
afternoon to learn to implement it  



Interpretation of the 8-point algorithm 

The 8-point algorithm seeks to minimize the following algebraic error 

 

 

 
Using the definition of dot product, it can be observed that  

 
𝒑𝑇

2 ∙ 𝑬𝒑1 = 𝒑𝑇
2 𝑬𝒑1 cos(𝜃) 

 

We can see that this product depends on the angle 𝜃 between 𝒑1 
 and the normal 

𝑬𝒑1 
to the epipolar plane. It is non zero when 𝒑1, 𝒑2, and 𝑻 are not coplanar. 
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Extract R and T from E  
(this slide will not be asked at the exam) 

• Singular Value Decomposition: 

• Enforcing rank-2 constraint: set smallest singular value of      to 0: 
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Only one solution where points are in front of both cameras 

4 possible solutions of R and T 

These two views are rotated of 180  ͦ 



• Two variants exist: 

– Calibrated camera(s)   𝑲𝟏, 𝑲𝟐 are known 

• Uses the Essential Matrix 

– Uncalibrated camera(s)   𝑲𝟏, 𝑲𝟐 are unknown 

• Uses the Fundamental Matrix 

 

 
 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



The Fundamental Matrix 

• Before, we assumed to know the camera intrinsic parameters and we used 
normalized image coordinates 
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The 8-point Algorithm for the Fundamental Matrix 

• The same 8-point algorithm to compute the essential matrix from a 
set of normalized image coordinates can also be used to determine 
the Fundamental matrix 
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Problem with 8-point algorithm 
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Problem with 8-point algorithm 

 

• Poor numerical conditioning, which makes results very sensitive to noise 

• Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, 1995] 
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Orders of magnitude difference 

between column of data matrix 

 least-squares yields poor results 



Normalized 8-point algorithm (1/3) 
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• This can be fixed using a normalized 8-point algorithm, which estimates the 
Fundamental matrix on a set of Normalized correspondences (with better 
numerical properties) and then unnormalizes the result to obtain the 
fundamental matrix for the given (unnormalized) correspondences 

 

• Idea: Transform image coordinates so that they are in the range ~[−1,1] × [−1,1] 

• One way is to apply the following rescaling and shift 

 

 

 

 

 

 

 

 

 



Normalized 8-point algorithm (2/3) 

• A more popular way is to rescale the two point sets such that the centroid of each 

set is 0 and the mean standard deviation 2. 

• This can be done for every point as follows: 

 

 

 

• Where   𝜇 =
1

𝑁
 𝑝𝑖𝑛
𝑖=1  is the centroid of the set and  𝜎 =

1

𝑁
 𝑝𝑖 − 𝜇

2𝑛
𝑖=1  is the 

mean standard deviation. 

• This transformation can be expressed in matrix form using homogeneous 
coordinates: 

𝑝𝑖 =
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𝜎
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0 0 1
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The Normalized 8-point algorithm can be summarized in three steps: 

1. Normalize point correspondences:  𝑝1 = 𝐵1𝑝1   ,    𝑝2 = 𝐵2𝑝2 

2. Estimate 𝐹  using normalized coordinates 𝑝1 , 𝑝2  

3. Compute F from 𝐹 : 

 

Normalized 8-point algorithm (3/3) 

𝑝2 
𝑇F   𝑝1 = 0 

F = B2
TF  B1 

𝑝2
𝑇 𝐵2

𝑇 𝐵1
𝑇 𝑝1

𝑇
 

F = B2
TF  B1 

F  



Comparison between Normalized and non-normalized  algorithm 

8-point Normalized 8-point Nonlinear least squares 

Av. Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel 

Av. Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel 



Error Measures 

 The quality of the estimated Fundamental matrix can be measured using different 
cost functions. 

 The first one is the algebraic error that is defined directly in the Epipolar 
Constraint: 

 

 

 

 This error will exactly be 0 if F is computed from just 8 points (because in this case 
a solution exists). For more than 8 points, it will not be 0 (due to image noise or 
outliers (overdetermined system)). 

 There are alternative error functions that can be used to measure the quality of 
the estimated Fundamental matrix: the Directional Error, the Epipolar Line 
Distance, or the Reprojection Error. 
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 What is the physical meaning of this error? 
What is the drawback with it? 



Directional Error 

 Sum of the Angular Distances to the Epipolar plane: 

 

 From the previous slide, we obtain: 

 

C1 
C2 

p1 

p2 
21 pEl T

cos (𝜃) =
𝒑𝑇

2 ∙ 𝑬𝒑1  

𝒑𝑇
2 𝑬𝒑1

2

 

𝑛 

P = ? 

 epipolar plane 

err =  (cos (𝜃𝑖))
2

𝑖

 



 epipolar plane 

Epipolar Line Distance 

 Sum of Squared Epipolar-Line-to-point Distances 

 

 

 Cheaper than reprojection error because does not require point triangulation 
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Reprojection Error 

 Sum of the Squared Reprojection Errors 

 

 

 Computation is expensive because requires point triangulation 

 However it is the most popular because more accurate 
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Outline 

• Two-View Structure from Motion 

• Robust Structure from Motion 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Matched points are usually contaminated by outliers (i.e., wrong image matches) 
 Causes of outliers are: 
 image noise 
 occlusions 
 blur 
 changes in view point (including scale) and illumination  

 For the camera motion to be estimated accurately, outliers must be removed  
 This is the task of Robust Estimation 

Image 1 Image 2 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Matched points are usually contaminated by outliers (i.e., wrong image matches) 
 Causes of outliers are: 
 image noise 
 occlusions 
 blur 
 changes in view point (including scale) and illumination  

 For the camera motion to be estimated accurately, outliers must be removed  
 This is the task of Robust Estimation 

Image 1 Image 2 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Error at the loop closure: 6.5 m 
 Error in orientation:         5 deg 
 Trajectory length:            400 m 

Before removing the outliers 

After removing the outliers 

Outliers can be removed using RANSAC [Fishler & Bolles, 1981] 



RANSAC (RAndom SAmple Consensus) 

• RANSAC is the standard method for model fitting in the presence of outliers 
(very noisy points or wrong data) 

• It can be applied to all sorts of problems where the goal is to estimate the 
parameters of a model from the data (e.g., camera calibration, Structure from 
Motion, DLT, PnP, P3P, Homography, etc.) 

• Let’s review RANSAC for line fitting and see how we can use it to do Structure 
from Motion 

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image 
analysis and automated cartography. Graphics and Image Processing, 24(6):381–395, 1981. 



RANSAC 
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RANSAC 
• Select sample of 2 points at 
random 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model 
parameters that fit the data 
in the sample 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 

 
• Repeat sampling 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 

 
• Repeat sampling 
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RANSAC 

Set with the maximum number of 
inliers obtained within 𝑘 iterations 
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How many iterations does RANSAC need?  

• Ideally: check all possible combinations of 2 points in a dataset of N points.  

• Number of all pairwise combinations: N(N-1)/2  

       computationally unfeasible if N is too large.  
      example: 1000 points  need to check all 1000*999/2 ≅ 500’000 possibilities! 

 

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?  
Checking a subset of combinations is enough if we have a rough estimate of the 
percentage of inliers in our dataset 

 

• This can be done in a probabilistic way 

RANSAC 
53 



How many iterations does RANSAC need? 

• w := number of inliers/N  
N := total number of data points  

 w : fraction of inliers in the dataset  w = P(selecting an inlier-point out of the dataset) 

• Assumption: the 2 points necessary to estimate a line are selected independently 

 w 2   = P(both selected points are inliers) 

1-w 2 = P(at least one of these two points is an outlier) 

• Let k := no. RANSAC iterations executed so far 

•  ( 1-w 2 ) k = P(RANSAC never selected two points that are both inliers)  

• Let  p := P(probability of success)  

•  1-p = ( 1-w 2 ) k and therefore : 

RANSAC 
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How many iterations does RANSAC need? 

 

• The number of iterations k is 

 

 

 

 

 

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability  p of 
finding a set of points free of outliers 

 

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations 
– these are dramatically fewer than the number of all possible combinations! As you can see, the 
number of points does not influence the estimated number of iterations, only w does! 
 

• In practice we only need a rough estimate of w.  
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at 
every iteration (how?) 

RANSAC 
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RANSAC applied to Line Fitting 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 2 points from A 

4.  Fit a line through the 2 points 

5.  Compute the distances of all other points to this line 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 



RANSAC applied to general model fitting 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 𝒔 points from A 

4.  Fit a model from the 𝒔 points 

5.  Compute the distances of all other points from this model 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 
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The Three Key Ingredients of RANSAC 

In order to implement RANSAC for Structure From Motion (SFM), we need three key 
ingredients: 

1. What’s the model in SFM? 

2. What’s the minimum number of points to estimate the model? 

3. How do we compute the distance of a point from the model? In other words, can 
we define a distance metrics that measures how well a point fits the model? 

 



Answers 

1. What’s the model in SFM? 

– The Essential Matrix (for calibrated cameras) or  the Fundamental Matrix (for 
uncalibrated cameras) 

 

2. What’s the minimum number of points to estimate the model? 
1. We know that 5 points is the theoretical minimum number of points 

2. However, if we use the 8-point algorithm, then 8 is the minimum 

 

3. How do we compute the distance of a point from the model? 

1. We can use the epipolar constraint  (𝑝 2
𝑇𝐸𝑝 1 = 0  or 𝑝2

𝑇𝐹𝑝1 = 0) to measure  
how well a point correspondence verifies the model E or F, respectively. However, the directional 
error, the epipolar line distance and the reprojection error are better (we already saw why) 



Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

Image 1 Image 2 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 

Image 1 

1. Randomly select 8 point 
correspondences 

2. Fit the model to all other points and 
count the inliers 

3. Repeat from 1 for 𝒌 times 
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RANSAC iterations 𝒌 vs. 𝒔 

• 8-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 8 points (8-point algorithm) 

 

• 5-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 5 points (5-point algorithm of David Nister (2004)) 

 

• 2-point RANSAC (e.g., line fitting) 
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 2 points 

 

 

iterations
p

k
s

  1177  
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𝒌 is exponential in the number of points 𝒔 necessary to estimate the model: 



RANSAC iterations 𝒌 vs. 𝜺 

• 𝒌 is increases exponentially with the fraction of outliers 𝜺 

 

 

 

 

 

 

 

 

 

 

 



RANSAC iterations 

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the 
model 

• The 8-point algorithm is extremely simple and was very successful; however, it 
requires more than 1177 iterations 

• Because of this, there has been a large interest by the research community in 
using smaller motion parameterizations 

• The first efficient solution to the minimal-case solution (5-point algorithm) took 
almost a century (Kruppa 1913 → Nister, 2004) 

• The 5-point RANSAC only requires 145 iterations; however: 
– The 5-point algorithm can return up to 10 solutions of E (worst case scenario) 

– The 8-point algorithm only returns a unique solution of E 

Can we use less than 5 points? 

Yes, if you use motion constraints! 



Planar Motion 
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[“2-Point RANSAC”, Ortin, 2001] 



Can we use less than 2 point correspondences? 

Yes, if we exploit ground, wheeled vehicles with non-holonomic 

constraints 



Planar & Circular Motion (e.g., cars) 
Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 

Example of Ackerman steering principle Locally-planar circular motion 



Planar & Circular Motion (e.g., cars) 

Example of Ackerman steering principle Locally-planar circular motion 

φ = θ/2 => only 1 DoF (θ);  

thus, only 1 point correspondence is needed 

This is the smallest parameterization possible and results in  

the most efficient algorithm for removing outliers 

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 

Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 
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1-Point RANSAC algorithm 

Only 1 iteration! 

The most efficient algorithm for  

removing outliers, up to 1000 Hz 

Compute θ for  

every point 

correspondence 

1-Point RANSAC is ONLY used to find the inliers. 

Motion is then estimated from them in 6DOF 
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Comparison of RANSAC algorithms 

8-Point RANSAC 5-Point RANSAC 
[Nister’03] 

2-Point RANSAC 
[Ortin’01] 

1-Point RANSAC 
[Scaramuzza, 

IJCV’10] 
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Visual Odometry with 1-Point RANSAC  

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 


