
Lecture 05 
Point Feature Detection and Matching 

Davide Scaramuzza 



Mini-project 

Goal: implement a Visual Odometry (VO) pipeline 
 

• Groups: 1 to 4 students 

• Hand-in: 

– Code (Matlab, or alternatively runnable on Ubuntu 14.04) 

– Report (free-form, 5 pages max) 

• Goal of report: show us what work you did, what failed and what 
worked... 
 

Grading: 

• 4.5-5.5: working VO pipeline (grade depends on accuracy) 

• 5.5-6: working VO pipeline with extra features (not covered during the 
exercises) 

• < 4.5: pipelines that don't work. The grade will be based on the report. 

 



Lab Exercise 3 - Today afternoon 

 Room ETH HG E 33.1 from 14:15 to 16:00 

 Work description: implement a corner detector and tracker 

 



Course Schedule update 
For updates, slides, and additional material:  http://rpg.ifi.uzh.ch/teaching.html  

Date Time Description of the lecture/exercise Lecturer 

22.09.2016 10:15 - 12:00 01 – Introduction Scaramuzza 

29.09.2016 10:15 - 12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza 

06.10.2016 10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza 

  14:15 – 16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq 

13.10.2016 10:15 - 12:00 

14:15 – 16:00 

04 - Filtering & Edge detection  

Lab Exercise 2: PnP problem 
Gallego 

 Titus Cieslewski/Henri Rebecq 

20.10.2016 10:15 - 12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza 

  14:15 – 16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq 

27.10.2016 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza 

3.11.2016 10:15 - 12:00 

14:15 – 16:00 

07 - Multiple-view geometry 1 

Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation 
Scaramuzza 

Titus Cieslewski/Henri Rebecq 

10.11.2016 10:15 - 12:00 

14:15 – 16:00 

08 - Multiple-view geometry 2 

Exercise 5: Eight-point algorithm and RANSAC 
Scaramuzza 

 Titus Cieslewski/Henri Rebecq 

17.11.2016 10:15 - 12:00 

14:15 – 16:00 

09 - Multiple-view geometry 3 

Exercise 6: P3P algorithm and RANSAC 
Scaramuzza 

 Titus Cieslewski/Henri Rebecq 

24.11.2016 10:15 - 12:00 

14:15 – 16:00 

10 - Dense 3D Reconstruction (Multi-view Stereo) 

Exercise 7: Intermediate VO Integration 
Scaramuzza 

 Titus Cieslewski/Henri Rebecq 

01.12.2016 10:15 - 12:00 

14:15 – 16:00 

11 - Optical Flow and Tracking  (Lucas-Kanade) 

Exercise 8: Lucas-Kanade tracker 
Scaramuzza 

 Titus Cieslewski/Henri Rebecq 

08.12.2016 10:15 - 12:00 12 – Place recognition Scaramuzza 

  14:15 – 16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq 

  10:15 - 12:00 13 – Visual inertial fusion Scaramuzza 

15.12.2016 14:15 – 16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq 

22.12.2016 10:15 - 12:00 

14:15 – 16:00 

14 - Event based vision + lab visit and live demonstrations 

Exercise 11: final VO integration  
Scaramuzza 

Titus Cieslewski/Henri Rebecq 

http://rpg.ifi.uzh.ch/teaching.html
http://rpg.ifi.uzh.ch/teaching.html
http://rpg.ifi.uzh.ch/teaching.html


Outline 

• Filters for Feature detection 

• Point-feature extraction: today and next lecture 



Filters for Feature Detection 

• Previously, we used filters as a way to remove or 
reduce noise 

• However, filters can also be used to detect higher-
level “features”. 

– Goal: reduce amount of data, discard 
redundancy, preserve only what is useful 

• Edge detection 

• Template matching 

• Keypoint detection 



Template 

• Find locations in an image that are similar to a template 

• If we look at filters as templates, we can use correlation to detect these 
locations 

Filters for Template Matching 



Detected template 

• Find locations in an image that are similar to a template 

• If we look at filters as templates, we can use correlation to detect these 
locations 

Correlation map 

Template Matching 



Scene 

Template 

Where’s Waldo? 



Scene 

Template 

Where’s Waldo? 



Scene 

Template 

Where’s Waldo? 



Scene Template 

Template Matching 
• What if the template is not identical to the object we want to detect? 

• Matching can be meaningful if scale, orientation, illumination, and, in general, 
appearance between template and object to detect are very close. What about 
the pixels in template background (mixed-pixel problem)? 

 

Scene 

Template 



H

xF



Correlation as an Inner Product 

• Considering images H and F as vectors, their correlation is: 
 

 

 

 

 

• In NCC we consider the unit vectors of H and F , hence we measure their 
similarity based on the angle     . If H and F are identical, then NCC = 1 
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Summary on filters 
• Smoothing 

– Values positive  

– Sum to 1  constant regions same as input 

– Amount of smoothing proportional to mask size 

– Remove “high-frequency” components; “low-pass” filter 
 

• Derivatives 
– Opposite signs used to get high response in regions of high contrast 

– Sum to 0  no response in constant regions 

– High absolute value at points of high contrast 
 

• Filters act as templates 
• Highest response for regions that “look the most like the filter” 

• Correlation as Scalar Product 

 

 
 

 



Other Similarity measures 

• Sum of Absolute Differences (SAD) (used in optical mice) 

 

 

 

• Sum of Squared Differences (SSD) 

 

 

 

• Normalized Cross Correlation (NCC): takes values between -1 and +1 (+1 = 
identical) 
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Zero-mean SAD, SSD, NCC 
To account for the difference in mean of the two images (typically caused by 
illlumination changes), we substract the mean value of each image: 

 

• Zero-mean Sum of Absolute Differences (ZSAD) (used in optical mice) 

 

 

 

• Zero-mean Sum of Squared Differences (ZSSD) 

 

 
 

• Zero-mean Normalized Cross Correlation (ZNCC) 

 

 

 

 

 

 

 

 

 

 

 

 

  

   



  

 






k

ku

k

kv

F

k

ku

k

kv

H

k

ku

k

kv

FH

vuFvuH

vuFvuH

ZNCC
22

),(),(

),(),(





   
 


k

ku

k

kv

FH vuFvuHZSAD  ),(),(

    
 


k

ku

k

kv

FH vuFvuHZSSD
2

),(),( 
 

 























 

 

2

2

12

),(

12

),(

N

vuF

N

vuH

k

ku

k

kv
F

k

ku

k

kv
H







Census Transform 
• Maps an image patch to a bit string: 

– if a pixel is greater than the center pixel its corresponding bit is set to 1, else 
to 0 

– For a 𝑤 × 𝑤  window the string will be 𝑤2 −  1  bits long  

• The two bit strings are compared using the Hamming distance which is the 
number of bits that are different. This can be computed by counting the number 
of set bits in the Exclusive-OR of the two bit strings 

 

Advantages 

• More robust to mixed-pixel problem 

• No square roots or division are required,  
thus very efficient to implement, especially  
on FPGA 

• Intensities are considered relative to the center  
pixel of the patch making it invariant to overall  
changes in intensity or gradual intensity gradients 



Outline 

• Filters for feature extraction 

• Point-feature extraction: today and next lecture 



Point-feature extraction and matching Example 

Video from “Forster, Pizzoli, Scaramuzza, SVO: Semi-Direct Visual Odometry, ICRA’16]” 



Why do we need to extract keypoints? 

Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

Example features tracks 

Recall the Visual-Odometry flow chart: 



Why do we need to extract keypoints? 

Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

𝑇𝑘,𝑘−1 = ? 

𝒑𝑖 

𝒖′𝑖 𝒖𝑖 

Keypoint extraction is the key ingredient of motion estimation! 



Point Features in image stitching  

This panorama was generated using AUTOSTITCH:  
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html 

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html


Point Features are also used for: 

• Object recognition 

• 3D reconstruction 

• Place recognition 

• Indexing and database retrieval  Google Images or http://tineye.com 



Image matching: why is it hard? 



NASA Mars Rover images 

Image matching: why is it hard? 



NASA Mars Rover images with SIFT feature matches 

Image matching: why is it hard? 
Answer below 



• We need to match (align) images 

• How would you do it? 

Local features and alignment 



• Detect feature points in both images 

Local features and alignment 



• Detect feature points in both images 

• Find corresponding pairs 

Local features and alignment 



• Detect feature points in both images 

• Find corresponding pairs 

• Use these pairs to align images 

Local features and alignment 



Matching with Features 

• Problem 1: 

– Detect the same points independently in both images 

We need a repeatable feature detector 

no chance to match! 



Matching with Features 

• Problem 2: 

– For each point, identify its correct correspondence in the other 
image(s) 

We need a reliable and distinctive feature descriptor that is 
robust to geometric and illumination changes 

? 



Geometric changes 

• Rotation 

• Scale (i.e., zoom) 

• View point (i.e, perspective changes) 



Illumination changes 



Subset of local feature types designed to be invariant to common 
geometric and photometric transformations. 

 

Basic steps: 

1) Detect distinctive interest points  

2) Extract invariant descriptors 

Invariant local features 



Main questions 

• What features are salient ? (i.e., that can be re-detected from other views) 

• How to describe a local region? 

• How to establish correspondences, i.e., compute matches? 

 



What is a distinctive feature? 
• Consider the image pair below with extracted patches 
• Notice how some patches can be localized or matched with higher accuracy 

than others 

Image 1 Image 2 



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch 

 A corner is defined as the intersection of one or more edges 
 A corner has  high localization accuracy 

 Corner detectors are good for VO 

 It’s less distinctive than a blob 

 E.g., Harris, Shi-Tomasi, SUSAN, FAST 

 

 

 A blob is any other image pattern, which is not a corner, that 
differs significantly from its neighbors in intensity and texture 
(e.g., a connected region of pixels with similar color, a circle, etc.) 
 Has less localization accuracy than a corner 

 Blob detectors are better for place recognition  

 It’s more distinctive than a corner 

 E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE 

 

 

 



Corner detection 
• Key observation: in the region around a corner, image gradient 

has two or more dominant directions 

• Corners are repeatable and distinctive 

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ , 1988 Proceedings of the 4th Alvey Vision Conference: 
pages 147--151.   

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Identifying Corners 
• How do we identify corners? 

• We can easily recognize the point by looking through a small window 

• Shifting a window in any direction should give a large change in intensity (e.g., in 
SSD) in at least 2 directions 

“flat” region: 

no intensity change  

(i.e., SSD ≈ 0 in all directions) 

“corner”: 

significant change in at least 2 

directions 

(i.e., SSD ≫ 0 in all directions) 

 

“edge”: 

no change along the edge 

direction 

(i.e., SSD ≈ 0 along edge but 

≫ 0 in other directions) 



• Consider two image patches of size P. One centered at              and one centered  
at   

 

• The Sum of Squared Differences between them is: 

 

 

 

 

•  Let                        and                        . Approximating with a 1st order Taylor expansion: 

 

 

 

 

• This produces the approximation 
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 How do we implement this? 



 

 

 

 

• This can be written in a matrix form as 
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 How do we implement this? 
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• This can be written in a matrix form as 
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 How do we implement this? 
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Alternative way to write M 2nd moment matrix 

Notice that these are 
NOT matrix products 

but pixel-wise 
products! 



What does this matrix reveal? 
• First, consider an edge or a flat region.  

 

 

 

 

 

• We can conclude that if either λ is close to 0, then this is not a corner. 

• Now, let’s consider an axis-aligned corner: 

 

 

 

 

• This means dominant gradient directions are at 45 degrees with 𝑥 and 𝑦 axes 

• What if we have a corner that is not aligned with the image axes?  
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General Case 

Since M is symmetric, it can always be decomposed into  RRM 
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• We can visualize                                          as an ellipse with axis lengths determined 

by the eigenvalues and the two axes’ orientations determined by R (i.e., the 

eigenvectors of M) 

• The two eigenvectors identify the directions of largest and smallest changes of SSD 

 

 direction of the slowest 
change of SSD 

direction of the fastest 
change of SSD 

(max)
-1/2 

(min)
-1/2 

  const
y

x
Myx 
















How to compute λ1, λ2, R from M 
Eigenvalue/eigenvector review 

• You can easily proof that λ1, λ2 are the eigenvalues of M.   

• The eigenvectors and eigenvalues of a matrix A are the vectors x and scalars λ that 
satisfy: 

 
• The scalar  is the eigenvalue corresponding to x 

– The eigenvalues are found by solving: 

 

 

– In our case, A = M is a 2x2 matrix, so we have 

 

 

– The solution is: 

 

– Once you know , you find the two eigenvectors x (i.e., the two columns of R) by solving: 
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Visualization of 2nd moment matrices 



Visualization of 2nd moment matrices 



Interpreting the eigenvalues 
• Classification of image points using eigenvalues of M 

• A corner can then be identified by checking whether the minimum of 
the two eigenvalues of M is larger than a certain user-defined threshold 

      ⇒ R = min(1,2)  >  threshold 

 

• R is called “cornerness function” 

• The corner detector using  
this criterion is called  
«Shi-Tomasi» detector 

1 

2 
“Corner” 

1 and 2 are large, 

 

⇒ R >  threshold 
 

⇒ SSD increases in all 

directions 

1 and 2 are small; 

SSD is almost constant 

in all directions 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 

J. Shi and C. Tomasi (June 1994). "Good Features 
to Track,". 9th IEEE Conference on Computer 
Vision and Pattern Recognition 

http://citeseer.ist.psu.edu/shi94good.html
http://citeseer.ist.psu.edu/shi94good.html


Interpreting the eigenvalues 

1 

2 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 1 

“Corner” 

1 and 2 are large, 

 

⇒ R >  threshold 
 

⇒ SSD increases in all 

directions 

• Computation of λ1 and λ2 is expensive  Harris & Stephens  
suggested using a different  cornerness function: 

 
 

)(trace)det()( 22

2121 MkMkR  

• 𝑘 is a magic number in the 
range (0.04 to 0.15) 



Harris Corner Detector 
Algorithm: 

1. Compute derivatives in x and y directions (𝐼𝑥, 𝐼𝑦) e.g. with Sobel filter 

2. Compute 𝐼𝑥
2, 𝐼𝑦

2, 𝐼𝑥𝐼𝑦 

3. Convolve  𝐼𝑥
2, 𝐼𝑥

2, 𝐼𝑥𝐼𝑦 with a box filter to get  𝐼𝑥
2 ,  𝐼𝑦

2 ,  𝐼𝑥𝐼𝑦, which are 

the entries of the matrix 𝑀 (optionally use a Gaussian filter instead of a box 
filter to avoid aliasing and give more “weight” to the central pixels) 

4. Compute Harris Corner Measure 𝑅 (according to Shi-Tomasi or Harris) 

5. Find points with large corner response  (𝑅 > threshold) 

6. Take the points of local maxima of R 



Harris Corner Detector 

Image 𝐼 Cornerness response 𝑅 



Harris vs. Shi-Tomasi 

Harris  
operator 

Shi-Tomasi 
operator 



Harris Detector: Workflow 



Harris Detector: Workflow 
• Compute corner response 𝑅 



Harris Detector: Workflow 
• Find points with large corner response: 𝑅 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 



Harris Detector: Workflow 
• Take only the points of local maxima of thresholded 𝑅 



Harris Detector: Workflow 



Harris Detector: Some Properties 

How does the size of the Harris detector affect the performance? 

 

Repeatability: 

• How does the Harris detector behave to common image transformations? 
 

• Can it re-detect the same image patches (Harris corners) when the image 
exhibits changes in 

• Rotation, 

• View-point, 

• Scale (zoom),  

• Illumination ? 

 

• Solution: Identify properties of detector & adapt accordingly 



Harris Detector: Some Properties 

• Rotation invariance 

Ellipse rotates but its shape (i.e., eigenvalues) remains the same 

Corner response R is invariant to image rotation 

Image 1 Image 2 



Harris Detector: Some Properties 

• But: non-invariant to image scale! 

All points will be 
classified as edges 

Corner! 

Image 1 Image 2 



Harris Detector: Some Properties 

• Quality of Harris detector for different scale changes 

Repeatability= 

# correspondences detected 

# correspondences present 

Scaling the image by ×2  
 ~18% of correspondences get 

matched 


