
Lecture 06
Point Feature Detection and Matching

Part 2

Davide Scaramuzza

Mini-project

Goal: implement a Visual Odometry (VO) pipeline

• Groups: 1 to 4 students

• Hand-in:

– Code (Matlab, or alternatively runnable on Ubuntu 14.04)

– Report (free-form, 5 pages max)

• Goal of report: show us what work you did, what failed and what
worked...

Grading:

• 4.5-5.5: working VO pipeline (grade depends on accuracy)

• 5.5-6: working VO pipeline with extra features (not covered during the
exercises)

• < 4.5: pipelines that don't work. The grade will be based on the report.

Image 1 Image 2

Scale changes

• How can we match image patches corresponding to the same feature but
belonging to images taken at different scales?

– Possible solution: rescale the patch!

Image 1 Image 2

Scale changes

• How can we match image patches corresponding to the same feature but
belonging to images taken at different scales?

– Possible solution: rescale the patch!

Scale changes

• How can we match image patches corresponding to the same feature but
belonging to images taken at different scales?

– Possible solution: rescale the patch!

Image 1 Image 2

Image 1 Image 2

Scale changes

• How can we match image patches corresponding to the same feature but
belonging to images taken at different scales?

– Possible solution: rescale the patch!

Scale changes

• Scale search is time consuming (needs to be done individually for all
patches in one image)

– Complexity would be (𝑁𝑀)2 (assuming that we have 𝑁 features per
image and 𝑀 scale levels for each image)

• Possible solution: assign each feature its own “scale” (i.e., size).

– What’s the optimal scale (i.e., size) of the patch?

• Solution:

– Design a function on the image patch, which is “scale
invariant” (i.e., which has the same value for corresponding
regions, even if they are at different scales)

Can this function be the Cornerness Response function?
Answer: no! Why? What kind of behavior does it have?

scale = 1/2

– For a point in one image, we can consider it as a
function of region size (patch width)

f

region size

Image 1 f

region size

Image 2

Automatic Scale Selection

• Common approach:

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Take a local maximum of this function

Observation: region size, for which the maximum is
achieved, should be invariant to image scale.

s1 s2

Important: this scale invariant region size is
found in each image independently!

Automatic Scale Selection

Automatic Scale Selection
• Function responses for increasing scale (scale signature)

)),((
1

xIf
mii 

)),((
1

xIf
mii




Image 1 Image 2

Automatic Scale Selection

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)
Image 1 Image 2

Automatic Scale Selection

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)
Image 1 Image 2

Automatic Scale Selection

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)
Image 1 Image 2

Automatic Scale Selection

)),((
1

xIf
mii 

)),((
1

xIf
mii




• Function responses for increasing scale (scale signature)
Image 1 Image 2

Automatic Scale Selection

)),((
1

xIf
mii 

)),((
1

xIf
mii 

• Function responses for increasing scale (scale signature)
Image 1 Image 2

Automatic Scale Selection

• When the right scale is found, the patch must be normalized

Scale Invariant Detection: Robustness

• A “good” function for scale detection should have a single & sharp peak

• Sharp, local intensity changes are good regions to monitor in order to
identify the scale

  Blobs and corners are the ideal locations!

I

region size

bad

I

region size

bad

I

region size

Good !

A cornerness response
function would exhibit this

“flat ”behavior, why?

Scale Invariant Detection
• Functions for determining scale: convolve image with kernel to identify sharp intensity

discontinuities

• Laplacian of Gaussian kernel:

• Correct scale is found as local maxima across consecutive smoothed images

Kernel Imagef  

2

2

2

2
2),(),(

),(
y

yxG

x

yxG
yxGLoG













2

3

4

Scale

Scale Invariant Detection
• Functions for determining scale: convolve image with kernel to identify sharp intensity

discontinuities

• Laplacian of Gaussian kernel:

• Correct scale is found as local maxima across consecutive smoothed images

Kernel Imagef  

2

2

2

2
2),(),(

),(
y

yxG

x

yxG
yxGLoG











Scale Invariant Detectors

• Experimental evaluation of detectors
w.r.t. scale change

Repeatability=

correspondences detected

correspondences present

Main questions

• Where will the interest points come from?

– What are salient features that we’ll detect in multiple views?

• How to describe a local region?

• How to establish correspondences, i.e., compute matches?

• We know how to detect points
• Next question:

 How to describe them for matching?

?

• Simplest descriptor: intensity values within a squared patch or gradient histogram

• Alternative: Histograms of Oriented Gradients (like in SIFT, see later)

• Then, descriptor matching can be done using (Z)SSD, (Z)SAD, or (Z)NCC

Feature descriptors

Feature descriptors

• We’d like to find the same features regardless of the transformation
(rotation, scale, view point, and illumination)

– Most feature methods are designed to be invariant to

• translation,

• 2D rotation,

• scale

– Some of them can also handle

• Small view-point invariance (3D rotation) (e.g., SIFT works up to
about 60 degrees)

• Linear illumination changes

How to achieve invariance

CSE 576: Computer Vision

8 pixels

Step 1: Re-scaling and De-rotation
• Find correct scale using LoG operator
• Rescale the patch to a default size (e.g., 8x8 pixels)
• Find local orientation

– Dominant direction of gradient for the image patch (e.g., Harris eigenvectors)
• De-rotate patch

– This puts the patches into a canonical orientation

Implementation Concern:
How do you rotate a patch?

• Start with an “empty” patch whose dominant direction is “up”.

• For each pixel in your patch, compute the position in the detected image
patch. It will be in floating point and will fall between the image pixels.

• Interpolate the values of the 4 closest pixels in the image, to get a value
for the pixel in your patch.

Rotating a Patch

empty canonical patch

patch detected in the image
𝑥’ = 𝑥 cos𝜃 – 𝑦 sin𝜃

𝑦’ = 𝑥 sin𝜃 + 𝑦 cos𝜃 T

T

counterclockwise rotation

(x,y)

(x’,y’)

Using Bilinear Interpolation

• Use all 4 adjacent samples

x

y

I00 I10

I01 I11

How to achieve invariance
Step 2: Affine Un-warping (to achieve slight view-point invariance)
• The second moment matrix M can be used to identify the two directions of fastest and

slowest change of intensity around the feature.

• Out of these two directions, an elliptic patch is extracted at the scale computed by with
the LoG operator.

• The region inside the ellipse is normalized to a circular one

Example: de-rotation, re-scaling, and affine un-warping

How to achieve invariance

Feature descriptors

• Disadvantage of patches as descriptors:

– Very small errors in rotation, scale, view-point, and illumination can
affect matching score significantly

– Computationally expensive (need to unwarp every patch)

• Better solution today: build descriptors from Histograms of Oriented
Gradients (HOGs)

HOG descriptor (Histogram of Oriented Gradients)

• Compute a histogram of orientations of intensity gradients

• Peaks in histogram: dominant orientations

• Keypoint orientation = histogram peak

– If there are multiple candidate peaks, construct a different keypoint for each
such orientation

• Rotate patch according to this angle

• This puts the patches into a canonical orientation

0 2p

Dominant orientation

Rotation and Scale Normalization

• Rotate the window to standard orientation

• Scale the window size based on the scale at which the point was found.

• Scale Invariant Feature Transform

• Invented by David Lowe [IJCV, 2004]

• Descriptor computation:

– Divide patch into 4x4 sub-patches: 16 cells

– Compute histogram of gradient orientations (8 reference angles) for all pixels
inside each sub-patch

– Resulting SIFT descriptor: 4x4x8 = 128 values

– Descriptor Matching: Euclidean-distance between these descriptor vectors
(i.e., SSD)

SIFT descriptor

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV , 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Intensity Normalization

• The descriptor values are normalized such that the L2 norm is 1. This
guarantees that the descriptor is invariant to linear illumination changes.

Feature descriptors: SIFT
• Extraordinarily robust matching technique

– Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

– Can handle significant changes in illumination

• Sometimes even day vs. night (below)

– Fast and efficient—can run in real time

– Original SIFT code (binary files): http://people.cs.ubc.ca/~lowe/keypoints

http://people.cs.ubc.ca/~lowe/keypoints
http://people.cs.ubc.ca/~lowe/keypoints

Scale Invariant Detection
Like to Harris Laplacian but Laplacian of Gaussian kernel is approximated with Difference of
Gaussian (DoG) kernel (computationally cheaper):

),(),(yxGyxGDoGLOG k  

SIFT detector (location + scale)
 SIFT keypoints: local extrema in both location and scale of the

DoG

• Detect maxima and minima

of difference-of-Gaussian in
scale space

• Each point is compared to
its 8 neighbors in the
current image and 9
neighbors each in the scales
above and below

For each max or min found, output

is the location and the scale.

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

Scale-space detection: Example

SIFT Features: Summary
 SIFT: Scale Invariant Feature Transform [Lowe, IJCV 2004]

 An approach to detect and describe regions of interest in an image.

 SIFT features are reasonably invariant to changes in rotation, scaling,
and small changes in viewpoint and illumination

 Real-time but still slow (10 Hz on an i7 laptop)

 Expensive steps are the scale detection and descriptor extraction

SIFT repeatability vs. viewpoint angle

Repeatability=

correspondences detected

correspondences present

SIFT repeatability vs. Scale

Repeatability=

correspondences detected

correspondences present

% detected

 % correctly matched

Influence of Number of Orientations and Sub-patches

How many parameters are used to define a

SIFT feature?

• Descriptor: 128 parameters

• Location (pixel coordinates of the center of the patch): 2D vector

• Scale (i.e., size) of the patch: 1 scalar value

• Orientation (i.e., angle of the patch): 1 scalar value

SIFT for Object recognition

SIFT for Panorama Stitching

[M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003]

AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html

http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/autostitch/autostitch.html

Main questions

• Where will the interest points come from?

– What are salient features that we’ll detect in multiple views?

• How to describe a local region?

• How to establish correspondences, i.e., compute matches?

Feature matching

?

Feature matching

• Given a feature in 𝐼1, how to find the best match in 𝐼2?

1. Define distance function that compares two descriptors

 SSD

 SAD

 NCC

2. Brute-force matching: Test all the features in 𝐼2, find the one with
min distance

• Problem with distance: can give good scores to very ambiguous (bad)
matches!

• Better approach: ratio distance = d(f1, f2) / d(f1, f2’) < Threshold (e.g., 0.8)

• f2 is best match of f1 in I2

• f2’ is 2nd best match of f1 in I2

• gives small values for ambiguous matches

SIFT Feature matching: ratio distance

The inventor of the SIFT recommends to use a threshold on 0.8. Where does
this come from?

“A threshold of 0.8, eliminates
90% of the false matches while
discarding less than 5% of the
correct matches.”

“This figure was generated by
matching images following
random scale and orientation
change, a depth rotation of 30
degrees, and addition of 2%
image noise, against a database
of 40,000 keypoints.”

SURF

• Speeded Up Robust Features

• Based on ideas similar to SIFT

• Approximated computation for
detection and descriptor

• Results comparable with SIFT, plus:

– Faster computation

– Generally shorter descriptors

[Bay et al., ECCV 2006]

Bay, Tuytelaars, Van Gool, " Speeded Up Robust Features ", ECCV 2006

FAST detector [Rosten et al., ECCV’05]

• FAST: Features from Accelerated Segment Test
• Studies intensity of pixels on circle around candidate pixel C
• C is a FAST corner if a set of N contiguous pixels on circle are:

• all brighter than intensity_of(C)+theshold, or
• all darker than intensity_of(C)+theshold

• Typical FAST mask: test for 9 contiguous pixels in a 16-pixel circle
• Very fast detector - in the order of 100 Mega-pixel/second

Rosten, Drummond, Fusing points and lines for high performance tracking, IEEE International Conference on
Computer Vision, 2005

BRIEF descriptor [Calonder et. al, ECCV 2010]

Pattern for intensity pair samples –
generated randomly

• Binary Robust Independent Elementary
Features

• Goal: high speed (in description and matching)

• Binary descriptor formation:
• Smooth image
• for each detected keypoint (e.g. FAST),
• sample 256 intensity pairs p=(𝑝1, 𝑝2) within

a squared patch around the keypoint
• for each pair p

• if 𝐼𝑝1
< 𝐼𝑝2

 then set bit p of descriptor

to 1
• else set bit p of descriptor to 0

• The pattern is generated randomly only once;

then, the same pattern is used for all patches

• Not scale/rotation invariant
• Allows very fast Hamming Distance matching:

count the number of bits that are different in
the descriptors matched

Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10]

• Oriented FAST and Rotated BRIEF

• Keypoint detector based on FAST

• BRIEF descriptors are steered
according to keypoint orientation
(to provide rotation invariance)

• Good Binary features are learned
by minimizing the correlation on
a set of training patches.

ORB descriptor [Rublee et al., ICCV 2011]

BRISK descriptor [Leutenegger, Chli, Siegwart, ICCV 2011]

• Binary Robust Invariant Scalable Keypoints
• Detect corners in scale-space using FAST
• Rotation and scale invariant

• Binary, formed by pairwise intensity
comparisons (like BRIEF)

• Pattern defines intensity comparisons in
the keypoint neighborhood

• Red circles: size of the smoothing kernel
applied

• Blue circles: smoothed pixel value used
• Compare short- and long-distance pairs

for orientation assignment & descriptor
formation

• Detection and descriptor speed: ~10
times faster than SURF

• Slower than BRIEF, but scale- and
rotation- invariant

Detector Descriptor Localization

Accuracy

Relocalization & Loop

closing

Efficiency

Harris Patch ++++ + +++

Shi-Tomasi Patch ++++ + +++

SIFT SIFT +++ ++++ +

SURF SURF +++ ++++ ++

FAST BRIEF

ORB

BRISK

++++ +++ ++++

