__—7 ROBOTICS &
=7 PERCEPTION
= GROUP

FHA™) Universitit
5 ziirich™

Lecture 08
Multiple View Geometry 2

Davide Scaramuzza



Lab Exercise 5 - Today afternoon

» Room ETH HG E 33.1 from 14:15 to 16:00
» Work description: 8-point algorithm
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Estimated poses and 3D structure



2-View Geometry: Recap

= Depth from stereo (i.e., stereo vision)

* Assumptions: K, T and R are known.

* Goal: Recover the 3D structure from images =

d

. . Ki,R,{,T
= 2-view Structure From Motion: VY K R,LT,

e Assumptions: none (K, T, and R are unknown).

* Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and
intrinsic parameters from two different views of the scene




Outline

[- Two-View Structure from Motion ]

e Robust Structure from Motion



Structure from Motion (SFM)

Problem formulation: Given n points correspondence between two images,
{r', = (W', v"), p*, = (u'y, v',)}, simultaneously estimate the 3D points P,
the camera relative-motion parameters (R, T), and the camera intrinsics K, K,
that satisfy:
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Structure from Motion (SFM)

e Two variants exist:

[ — Calibrated camera(s) = K4, K, are known ]

— Uncalibrated camera(s) = K4, K, are unknown




Structure from Motion (SFM)

* Let’s study the case in which the camera(s) is «calibrated»
* For convenience, let’s use normalized image coordinates
* Thus, we want to find R, T, Pi that satisfy
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Scale Ambiguity

If we rescale the entire scene by a constant factor (i.e., similarity
transformation), the projections (in pixels) of the scene points in both
images remain exactly the same:

Similarity




Scale Ambiguity

* In monocular vision, it is impossible to recover the absolute scale of the scene!
e Stereo vision?

e Thus, only 5 degrees of freedom are measurable:
* 3 parameters to describe the rotation

* 2 parameters for the translation up to a scale (we can only compute the direction of
translation but not its length)



Structure From Motion (SFM)

* How many knowns and unknowns?

— 4n knowns:
* n correspondences; each one (u',,v'y) and (u’,,v';), i=1..n
— 5 + 3n unknowns

e 5 for the motion up to a scale (rotation-> 3, translation->2)

 3n = number of coordinates of the n 3D points

e Does a solution exist?
— If and only if

number of independent equations = number of unknowns

=>4n25+3n



Cross Product (or Vector Product)

dxb=cC
axb
* \Vector cross product takes two vectors and returns a third vector

that is perpendicular to both inputs

* So cis perpendicular to both a and b (which means that the dot product is 0)
* Also, recall that the cross product of two parallel vectors is O

* The cross product between a and b can also be expressed in matrix form as the
product between the skew-symmetric matrix of a and a vector b

0 -a, a, [b]
axb=| a, 0 -a |b,|=[alb
-a, a0 |b,]




Epipolar Geometry

p1, P, T are coplanar:

ol n=0= p}-(Txp)=0 = p;-(Tx(Rp))=0

= p) [T1,Rp, =0 :>| p, E p, =0 epipolar constmint‘
‘ | essential matrix ‘




Epipolar Geometry

T, | T, |
Po=|Vi| P =|V2 | Normalized image coordinates
p; Ep,=0

Epipolar constraint or Longuet-Higgins equation

E=[T].R Essential matrix

The Essential Matrix can be computed from 5 point correspondences [Kruppa,
1913]. The more the points, the higher the accuracy in presence of noise

The Essential Matrix can be decomposed into R and T recalling that E=[T] R
Four distinct solutions for R and T are possible.

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a
scene from two projections"”. Nature 293 (5828): 133-135. PDF.


https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

Exercise

 Compute the Essential matrix for the case of two rectified stereo images

Rectified case

=7

T
R:ISXS
b 0O 0 O 0O 0 O
T=|o| -[Tlx=|0 0 —b SE=(0 0 —b
0 0O b O O b O




How to compute the Essential Matrix?

Image 1

» |f we don’t know R and T, can we estimate E from two images?
» Yes, given at least 5 correspondences



How to compute the Essential Matrix?

* The Essential Matrix can be computed from 5 image correspondences [Kruppa,
1913]. However, this solution is not simple. It took almost one century until an
efficient solution was found! [Nister, CVPR’2004]

* The first popular solution uses 8 points and is called 8-point algorithm

Longuet Higgins. A computer algorithm for reconstructing a scene from two projections. Nature
(1981)



The 8-point algorithm

* The Essential matrix E is defined by
p; Ep =0

for any pair of matches p; and p, in the two images.

e11 elZ e13

® Let ﬁl — (U:U \7]_ !l)T J EZ — (UZ J \72 ’1) E — e21 e22 623

each match gives a linear equation

p; E p1=O

WUe, + UVie, + U+ VU, + VVig, + Ve + Uy + Vg, + €;3=0



The 8-point algorithm

* For n points, we can write

€11
€
11 __ 11 __ 1 11 _1_1 _1 __1 _1 ] elB
u,u uv, o, v,uog Vv,v,7 v, o v 1 o
__2_2 _2_2 _2 _2_2 _2_2 _2 _—_2 _2 21
2 Y1 2 V1 u, vV, U Vo, Vp Vv, U, \Z e -0
: . : . . 22 | —
— n—n — n—n n — N—n — N—n —n n —n e23
u, U U, Vv, U, vV, U vV, V; Vv, U, 1 1
] e
\( €32
Q (this matrix is known) | €33
—~—

E (this matrix is unknown)



The 8-point algorithm

Q-E=0

Minimal solution

Q(nx9) should have rank 8 to have a unique (up to a scale) non-trivial solutionE
Each point correspondence provides 1 independent equation

Thus, 8 point correspondences are needed

Over-determined solution

n > 8 points

A solution is to minimize ||QE||? subject to the constraint ||E||? = 1.
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix
QTQ (because it is the unit vector x that minimizes ||Qx||? = xTQT Qx).

It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

* [U,S,V] = svd(Q);
e Eh = V(:,9);
* F = reshape(Eh,3,3)"';



8-point algorithm: Matlab code

* Afew lines of code. Go to the exercise this
afternoon to learn to implement it ©



Interpretation of the 8-point algorithm

The 8-point algorithm seeks to minimize the following algebraic error
N
> (p2Eph)’
i=1
Using the definition of dot product, it can be observed that
p',-Ep,=p",|lI[Ep,llcos(6)

We can see that this product depends on the angle 8 between p, and the normal
Ep,to the epipolar plane. It is non zero when p,, p,, and T are not coplanar.




Extract Rand T from E

(this slide will not be asked at the exam)

* Singular Value Decomposition: £ =U ZVT

* Enforcing rank-2 constraint: set smallest singular value of 2. to 0:
6, 0 0] [0, O O
>=|0 o, 0|=|0 o, O
0 0 Y| [0 0 O]

O 11 O O _tz ty tx
T=U[+1 0 0V’ T=t 0 t|=f=|t
0 0 0 -t, t O t
(0 F1 0] t=K,t
R=Ult1 0 ONT A, 4
0 o0 1 R =K,RK]




4 possible solutionsof Rand T
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Only one solution where points are in front of both cameras

N/

These two views are rotated of 180°
(c) (d)



Structure from Motion (SFM)

e Two variants exist:

— Calibrated camera(s) = K4, K, are known

e Uses the Essential Matrix

[

— Uncalibrated camera(s) = K4, K, are unknown ]

e Uses the Fundamental Matrix

Pi:?

N




The Fundamental Matrix

* Before, we assumed to know the camera intrinsic parameters and we used
normalized image coordinates

: ¥ o
p, E p, =0 Vi | KJTE KV | =0
- .7 I
u, U, 1 1]
V,| E|V|=0 T o
1
1 1 : i
E. E. V, | |[F|lv; | =0
W [u] 1 1
0| =KV S
(1] 1 Fundamental Matrix
|l fu F=K; E K}
o =K, v ; ' }3 F=K;[TLR K}
_1_ 1] E — [T]XR




The 8-point Algorithm for the Fundamental Matrix

 The same 8-point algorithm to compute the essential matrix from a

set of normalized image coordinates can also be used to determine
the Fundamental matrix




Problem with 8-point algorithm
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Problem with 8-point algorithm

~10000 ~10000 ~100  ~10000  ~10000 ~100 ~100 ~100 1

w
N

fll
f12
f13
250906, 36) 1833269.57 921.81) 200%931.10 146766.13 738,21 272,19 193.81 1.00
2692, 28| 131633.03 178,27 B196.73| 302975, 59 405.71 15,27 46,78 1.00 f21
416374, 23| 371634, 30 935.47) 4058110.39| 554354, 92 9le.20 445, 10 931.81 l1.00
1 191183.60) 171759.40 410,27 416435.62| 374125, 90 g93.65 465,93 413.65 1.00 f22 — O
45335, 86| 30401.76 57.89 295604.57) 155309, 58 35Z.87 Gda6. 22 S525.15 1.00 f
164786, 04 5456559.487 §13.17 1233, 37 BaZE.15 9.6 20Z.65 67Z.14 1.00 23
116407, 01 272775 135.89) 169941,27 3952, 21 20z, B34, 12 13,64 1.00 f31
135384, 58] 75411.13 125,72 411350.03] 229127.75 603.79 BEl. 25 379.48 1.00
f
f

Orders of magnitude difference
between column of data matrix
— least-squares yields poor results

w
w

* Poor numerical conditioning, which makes results very sensitive to noise
* Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, 1995]



Normalized 8-point algorithm (1/3)

This can be fixed using a normalized 8-point algorithm, which estimates the
Fundamental matrix on a set of Normalized correspondences (with better
numerical properties) and then unnormalizes the result to obtain the
fundamental matrix for the given (unnormalized) correspondences

* Idea: Transform image coordinates so that they are in the range ~[-1,1] x [-1,1]
* One way is to apply the following rescaling and shift

(0,0) > (700,0) 2 ; _1_ (-1,-1) (1,-1)
700
2
\ 4 500
. (1_’0)
] —»

(0,500) (700,500) (-1,1) (1,1)



Normalized 8-point algorithm (2/3)

A more popular way is to rescale the two point sets such that the centroid of each
set is 0 and the mean standard deviation /2.

* This can be done for every point as follows:

~ 2 .
I — l
pt=—0—n
« Where u= % n . pisthe centroid of the set and ¢ = % ™ lpt - u||2 is the
mean standard deviation.

* This transformation can be expressed in matrix form using homogeneous
coordinates:

V2 V2 ]
=0 — =X
~ o o ;
=l 3 vz
0 — ——u
o o
.0 0 1



Normalized 8-point algorithm (3/3)

The Normalized 8-point algorithm can be summarized in three steps:
1. Normalize point correspondences: p; = B1p; , 1, = Bop,
2. Estimate F using normalized coordinates D1, D2

. L Ta
3. Compute F from F: F=B, FB,

~TOo — __
b, Fpr=20

[\

pZT BZT F BlT D1

| & »
v

F=B,'FB,

T




Comparison between Normalized and non-normalized algorithm

8-point Normalized 8-point Nonlinear least squares

Av. Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel




Error Measures

» The quality of the estimated Fundamental matrix can be measured using different
cost functions.

» The first one is the algebraic error that is defined directly in the Epipolar
Constraint:

What is the drawback with it?

N
iT i )2 | . . .
err = Z ( p ) F p 1) What is the physical meaning of this error?
1

» This error will exactly be 0 if F is computed from just 8 points (because in this case
a solution exists). For more than 8 points, it will not be 0 (due to image noise or
outliers (overdetermined system)).

» There are alternative error functions that can be used to measure the quality of
the estimated Fundamental matrix: the Directional Error, the Epipolar Line
Distance, or the Reprojection Error.



Directional Error

» Sum of the Angular Distances to the Epipolar plane: err = Z:(cos(el-))2
i

» From the previous slide, we obtain: cos(8) =<

", || Ep4 I

o

—

Py

epipolar plane

2
p', Ep, )

-

P2




Epipolar Line Distance

» Sum of Squared Epipolar-Line-to-point Distances

N o ) .
err =Y d*(py, Iy) +d*(p3. 13)
i=1

» Cheaper than reprojection error because does not require point triangulation

| L= F' P, epipolar plane




Reprojection Error

» Sum of the Squared Reprojection Errors
N _ . 2 . : 2
err =" [py - m, ()| + ||} - m, (P, R, T)|
i=1

» Computation is expensive because requires point triangulation
» However it is the most popular because more accurate

Reprojected point
Reprojected po proj poi

l Observed point
®e P,

rved point

R, T



Outline

e Two-View Structure from Motion

[- Robust Structure from Motion




Robust Estimation

» Matched points are usually contaminated by outliers (i.e., wrong image matches)

> Causes of outliers are:
" image noise
occlusions

= blur
= changes in view point (including scale) and illumination

» For the camera motion to be estimated accurately, outliers must be removed
» This is the task of Robust Estimation

Qh :‘
‘l

Image 1 Image 2



Robust Estimation

» Matched points are usually contaminated by outliers (i.e., wrong image matches)

> Causes of outliers are:
" image noise
= occlusions

= blur
= changes in view point (including scale) and illumination

» For the camera motion to be estimated accurately, outliers must be removed
» This is the task of Robust Estimation

Image 2

Image 1



y (meters)

60 i

nfluence of Outliers on Motion Estimation

> Error at the loop closure: 6.5 m
> Error in orientation: 5 deg
> Trajectory length: 400 m

— Before removmg the outliers
oL\ == After removing the outliers
0 20 40 60 80 100 120 140

x (meters)

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

Davide Scaramuzza — University of Zurich — Robotics and Perception Group - rpg.ifi.uzh.ch



RANSAC (RAndom SAmple Consensus)

* RANSAC s the standard method for model fitting in the presence of outliers
(very noisy points or wrong data)

* |t can be applied to all sorts of problems where the goal is to estimate the
parameters of a model from the data (e.g., camera calibration, Structure from
Motion, DLT, PnP, P3P, Homography, etc.)

* Let’s review RANSAC for line fitting and see how we can use it to do Structure
from Motion

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image
analysis and automated cartography. Graphics and Image Processing, 24(6):381-395, 1981.



RANSAC



RANSAC

e Select sample of 2 points at

Y . . o, random
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RANSAC

e Select sample of 2 points at
random

e Calculate model
parameters that fit the data
in the sample




RANSAC
' e Select sample of 2 points at
\ s Ao 4 random

\ e ] o°
5% "a0 e Calculate model parameters
¢ \ a 7 that fit the data in the sample
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RANSAC

e Select sample of 2 points at
. e random

o e Calculate model parameters
that fit the data in the sample

¢ Calculate error function for
each data point

e Select data that supports
current hypothesis




RANSAC

e Select sample of 2 points at

“ . . oo random
“es e Calculate model parameters
‘ . @ o * that fit the data in the sample
@ o’ ..
s . e Calculate error function for
® ® Y 3
s N * . each data point
) -y
" ) . e Select data that supports
. . . current hypothesis
®
° b ]
@ . e Repeat sampling
® ¢ -
¢ . .
* .



RANSAC

e Select sample of 2 points at

S . oo random
L] ® ..
Soe e Calculate model parameters
‘ . . ’ that fit the data in the sample
@
e ®
® 4 ®
’ .
— e o . . e Calculate error function for

\ * - . each data point
: ** \ * Select data that supports

. ¢ ° current hypothesis

o . o e Repeat sampling



RANSAC

Set with the maximum number of
inliers obtained within k iterations




RANSAC

How many iterations does RANSAC need?

* I|deally: check all possible combinations of 2 points in a dataset of N points.

* Number of all pairwise combinations: N(N-1)/2

= computationally unfeasible if N is too large.
example: 1000 points = need to check all 1000*999/2 = 500’000 possibilities!

* Do we really need to check all possibilities or can we stop RANSAC after some iterations?
Checking a subset of combinations is enough if we have a rough estimate of the
percentage of inliers in our dataset

* This can be done in a probabilistic way



RANSAC

How many iterations does RANSAC need?

* W :=number of inliers/N
N := total number of data points
= W : fraction of inliers in the dataset = W = P(selecting an inlier-point out of the dataset)

* Assumption: the 2 points necessary to estimate a line are selected independently
> w? = P(both selected points are inliers)
= 1-w 2= P(at least one of these two points is an outlier)

* Let K := no. RANSAC iterations executed so far

. o (1-w?) k = P(RANSAC never selected two points that are both inliers)

e Let P :=P(probability of success)

« ©1-p=(1-w?)kand therefore :

 — log(1- p)
log(1—w?)



RANSAC

How many iterations does RANSAC need?

The number of iterations K is

 — log(1- p)
log(1—w?)

= knowing the fraction of inliers W, after K RANSAC iterations we will have a probability P of
finding a set of points free of outliers

Example: if we want a probability of success P=99% and we know that W=50% = k=16 iterations
— these are dramatically fewer than the number of all possible combinations! As you can see, the
number of points does not influence the estimated number of iterations, only w does!

In practice we only need a rough estimate of W.
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at
every iteration (how?)



RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers
8. until maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem



RANSAC applied to general model fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of s points from A

4. Fit a model from the s points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers
8. until maximum number of iterations k reached
9. The set with the maximum number of inliers is chosen as a solution to the problem

- _ logl-p)
log(1—w*)

\_




The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients:

1. What’s the model in SFM?
2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can
we define a distance metrics that measures how well a point fits the model?



Answers

1. What’s the model in SFM?

— The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for
uncalibrated cameras)

2. What’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points
2. However, if we use the 8-point algorithm, then 8 is the minimum

3. How do we compute the distance of a point from the model?

1. We can use the epipolar constraint (p,” Ep; = 0 or p,” Fp; = 0) to measure
how well a point correspondence verifies the model E or F, respectively. However, the directional
error, the epipolar line distance and the reprojection error are better (we already saw why)



Example: 8-point RANSAC applied to STM

Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

iﬂlm

|

1
|
I

Wi

s biGed

Y

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Image 1



Example: 8-point RANSAC applied to STM

* Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

* For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1 for k times

_log(L- p)
|Og(1—(1—8)8) Image 1




RANSAC iterations k vs. s

k is exponential in the number of points s necessary to estimate the model:

* 8-point RANSAC _
—  Assuming - k= |0g(1 p) peali 1177 iterations
p - 50%, log(l-(1-¢)°)

& = 50% (fraction of outliers)
s = 8 points (8-point algorithm)

= 145 iterations

*  5-point RANSAC - «—_ 109@-p)
—  Assuming Iog(l—(l—g)s)

P =99%,

&€ =50% (fraction of outliers)

s = 5 points (5-point algorithm of David Nister (2004))

e 2-point RANSAC (e.g., line fitting) o
. ’ _log@-p) _ n o

p =99%,
&€ =50% (fraction of outliers)

S =2 points



RANSAC iterations k vs. &

k is increases exponentially with the fraction of outliers &

Number of RANSAC iterations

1200

1000 -+

800

600

400

200

Mumber of RANSAC iterations vs fraction of outliers

gises 22 e

10 20 30 40 50 B0 70 80 S0 100
Fraction of outliers



RANSAC iterations

* Asobserved, k is exponential in the number of points s necessary to estimate the
model

* The 8-point algorithm is extremely simple and was very successful;, however, it
requires more than 1177 iterations

* Because of this, there has been a large interest by the research community in
using smaller motion parameterizations

* The first efficient solution to the minimal-case solution (5-point algorithm) took
almost a century (Kruppa 1913 - Nister, 2004)

* The 5-point RANSAC only requires 145 iterations; however:
— The 5-point algorithm can return up to 10 solutions of E (worst case scenario)
— The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!



Planar Motion

Planar motion is described by three parameters: U, ¢, p

(cos@d —sind O [ pCOSQ
R=|sind cos@ O| T=|psing
0o o0 1] | o |

Let’s compute the Epipolar Geometry

E = ['|'>< ] R  Essential matrix

p; E p, =0 Epipolar constraint



Planar Motion

Planar motion is described by three parameters: U, ¢, p

[ cos O
R=|sIind
0

—sin@ 0]
coséd O
0 1

[ pCOSQ |
pSing

0

Let’s compute the Epipolar Geometry

0 0 psing
[Tl=| 0 0 —pcose
—psSing  pCoSe 0
0 0 psing
E=[T]LR= 0 0 — pCOS @ |-

—psing  pcose 0

[ cos @

—sin@ 0]
cosd O




Planar Motion

Planar motion is described by three parameters: U, ¢, p

(cos@d —sind O [ pCOSQ
R=|sind cos@ O| T=|psing
0o o0 1] | o |

Let’s compute the Epipolar Geometry

0 0 psing
[Tl=| O 0 —pcose
—psing  pCos@ 0
_ 0 psin(p)
E=[TLR= 0 0 — pcos()

- psin(p—6) pcos(p-0) 0



Planar Motion

Planar motion is described by three parameters: U, ¢, p

(cos@d —sind O [ pCOSQ
R=|sind cos@ O| T=|psing
0o o0 1] | o |

Observe that E has 2DoF; thus, 2 correspondences are sufficient to estimate 0 and ¢

[“2-Point RANSAC”, Ortin, 2001]

o

psin(p)
E=[TLR= 0 0 — pcos()

- psin(p—6) pcos(p-0) 0




Can we use less than 2 point correspondences?
Yes, if we exploit ground, wheeled vehicles with non-holonomic

constraints



Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

\ )
' I X ICR
Yy OV | "

RICR |

Example of Ackerman steering principle Locally-planar circular motion




Planar & Circular Motion (e.g., cars)

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

I I X ~ N ICR
¥y OV )

RICR —!

Example of Ackerman steering principle Locally-planar circular motion

¢ = 0/2 => only 1 DoF (0),

thus, only 1 point correspondence is needed

This is the smallest parameterization possible and results in

the most efficient algorithm for removing outliers

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011



Planar & Circular MotlonCR(e g., cars)

cosd —sing 0] pLosy
R=|sin@ <cosé O T= psing
| 0 0 1] 0

Let’s compute the Epipolar Geometry

E = ['|'>< ] R  Essential matrix

p; E p, =0 Epipolar constraint



Planar & Circular Motion.(e.g., cars)

(cos® —sind O] PSS ,r
R=|sin@d cosd O] T= pSing i
0 0 1] 0

Let’s compute the Epipolar Geometry

= 0 ] i . 0
0 0 sin — 0 0 sin—
P32 1 Tcoso —sing 0 7o
E ZI.TX]R — 0 0 —pcosg ./sin@ cos@ O|=| O 0 ,OCOSg
— sing cosg 0 ° ° ! sing — cosg 0
—psing peosy | PP TR




Planar & Circular Motion.(e.g., cars)

(cos® —sind O] PSS ,r
R=|sin@d cosd O] T= pSing i
0 0 1] 0

0 0 sing
Let’s compute the Epipolar Geometry g
E=p| O 0 cosE
T (6 2] sing —cosg 0
p, Ep,=0 = sIn > -(u, +u,) +cos > (v, —v;)=0 t :

é )

0=—2tanl Y2~ V1
U, +U,

\. J




1-Point RANSAC algorithm

£~
o O
o O

Ca
[ ]
[ ]

um. of points

Compute 6 for 2
every point

Yy correspondence 0
(v, —v B0 60 40
T R S 0=-2tan"| 2—1
D u2+u1

Only 1 iteration! h

The most efficient algorithm for

removing outliers, up to 1000 Hz

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF




Comparlson of RANSAC algorlthms
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800 [~

I

700 5-point RANSAC
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Number of iterations, N
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I
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1-point RANSAC |
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Fraction of outliers in the data (%)

logd—-p)

where we typically use p =99%

" log(l—(1-¢)°)

Numb. of >1177 >145
iterations



Visual Odometry with 1-Point RANSAC

— estimated Work 1n different environments

@ current position

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011



