
Lecture 08
Multiple View Geometry 2

Davide Scaramuzza

Lab Exercise 5 - Today afternoon
 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: 8-point algorithm

Estimated poses and 3D structure

 Depth from stereo (i.e., stereo vision)

• Assumptions: K, T and R are known.

• Goal: Recover the 3D structure from images

 2-view Structure From Motion:

• Assumptions: none (K, T, and R are unknown).

• Goal: Recover simultaneously 3D scene structure, camera poses (up to scale), and
intrinsic parameters from two different views of the scene

2-View Geometry: Recap

𝐾1, 𝑅1,𝑇1
𝐾2, 𝑅2,𝑇2

𝐾𝑖 , 𝑅𝑖,𝑇𝑖

𝑃𝑖 =?

𝐾1, 𝑅1,𝑇1 =?
𝐾2, 𝑅2,𝑇2 =?

𝐾𝑖 , 𝑅𝑖,𝑇𝑖=?

𝑃𝑖 =?

Outline

• Two-View Structure from Motion

• Robust Structure from Motion

• Problem formulation: Given 𝑛 points correspondence between two images,

{𝑝𝑖1 = (𝑢𝑖1, 𝑣
𝑖
1), 𝑝

𝑖
2 = (𝑢𝑖2, 𝑣

𝑖
2)}, simultaneously estimate the 3D points 𝑷𝑖 ,

the camera relative-motion parameters (𝑹, 𝑻), and the camera intrinsics 𝑲1, 𝑲2
that satisfy:

𝑅, 𝑇 = ?

𝑃𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)

 

1

0

1

11

1

1







































w
i

w
i

w
i

i

i

Z

Y

X

IKv

u



 

1
1

22

2

2







































w
i

w
i

w
i

i

i

Z

Y

X

TRKv

u



• Two variants exist:

– Calibrated camera(s) 𝑲𝟏, 𝑲𝟐 are known

– Uncalibrated camera(s) 𝑲𝟏, 𝑲𝟐 are unknown

𝑅, 𝑇 = ?

𝑃𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)

• Let’s study the case in which the camera(s) is «calibrated»

• For convenience, let’s use normalized image coordinates

• Thus, we want to find 𝑹,𝑻, 𝑷𝒊 that satisfy

𝑅, 𝑇 = ?

𝑃𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)




































11

1 v

u

Kv

u

 

1

0

1

1

1

1







































w
i

w
i

w
i

i

i

Z

Y

X

Iv

u



 

1
1

2

2

2







































w
i

w
i

w
i

i

i

Z

Y

X

TRv

u



Scale Ambiguity

If we rescale the entire scene by a constant factor (i.e., similarity
transformation), the projections (in pixels) of the scene points in both
images remain exactly the same:

Scale Ambiguity

• In monocular vision, it is impossible to recover the absolute scale of the scene!

• Stereo vision?

• Thus, only 5 degrees of freedom are measurable:

• 3 parameters to describe the rotation

• 2 parameters for the translation up to a scale (we can only compute the direction of
translation but not its length)

Structure From Motion (SFM)

• How many knowns and unknowns?

– 𝟒𝒏 knowns:

• 𝑛 correspondences; each one (𝑢𝑖
1
, 𝑣𝑖1) and (𝑢𝑖

2
, 𝑣𝑖2), 𝑖 = 1…𝑛

– 𝟓 + 𝟑𝒏 unknowns

• 5 for the motion up to a scale (rotation-> 3, translation->2)

• 3𝑛 = number of coordinates of the 𝑛 3D points

• Does a solution exist?

– If and only if

number of independent equations ≥ number of unknowns

 4𝑛 ≥ 5 + 3𝑛 n ≥ 𝟓

Cross Product (or Vector Product)

• Vector cross product takes two vectors and returns a third vector
that is perpendicular to both inputs

• So 𝒄 is perpendicular to both 𝒂 and 𝒃 (which means that the dot product is 0)
• Also, recall that the cross product of two parallel vectors is 0

• The cross product between a and b can also be expressed in matrix form as the

product between the skew-symmetric matrix of a and a vector b

cba




0

0





cb

ca




baba 







































][

0

0

0

z

y

x

xy

xz

yz

b

b

b

aa

aa

aa

Epipolar Geometry


















1

1

1

1 v

u

p



















1

2

2

2 v

u

p

 epipolar plane

𝑃

𝑝1 𝑝2

T

𝑝1, 𝑝2, 𝑇 are coplanar:

0)'(12  pTpT

𝑝′1 = 𝑅𝑝1

0))((12  RpTpT

0][1

T

2   pRTp 0 12  pEpT

T essential matrix

𝑛

 02 npT

epipolar constraint

0 12 pEpT
Epipolar constraint or Longuet-Higgins equation

RT ][E Essential matrix

Normalized image coordinates

Epipolar Geometry



















1

2

2

2 v

u

p



















1

1

1

1 v

u

p

• The Essential Matrix can be computed from 5 point correspondences [Kruppa,
1913]. The more the points, the higher the accuracy in presence of noise

• The Essential Matrix can be decomposed into 𝑅 and 𝑇 recalling that
Four distinct solutions for R and T are possible.

RT ][E

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a

scene from two projections". Nature 293 (5828): 133–135. PDF.

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf

Exercise

• Compute the Essential matrix for the case of two rectified stereo images

Rectified case

T =
𝑏
0
0

 T × =
0 0 0
0 0 −𝑏
0 𝑏 0

T

 𝐸 =
0 0 0
0 0 −𝑏
0 𝑏 0

How to compute the Essential Matrix?

 If we don’t know R and T, can we estimate E from two images?

 Yes, given at least 5 correspondences

Image 1 Image 2

How to compute the Essential Matrix?

• The Essential Matrix can be computed from 5 image correspondences [Kruppa,
1913]. However, this solution is not simple. It took almost one century until an
efficient solution was found! [Nister, CVPR’2004]

• The first popular solution uses 8 points and is called 8-point algorithm
Longuet Higgins. A computer algorithm for reconstructing a scene from two projections. Nature
(1981)

• The Essential matrix E is defined by

for any pair of matches 𝑝 1 and 𝑝 2 in the two images.

• Let



















333231

232221

131211

eee

eee

eee

E

each match gives a linear equation

0333213112322212211213212121112  eeveuevevveuveuevueuu

The 8-point algorithm

0 12 pEpT

)1,,(,)1,,(2211 vuvu T  21 pp

0 12 pEpT

• For 𝑛 points, we can write

The 8-point algorithm

0

1

1

1

33

32

31

23

22

21

13

12

11

112121221212

2

1

2

1

2

2

2

1

2

2

2

1

2

2

2

2

2

1

2

2

2

1

2

2

1

1

1

1

1

2

1

1

1

2

1

1

1

2

1

2

1

1

1

2

1

1

1

2

























































e

e

e

e

e

e

e

e

e

vuvvvuvuvuuu

vuvvvuvuvuuu

vuvvvuvuvuuu

nnnnnnnnnnnn



Q (this matrix is known)

𝐸 (this matrix is unknown)

Minimal solution

• 𝑄(𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution𝐸

• Each point correspondence provides 1 independent equation

• Thus, 8 point correspondences are needed

Over-determined solution

• n > 8 points

• A solution is to minimize | 𝑄𝐸 |2 subject to the constraint | 𝐸 |2 = 1.
The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix
𝑄𝑇𝑄 (because it is the unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥).

• It can be solved through Singular Value Decomposition (SVD). Matlab instructions:

• [U,S,V] = svd(Q);

• Eh = V(:,9);

• F = reshape(Eh,3,3)';

The 8-point algorithm

0EQ 

8-point algorithm: Matlab code

• A few lines of code. Go to the exercise this
afternoon to learn to implement it 

Interpretation of the 8-point algorithm

The 8-point algorithm seeks to minimize the following algebraic error

Using the definition of dot product, it can be observed that

𝒑𝑇

2 ∙ 𝑬𝒑1 = 𝒑𝑇
2 𝑬𝒑1 cos(𝜃)

We can see that this product depends on the angle 𝜃 between 𝒑1
 and the normal

𝑬𝒑1
to the epipolar plane. It is non zero when 𝒑1, 𝒑2, and 𝑻 are not coplanar.

2
1

1

2)(i
N

i

Ti pp E


Extract R and T from E
(this slide will not be asked at the exam)

• Singular Value Decomposition:

• Enforcing rank-2 constraint: set smallest singular value of to 0:

TVUE 





































000

00

00

00

00

00

2

1

3

2

1











TVUT 



















000

001

010

ˆ











































z

y

x

xy

xz

yz

t

t

t

t

tt

tt

tt

T ˆ

0

0

0

ˆ

1

12

2

ˆ

ˆ





KRKR

tKt
TVUR



















100

001

010

ˆ





Only one solution where points are in front of both cameras

4 possible solutions of R and T

These two views are rotated of 180 ͦ

• Two variants exist:

– Calibrated camera(s) 𝑲𝟏, 𝑲𝟐 are known

• Uses the Essential Matrix

– Uncalibrated camera(s) 𝑲𝟏, 𝑲𝟐 are unknown

• Uses the Fundamental Matrix

𝑅, 𝑇 = ?

𝑃𝑖 = ?

𝐶1

𝐶2

Structure from Motion (SFM)

The Fundamental Matrix

• Before, we assumed to know the camera intrinsic parameters and we used
normalized image coordinates

0

1

 E

1

0 p E p

1

1

T

2

2

12





































i

i

i

i

T

v

u

v

u

0

1

 F

1

0

1

 K E K

1

1

1

T

2

2

1

1

1-

1

T-

2

T

2

2





































































i

i

i

i

i

i

i

i

v

u

v

u

v

u

v

u




































1

 K

1

1

1

1

11

1

i

i

i

i

v

u

v

u

Fundamental Matrix




































1

 K

1

2

2

1

22

2

i

i

i

i

v

u

v

u

 K][K
][

 K E K 1-

1

T-

2

-1

1

-T

2 RTF
RTE

F













The 8-point Algorithm for the Fundamental Matrix

• The same 8-point algorithm to compute the essential matrix from a
set of normalized image coordinates can also be used to determine
the Fundamental matrix

0

1

 F

1

1

1

T

2

2


































i

i

i

i

v

u

v

u

Problem with 8-point algorithm

0

1

1

1

33

32

31

23

22

21

13

12

11

112121221212

2

1

2

1

2

2

2

1

2

2

2

1

2

2

2

2

2

1

2

2

2

1

2

2

1

1

1

1

1

2

1

1

1

2

1

1

1

2

1

2

1

1

1

2

1

1

1

2

























































f

f

f

f

f

f

f

f

f

vuvvvuvuvuuu

vuvvvuvuvuuu

vuvvvuvuvuuu

nnnnnnnnnnnn



Problem with 8-point algorithm

• Poor numerical conditioning, which makes results very sensitive to noise

• Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, 1995]

0

33

32

31

23

22

21

13

12

11





































f

f

f

f

f

f

f

f

f

~10000 ~10000 ~10000 ~10000 ~100 ~100 1 ~100 ~100

!

Orders of magnitude difference

between column of data matrix

 least-squares yields poor results

Normalized 8-point algorithm (1/3)

(0,500)

(700,0)

(700,500)

(0,0)

(1,1)

(0,0)

(1,-1) (-1,-1)

(-1,1)



























1

1
500

2

10
700

2

• This can be fixed using a normalized 8-point algorithm, which estimates the
Fundamental matrix on a set of Normalized correspondences (with better
numerical properties) and then unnormalizes the result to obtain the
fundamental matrix for the given (unnormalized) correspondences

• Idea: Transform image coordinates so that they are in the range ~[−1,1] × [−1,1]

• One way is to apply the following rescaling and shift

Normalized 8-point algorithm (2/3)

• A more popular way is to rescale the two point sets such that the centroid of each

set is 0 and the mean standard deviation 2.

• This can be done for every point as follows:

• Where 𝜇 =
1

𝑁
 𝑝𝑖𝑛
𝑖=1 is the centroid of the set and 𝜎 =

1

𝑁
 𝑝𝑖 − 𝜇

2𝑛
𝑖=1 is the

mean standard deviation.

• This transformation can be expressed in matrix form using homogeneous
coordinates:

𝑝𝑖 =
2

𝜎
(𝑝𝑖 − 𝜇)

𝑝𝑖 =

2

𝜎
0 −

2

𝜎
𝜇𝑥

0
2

𝜎
−

2

𝜎
𝜇𝑦

0 0 1

𝑝𝑖

The Normalized 8-point algorithm can be summarized in three steps:

1. Normalize point correspondences: 𝑝1 = 𝐵1𝑝1 , 𝑝2 = 𝐵2𝑝2

2. Estimate 𝐹 using normalized coordinates 𝑝1 , 𝑝2

3. Compute F from 𝐹 :

Normalized 8-point algorithm (3/3)

𝑝2
𝑇F 𝑝1 = 0

F = B2
TF B1

𝑝2
𝑇 𝐵2

𝑇 𝐵1
𝑇 𝑝1

𝑇

F = B2
TF B1

F

Comparison between Normalized and non-normalized algorithm

8-point Normalized 8-point Nonlinear least squares

Av. Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel

Error Measures

 The quality of the estimated Fundamental matrix can be measured using different
cost functions.

 The first one is the algebraic error that is defined directly in the Epipolar
Constraint:

 This error will exactly be 0 if F is computed from just 8 points (because in this case
a solution exists). For more than 8 points, it will not be 0 (due to image noise or
outliers (overdetermined system)).

 There are alternative error functions that can be used to measure the quality of
the estimated Fundamental matrix: the Directional Error, the Epipolar Line
Distance, or the Reprojection Error.

2
1

1

2)(i
N

i

Ti pperr F


 What is the physical meaning of this error?
What is the drawback with it?

Directional Error

 Sum of the Angular Distances to the Epipolar plane:

 From the previous slide, we obtain:

C1
C2

p1

p2
21 pEl T

cos (𝜃) =
𝒑𝑇

2 ∙ 𝑬𝒑1

𝒑𝑇
2 𝑬𝒑1

2

𝑛

P = ?

 epipolar plane

err = (cos (𝜃𝑖))
2

𝑖

 epipolar plane

Epipolar Line Distance

 Sum of Squared Epipolar-Line-to-point Distances

 Cheaper than reprojection error because does not require point triangulation

C1
C2

p1

p2

P = ?

21 pFl T
12 Fpl 





N

1i

i

2

i

2

2i

1

i

1

2)l,(pd)l,(pderr

Reprojection Error

 Sum of the Squared Reprojection Errors

 Computation is expensive because requires point triangulation

 However it is the most popular because more accurate

C1
C2

p1

p2

P = ?

Observed point

Reprojected point
Observed point

Reprojected point

R, T

)(1 P

)(2 P





N

1i

2
i

2

i

2

2
i

1

i

1 T)R,,(Pπ-p)(Pπ-perr

Outline

• Two-View Structure from Motion

• Robust Structure from Motion

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Matched points are usually contaminated by outliers (i.e., wrong image matches)
 Causes of outliers are:
 image noise
 occlusions
 blur
 changes in view point (including scale) and illumination

 For the camera motion to be estimated accurately, outliers must be removed
 This is the task of Robust Estimation

Image 1 Image 2

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Matched points are usually contaminated by outliers (i.e., wrong image matches)
 Causes of outliers are:
 image noise
 occlusions
 blur
 changes in view point (including scale) and illumination

 For the camera motion to be estimated accurately, outliers must be removed
 This is the task of Robust Estimation

Image 1 Image 2

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 Error at the loop closure: 6.5 m
 Error in orientation: 5 deg
 Trajectory length: 400 m

Before removing the outliers

After removing the outliers

Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

RANSAC (RAndom SAmple Consensus)

• RANSAC is the standard method for model fitting in the presence of outliers
(very noisy points or wrong data)

• It can be applied to all sorts of problems where the goal is to estimate the
parameters of a model from the data (e.g., camera calibration, Structure from
Motion, DLT, PnP, P3P, Homography, etc.)

• Let’s review RANSAC for line fitting and see how we can use it to do Structure
from Motion

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image
analysis and automated cartography. Graphics and Image Processing, 24(6):381–395, 1981.

RANSAC
45

RANSAC
• Select sample of 2 points at
random

46

RANSAC
• Select sample of 2 points at
random

• Calculate model
parameters that fit the data
in the sample

47

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

48

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

49

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

• Repeat sampling

50

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

• Repeat sampling

51

RANSAC

Set with the maximum number of
inliers obtained within 𝑘 iterations

52

How many iterations does RANSAC need?

• Ideally: check all possible combinations of 2 points in a dataset of N points.

• Number of all pairwise combinations: N(N-1)/2

  computationally unfeasible if N is too large.
 example: 1000 points  need to check all 1000*999/2 ≅ 500’000 possibilities!

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?
Checking a subset of combinations is enough if we have a rough estimate of the
percentage of inliers in our dataset

• This can be done in a probabilistic way

RANSAC
53

How many iterations does RANSAC need?

• w := number of inliers/N
N := total number of data points

 w : fraction of inliers in the dataset  w = P(selecting an inlier-point out of the dataset)

• Assumption: the 2 points necessary to estimate a line are selected independently

 w 2 = P(both selected points are inliers)

1-w 2 = P(at least one of these two points is an outlier)

• Let k := no. RANSAC iterations executed so far

•  (1-w 2) k = P(RANSAC never selected two points that are both inliers)

• Let p := P(probability of success)

•  1-p = (1-w 2) k and therefore :

RANSAC

)1log(

)1log(
2w

p
k






54

How many iterations does RANSAC need?

• The number of iterations k is

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability p of
finding a set of points free of outliers

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations
– these are dramatically fewer than the number of all possible combinations! As you can see, the
number of points does not influence the estimated number of iterations, only w does!

• In practice we only need a rough estimate of w.
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at
every iteration (how?)

RANSAC

)1log(

)1log(
2w

p
k






55

RANSAC applied to Line Fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

RANSAC applied to general model fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

)1log(

)1log(
sw

p
k






The Three Key Ingredients of RANSAC

In order to implement RANSAC for Structure From Motion (SFM), we need three key
ingredients:

1. What’s the model in SFM?

2. What’s the minimum number of points to estimate the model?

3. How do we compute the distance of a point from the model? In other words, can
we define a distance metrics that measures how well a point fits the model?

Answers

1. What’s the model in SFM?

– The Essential Matrix (for calibrated cameras) or the Fundamental Matrix (for
uncalibrated cameras)

2. What’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points

2. However, if we use the 8-point algorithm, then 8 is the minimum

3. How do we compute the distance of a point from the model?

1. We can use the epipolar constraint (𝑝 2
𝑇𝐸𝑝 1 = 0 or 𝑝2

𝑇𝐹𝑝1 = 0) to measure
how well a point correspondence verifies the model E or F, respectively. However, the directional
error, the epipolar line distance and the reprojection error are better (we already saw why)

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

Image 1 Image 2

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1 for 𝒌 times

))1(1log(

)1log(
8




p
k

RANSAC iterations 𝒌 vs. 𝒔

• 8-point RANSAC
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 8 points (8-point algorithm)

• 5-point RANSAC
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 5 points (5-point algorithm of David Nister (2004))

• 2-point RANSAC (e.g., line fitting)
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 2 points

iterations
p

k
s

 1177
))1(1log(

)1log(









iterations
p

k
s

 145
))1(1log(

)1log(









iterations
p

k
s

 16
))1(1log(

)1log(









𝒌 is exponential in the number of points 𝒔 necessary to estimate the model:

RANSAC iterations 𝒌 vs. 𝜺

• 𝒌 is increases exponentially with the fraction of outliers 𝜺

RANSAC iterations

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the
model

• The 8-point algorithm is extremely simple and was very successful; however, it
requires more than 1177 iterations

• Because of this, there has been a large interest by the research community in
using smaller motion parameterizations

• The first efficient solution to the minimal-case solution (5-point algorithm) took
almost a century (Kruppa 1913 → Nister, 2004)

• The 5-point RANSAC only requires 145 iterations; however:
– The 5-point algorithm can return up to 10 solutions of E (worst case scenario)

– The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

0 12 pEpT
Epipolar constraint

RT][E  Essential matrix

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

 RTE][















 























100

0cossin

0sincos

0cossin

cos00

sin00































0cossin

cos00

sin00

][







T

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

 RTE][

 

 

    



















0cossin

cos00

sin00



























0cossin

cos00

sin00

][







T

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

 RTE][

 

 

    



















0cossin

cos00

sin00







Observe that 𝐸 has 2DoF; thus, 2 correspondences are sufficient to estimate  and φ

[“2-Point RANSAC”, Ortin, 2001]

Can we use less than 2 point correspondences?

Yes, if we exploit ground, wheeled vehicles with non-holonomic

constraints

Planar & Circular Motion (e.g., cars)
Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

Example of Ackerman steering principle Locally-planar circular motion

Planar & Circular Motion (e.g., cars)

Example of Ackerman steering principle Locally-planar circular motion

φ = θ/2 => only 1 DoF (θ);

thus, only 1 point correspondence is needed

This is the smallest parameterization possible and results in

the most efficient algorithm for removing outliers

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry

0 12 pEpT
Epipolar constraint

RT][E  Essential matrix

Planar & Circular Motion (e.g., cars)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry

  RTE][









































 





























0
2

cos
2

sin

2
cos00

2
sin00

100

0cossin

0sincos

0
2

cos
2

sin

2
cos00

2
sin00





























Planar & Circular Motion (e.g., cars)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry



























0
2

cos
2

sin

2
cos00

2
sin00







E

Planar & Circular Motion (e.g., cars)

 0 12 pEpT 0)(
2

cos)(
2

sin 1212 
















vvuu















 

12

121tan2
uu

vv


1-Point RANSAC algorithm

Only 1 iteration!

The most efficient algorithm for

removing outliers, up to 1000 Hz

Compute θ for

every point

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF













 

12

121tan2
uu

vv


Comparison of RANSAC algorithms

8-Point RANSAC 5-Point RANSAC
[Nister’03]

2-Point RANSAC
[Ortin’01]

1-Point RANSAC
[Scaramuzza,

IJCV’10]

Numb. of
iterations

> 1177 >145 >16 =1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Fraction of outliers in the data (%)

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s
,

N 5-point RANSAC

2-point RANSAC

1-point RANSAC

%99 use typically we where
))1(1log(

)1log(





 p

p
N

s

Visual Odometry with 1-Point RANSAC

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011

