
Lecture 08 
Multiple View Geometry 2 

Davide Scaramuzza 

 



Lab Exercise 5 - Today afternoon 
 Room ETH HG E 33.1 from 14:15 to 16:00 

 Work description:  8-point algorithm 

Estimated poses and 3D structure 



 

 Depth from stereo (i.e., stereo vision) 

• Assumptions: K, T and R are known.  

• Goal: Recover the 3D structure from images 

 

 2-view Structure From Motion:  

• Assumptions: none (K, T,  and R are unknown).  

• Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and 
intrinsic parameters from two different views of the scene 

2-View Geometry: Recap 

𝐾1, 𝑅1,𝑇1 
𝐾2, 𝑅2,𝑇2 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖  

𝑃𝑖 =? 

𝐾1, 𝑅1,𝑇1 =? 
𝐾2, 𝑅2,𝑇2 =? 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖=? 

𝑃𝑖 =? 



Outline 

• Two-View Structure from Motion 

• Robust Structure from Motion 



• Problem formulation: Given 𝑛 points correspondence between two images, 

{𝑝𝑖1 = (𝑢𝑖1, 𝑣
𝑖
1),  𝑝

𝑖
2 = (𝑢𝑖2, 𝑣

𝑖
2)}, simultaneously estimate the 3D points 𝑷𝑖 , 

the camera relative-motion parameters (𝑹, 𝑻), and the camera intrinsics 𝑲1, 𝑲2 
that satisfy:  

 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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• Two variants exist: 

– Calibrated camera(s)   𝑲𝟏, 𝑲𝟐 are known 

– Uncalibrated camera(s)   𝑲𝟏, 𝑲𝟐 are unknown 

 
 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



• Let’s study the case in which the camera(s) is «calibrated» 

• For convenience, let’s use normalized image coordinates 

• Thus, we want to find 𝑹,𝑻, 𝑷𝒊 that satisfy 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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Scale Ambiguity 

If we rescale the entire scene by a constant factor (i.e., similarity 
transformation), the projections (in pixels) of the scene points in both 
images remain exactly the same: 

 



Scale Ambiguity 

• In monocular vision, it is impossible to recover the absolute scale of the scene! 

• Stereo vision? 

• Thus, only 5 degrees of freedom are measurable: 

• 3 parameters to describe the rotation 

• 2 parameters for the translation up to a scale (we can only compute the direction of 
translation but not its length) 



Structure From Motion (SFM) 

• How many knowns and unknowns? 

– 𝟒𝒏 knowns: 

• 𝑛 correspondences; each one (𝑢𝑖
1
, 𝑣𝑖1) and (𝑢𝑖

2
, 𝑣𝑖2), 𝑖 = 1…𝑛 

– 𝟓 + 𝟑𝒏 unknowns 

• 5 for the motion up to a scale (rotation-> 3, translation->2) 

• 3𝑛 = number of coordinates of the 𝑛 3D points 

 

• Does a solution exist? 

– If and only if  

number of independent equations ≥ number of unknowns 

  4𝑛 ≥ 5 + 3𝑛   n ≥ 𝟓 



Cross Product (or Vector Product) 

 
 

• Vector cross product takes two vectors and returns a third vector  
that is perpendicular to both inputs 
 
 
 
 

• So 𝒄 is perpendicular to both 𝒂 and 𝒃 (which means that the dot product is 0) 
• Also, recall that the cross product of two parallel vectors is 0 

 
• The cross product between a and b can also be expressed in matrix form as the 

product between the skew-symmetric matrix of a and a vector b 
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Epipolar Geometry 
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   epipolar plane 

𝑃 

𝑝1 𝑝2 

T

𝑝1, 𝑝2, 𝑇 are coplanar:  

0)'( 12  pTpT

𝑝′1  =  𝑅𝑝1 

0))(( 12  RpTpT

0 ][ 1

T

2   pRTp 0  12  pEpT

T essential matrix 

𝑛 

   02 npT

epipolar constraint 



0  12 pEpT
Epipolar constraint or Longuet-Higgins equation 

RT  ][ E Essential matrix 

Normalized image coordinates 

Epipolar Geometry 
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• The Essential Matrix can be computed from 5 point correspondences [Kruppa, 
1913]. The more the points, the higher the accuracy in presence of noise 
 

• The Essential Matrix can be decomposed into 𝑅 and 𝑇 recalling that  
Four distinct solutions for R and T are possible. 

RT  ][ E

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a 

scene from two projections". Nature 293 (5828): 133–135. PDF. 

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


Exercise 

• Compute the Essential matrix for the case of two rectified stereo images 

Rectified case 

T =
𝑏
0
0

  T × =
0 0 0
0 0 −𝑏
0 𝑏 0

 

T 

 𝐸 =
0 0 0
0 0 −𝑏
0 𝑏 0

 



How to compute the Essential Matrix? 

 If we don’t know R and T, can we estimate E from two images? 

 Yes, given at least 5 correspondences 

Image 1 Image 2 



How to compute the Essential Matrix? 

• The Essential Matrix can be computed from 5 image correspondences [Kruppa, 
1913]. However, this solution is not simple. It took almost one century until an 
efficient solution was found! [Nister, CVPR’2004] 

 

• The first popular solution uses 8 points and is called 8-point algorithm  
Longuet Higgins. A computer algorithm for reconstructing a scene from two projections. Nature 
(1981) 

 



• The Essential matrix E is defined by 

 

     

for any pair of matches 𝑝 1 and 𝑝 2 in the two images. 

• Let 
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each match gives a linear equation 
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The 8-point algorithm 
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• For 𝑛 points, we can write  

 

     

The 8-point algorithm 
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Q (this matrix is known)                               

𝐸  (this matrix is unknown) 



Minimal solution 

• 𝑄(𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution𝐸  

• Each point correspondence provides 1 independent equation 

• Thus, 8  point correspondences are needed 

Over-determined solution 

• n > 8 points 

• A solution is to minimize | 𝑄𝐸 |2 subject to the constraint | 𝐸 |2 = 1.  
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix 
𝑄𝑇𝑄  (because it is the unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥).  

• It can be solved through Singular Value Decomposition (SVD).  Matlab instructions: 

• [U,S,V] = svd(Q); 

• Eh = V(:,9); 

• F = reshape(Eh,3,3)'; 

 

The 8-point algorithm 

0EQ 



8-point algorithm: Matlab code 

• A few lines of code. Go to the exercise this 
afternoon to learn to implement it  



Interpretation of the 8-point algorithm 

The 8-point algorithm seeks to minimize the following algebraic error 

 

 

 
Using the definition of dot product, it can be observed that  

 
𝒑𝑇

2 ∙ 𝑬𝒑1 = 𝒑𝑇
2 𝑬𝒑1 cos(𝜃) 

 

We can see that this product depends on the angle 𝜃 between 𝒑1 
 and the normal 

𝑬𝒑1 
to the epipolar plane. It is non zero when 𝒑1, 𝒑2, and 𝑻 are not coplanar. 
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Extract R and T from E  
(this slide will not be asked at the exam) 

• Singular Value Decomposition: 

• Enforcing rank-2 constraint: set smallest singular value of      to 0: 

TVUE 
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Only one solution where points are in front of both cameras 

4 possible solutions of R and T 

These two views are rotated of 180  ͦ 



• Two variants exist: 

– Calibrated camera(s)   𝑲𝟏, 𝑲𝟐 are known 

• Uses the Essential Matrix 

– Uncalibrated camera(s)   𝑲𝟏, 𝑲𝟐 are unknown 

• Uses the Fundamental Matrix 

 

 
 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



The Fundamental Matrix 

• Before, we assumed to know the camera intrinsic parameters and we used 
normalized image coordinates 
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Fundamental Matrix 
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The 8-point Algorithm for the Fundamental Matrix 

• The same 8-point algorithm to compute the essential matrix from a 
set of normalized image coordinates can also be used to determine 
the Fundamental matrix 
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Problem with 8-point algorithm 
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Problem with 8-point algorithm 

 

• Poor numerical conditioning, which makes results very sensitive to noise 

• Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, 1995] 
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Orders of magnitude difference 

between column of data matrix 

 least-squares yields poor results 



Normalized 8-point algorithm (1/3) 

(0,500) 
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• This can be fixed using a normalized 8-point algorithm, which estimates the 
Fundamental matrix on a set of Normalized correspondences (with better 
numerical properties) and then unnormalizes the result to obtain the 
fundamental matrix for the given (unnormalized) correspondences 

 

• Idea: Transform image coordinates so that they are in the range ~[−1,1] × [−1,1] 

• One way is to apply the following rescaling and shift 

 

 

 

 

 

 

 

 

 



Normalized 8-point algorithm (2/3) 

• A more popular way is to rescale the two point sets such that the centroid of each 

set is 0 and the mean standard deviation 2. 

• This can be done for every point as follows: 

 

 

 

• Where   𝜇 =
1

𝑁
 𝑝𝑖𝑛
𝑖=1  is the centroid of the set and  𝜎 =

1

𝑁
 𝑝𝑖 − 𝜇

2𝑛
𝑖=1  is the 

mean standard deviation. 

• This transformation can be expressed in matrix form using homogeneous 
coordinates: 

𝑝𝑖 =
2

𝜎
(𝑝𝑖 − 𝜇) 

𝑝𝑖 =

2

𝜎
0 −

2

𝜎
𝜇𝑥

0
2

𝜎
−

2

𝜎
𝜇𝑦

0 0 1

𝑝𝑖 



The Normalized 8-point algorithm can be summarized in three steps: 

1. Normalize point correspondences:  𝑝1 = 𝐵1𝑝1   ,    𝑝2 = 𝐵2𝑝2 

2. Estimate 𝐹  using normalized coordinates 𝑝1 , 𝑝2  

3. Compute F from 𝐹 : 

 

Normalized 8-point algorithm (3/3) 

𝑝2 
𝑇F   𝑝1 = 0 

F = B2
TF  B1 

𝑝2
𝑇 𝐵2

𝑇 𝐵1
𝑇 𝑝1

𝑇
 

F = B2
TF  B1 

F  



Comparison between Normalized and non-normalized  algorithm 

8-point Normalized 8-point Nonlinear least squares 

Av. Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel 

Av. Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel 



Error Measures 

 The quality of the estimated Fundamental matrix can be measured using different 
cost functions. 

 The first one is the algebraic error that is defined directly in the Epipolar 
Constraint: 

 

 

 

 This error will exactly be 0 if F is computed from just 8 points (because in this case 
a solution exists). For more than 8 points, it will not be 0 (due to image noise or 
outliers (overdetermined system)). 

 There are alternative error functions that can be used to measure the quality of 
the estimated Fundamental matrix: the Directional Error, the Epipolar Line 
Distance, or the Reprojection Error. 

2
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 What is the physical meaning of this error? 
What is the drawback with it? 



Directional Error 

 Sum of the Angular Distances to the Epipolar plane: 

 

 From the previous slide, we obtain: 

 

C1 
C2 

p1 

p2 
21 pEl T

cos (𝜃) =
𝒑𝑇

2 ∙ 𝑬𝒑1  

𝒑𝑇
2 𝑬𝒑1

2

 

𝑛 

P = ? 

 epipolar plane 

err =  (cos (𝜃𝑖))
2

𝑖

 



 epipolar plane 

Epipolar Line Distance 

 Sum of Squared Epipolar-Line-to-point Distances 

 

 

 Cheaper than reprojection error because does not require point triangulation 

 

C1 
C2 

p1 

p2 

P = ? 
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Reprojection Error 

 Sum of the Squared Reprojection Errors 

 

 

 Computation is expensive because requires point triangulation 

 However it is the most popular because more accurate 

 

C1 
C2 

p1 

p2 

P = ? 

Observed point 

Reprojected point 
Observed point 

Reprojected point 
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Outline 

• Two-View Structure from Motion 

• Robust Structure from Motion 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Matched points are usually contaminated by outliers (i.e., wrong image matches) 
 Causes of outliers are: 
 image noise 
 occlusions 
 blur 
 changes in view point (including scale) and illumination  

 For the camera motion to be estimated accurately, outliers must be removed  
 This is the task of Robust Estimation 

Image 1 Image 2 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Matched points are usually contaminated by outliers (i.e., wrong image matches) 
 Causes of outliers are: 
 image noise 
 occlusions 
 blur 
 changes in view point (including scale) and illumination  

 For the camera motion to be estimated accurately, outliers must be removed  
 This is the task of Robust Estimation 

Image 1 Image 2 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 Error at the loop closure: 6.5 m 
 Error in orientation:         5 deg 
 Trajectory length:            400 m 

Before removing the outliers 

After removing the outliers 

Outliers can be removed using RANSAC [Fishler & Bolles, 1981] 



RANSAC (RAndom SAmple Consensus) 

• RANSAC is the standard method for model fitting in the presence of outliers 
(very noisy points or wrong data) 

• It can be applied to all sorts of problems where the goal is to estimate the 
parameters of a model from the data (e.g., camera calibration, Structure from 
Motion, DLT, PnP, P3P, Homography, etc.) 

• Let’s review RANSAC for line fitting and see how we can use it to do Structure 
from Motion 

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image 
analysis and automated cartography. Graphics and Image Processing, 24(6):381–395, 1981. 



RANSAC 
45 



RANSAC 
• Select sample of 2 points at 
random 

46 



RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model 
parameters that fit the data 
in the sample 

47 



RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

48 



RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 

49 



RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 

 
• Repeat sampling 

50 



RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 

 
• Repeat sampling 

51 



RANSAC 

Set with the maximum number of 
inliers obtained within 𝑘 iterations 

52 



How many iterations does RANSAC need?  

• Ideally: check all possible combinations of 2 points in a dataset of N points.  

• Number of all pairwise combinations: N(N-1)/2  

       computationally unfeasible if N is too large.  
      example: 1000 points  need to check all 1000*999/2 ≅ 500’000 possibilities! 

 

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?  
Checking a subset of combinations is enough if we have a rough estimate of the 
percentage of inliers in our dataset 

 

• This can be done in a probabilistic way 

RANSAC 
53 



How many iterations does RANSAC need? 

• w := number of inliers/N  
N := total number of data points  

 w : fraction of inliers in the dataset  w = P(selecting an inlier-point out of the dataset) 

• Assumption: the 2 points necessary to estimate a line are selected independently 

 w 2   = P(both selected points are inliers) 

1-w 2 = P(at least one of these two points is an outlier) 

• Let k := no. RANSAC iterations executed so far 

•  ( 1-w 2 ) k = P(RANSAC never selected two points that are both inliers)  

• Let  p := P(probability of success)  

•  1-p = ( 1-w 2 ) k and therefore : 

RANSAC 

)1log(

)1log(
2w

p
k
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How many iterations does RANSAC need? 

 

• The number of iterations k is 

 

 

 

 

 

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability  p of 
finding a set of points free of outliers 

 

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations 
– these are dramatically fewer than the number of all possible combinations! As you can see, the 
number of points does not influence the estimated number of iterations, only w does! 
 

• In practice we only need a rough estimate of w.  
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at 
every iteration (how?) 

RANSAC 

)1log(

)1log(
2w

p
k
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RANSAC applied to Line Fitting 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 2 points from A 

4.  Fit a line through the 2 points 

5.  Compute the distances of all other points to this line 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 



RANSAC applied to general model fitting 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 𝒔 points from A 

4.  Fit a model from the 𝒔 points 

5.  Compute the distances of all other points from this model 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 

)1log(

)1log(
sw

p
k








The Three Key Ingredients of RANSAC 

In order to implement RANSAC for Structure From Motion (SFM), we need three key 
ingredients: 

1. What’s the model in SFM? 

2. What’s the minimum number of points to estimate the model? 

3. How do we compute the distance of a point from the model? In other words, can 
we define a distance metrics that measures how well a point fits the model? 

 



Answers 

1. What’s the model in SFM? 

– The Essential Matrix (for calibrated cameras) or  the Fundamental Matrix (for 
uncalibrated cameras) 

 

2. What’s the minimum number of points to estimate the model? 
1. We know that 5 points is the theoretical minimum number of points 

2. However, if we use the 8-point algorithm, then 8 is the minimum 

 

3. How do we compute the distance of a point from the model? 

1. We can use the epipolar constraint  (𝑝 2
𝑇𝐸𝑝 1 = 0  or 𝑝2

𝑇𝐹𝑝1 = 0) to measure  
how well a point correspondence verifies the model E or F, respectively. However, the directional 
error, the epipolar line distance and the reprojection error are better (we already saw why) 



Example: 8-point RANSAC applied to SfM 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 

Image 1 

1. Randomly select 8 point 
correspondences 

2. Fit the model to all other points and 
count the inliers 

3. Repeat from 1 for 𝒌 times 
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RANSAC iterations 𝒌 vs. 𝒔 

• 8-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 8 points (8-point algorithm) 

 

• 5-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 5 points (5-point algorithm of David Nister (2004)) 

 

• 2-point RANSAC (e.g., line fitting) 
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 2 points 
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𝒌 is exponential in the number of points 𝒔 necessary to estimate the model: 



RANSAC iterations 𝒌 vs. 𝜺 

• 𝒌 is increases exponentially with the fraction of outliers 𝜺 

 

 

 

 

 

 

 

 

 

 

 



RANSAC iterations 

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the 
model 

• The 8-point algorithm is extremely simple and was very successful; however, it 
requires more than 1177 iterations 

• Because of this, there has been a large interest by the research community in 
using smaller motion parameterizations 

• The first efficient solution to the minimal-case solution (5-point algorithm) took 
almost a century (Kruppa 1913 → Nister, 2004) 

• The 5-point RANSAC only requires 145 iterations; however: 
– The 5-point algorithm can return up to 10 solutions of E (worst case scenario) 

– The 8-point algorithm only returns a unique solution of E 

Can we use less than 5 points? 

Yes, if you use motion constraints! 



Planar Motion 
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Observe that 𝐸 has 2DoF; thus, 2 correspondences are sufficient to estimate  and φ 

[“2-Point RANSAC”, Ortin, 2001] 



Can we use less than 2 point correspondences? 

Yes, if we exploit ground, wheeled vehicles with non-holonomic 

constraints 



Planar & Circular Motion (e.g., cars) 
Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 

Example of Ackerman steering principle Locally-planar circular motion 



Planar & Circular Motion (e.g., cars) 

Example of Ackerman steering principle Locally-planar circular motion 

φ = θ/2 => only 1 DoF (θ);  

thus, only 1 point correspondence is needed 

This is the smallest parameterization possible and results in  

the most efficient algorithm for removing outliers 

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 

Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 

















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry 

0  12 pEpT
Epipolar constraint 

RT ][ E  Essential matrix 

Planar & Circular Motion (e.g., cars) 

















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry 

  RTE ][









































 





























0
2

cos
2

sin

2
cos00

2
sin00

100

0cossin

0sincos

0
2

cos
2

sin

2
cos00

2
sin00
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1-Point RANSAC algorithm 

Only 1 iteration! 

The most efficient algorithm for  

removing outliers, up to 1000 Hz 

Compute θ for  

every point 

correspondence 

1-Point RANSAC is ONLY used to find the inliers. 

Motion is then estimated from them in 6DOF 
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Comparison of RANSAC algorithms 

8-Point RANSAC 5-Point RANSAC 
[Nister’03] 

2-Point RANSAC 
[Ortin’01] 

1-Point RANSAC 
[Scaramuzza, 

IJCV’10] 

Numb. of 
iterations 

> 1177 >145 >16 =1 
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Visual Odometry with 1-Point RANSAC  

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 


