
Lecture 05
Point Feature Detection and Matching

Davide Scaramuzza

Mini-project

Goal: implement a Visual Odometry (VO) pipeline

• Groups: 1 to 4 students

• Hand-in:

– Code (Matlab, or alternatively runnable on Ubuntu 14.04)

– Report (free-form, 5 pages max)

• Goal of report: show us what work you did, what failed and what
worked...

Grading:

• 4.5-5.5: working VO pipeline (grade depends on accuracy)

• 5.5-6: working VO pipeline with extra features (not covered during the
exercises)

• < 4.5: pipelines that don't work. The grade will be based on the report.

Lab Exercise 3 - Today afternoon

 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: implement a corner detector and tracker

Course Schedule update
For updates, slides, and additional material: http://rpg.ifi.uzh.ch/teaching.html

Date Time Description of the lecture/exercise Lecturer

22.09.2016 10:15 - 12:00 01 – Introduction Scaramuzza

29.09.2016 10:15 - 12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza

06.10.2016 10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza

 14:15 – 16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq

13.10.2016 10:15 - 12:00

14:15 – 16:00

04 - Filtering & Edge detection

Lab Exercise 2: PnP problem
Gallego

 Titus Cieslewski/Henri Rebecq

20.10.2016 10:15 - 12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza

 14:15 – 16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq

27.10.2016 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza

3.11.2016 10:15 - 12:00

14:15 – 16:00

07 - Multiple-view geometry 1

Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation
Scaramuzza

Titus Cieslewski/Henri Rebecq

10.11.2016 10:15 - 12:00

14:15 – 16:00

08 - Multiple-view geometry 2

Exercise 5: Eight-point algorithm and RANSAC
Scaramuzza

 Titus Cieslewski/Henri Rebecq

17.11.2016 10:15 - 12:00

14:15 – 16:00

09 - Multiple-view geometry 3

Exercise 6: P3P algorithm and RANSAC
Scaramuzza

 Titus Cieslewski/Henri Rebecq

24.11.2016 10:15 - 12:00

14:15 – 16:00

10 - Dense 3D Reconstruction (Multi-view Stereo)

Exercise 7: Intermediate VO Integration
Scaramuzza

 Titus Cieslewski/Henri Rebecq

01.12.2016 10:15 - 12:00

14:15 – 16:00

11 - Optical Flow and Tracking (Lucas-Kanade)

Exercise 8: Lucas-Kanade tracker
Scaramuzza

 Titus Cieslewski/Henri Rebecq

08.12.2016 10:15 - 12:00 12 – Place recognition Scaramuzza

 14:15 – 16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq

 10:15 - 12:00 13 – Visual inertial fusion Scaramuzza

15.12.2016 14:15 – 16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq

22.12.2016 10:15 - 12:00

14:15 – 16:00

14 - Event based vision + lab visit and live demonstrations

Exercise 11: final VO integration
Scaramuzza

Titus Cieslewski/Henri Rebecq

http://rpg.ifi.uzh.ch/teaching.html
http://rpg.ifi.uzh.ch/teaching.html
http://rpg.ifi.uzh.ch/teaching.html

Outline

• Filters for Feature detection

• Point-feature extraction: today and next lecture

Filters for Feature Detection

• Previously, we used filters as a way to remove or
reduce noise

• However, filters can also be used to detect higher-
level “features”.

– Goal: reduce amount of data, discard
redundancy, preserve only what is useful

• Edge detection

• Template matching

• Keypoint detection

Template

• Find locations in an image that are similar to a template

• If we look at filters as templates, we can use correlation to detect these
locations

Filters for Template Matching

Detected template

• Find locations in an image that are similar to a template

• If we look at filters as templates, we can use correlation to detect these
locations

Correlation map

Template Matching

Scene

Template

Where’s Waldo?

Scene

Template

Where’s Waldo?

Scene

Template

Where’s Waldo?

Scene Template

Template Matching
• What if the template is not identical to the object we want to detect?

• Matching can be meaningful if scale, orientation, illumination, and, in general,
appearance between template and object to detect are very close. What about
the pixels in template background (mixed-pixel problem)?

Scene

Template

H

xF

Correlation as an Inner Product

• Considering images H and F as vectors, their correlation is:

• In NCC we consider the unit vectors of H and F , hence we measure their
similarity based on the angle . If H and F are identical, then NCC = 1

cos, FHFH

FH

FH ,
cos

k

ku

k

kv

k

ku

k

kv

k

ku

k

kv

vuFvuH

vuFvuH

22),(),(

),(),(

Summary on filters
• Smoothing

– Values positive

– Sum to 1 constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– Opposite signs used to get high response in regions of high contrast

– Sum to 0 no response in constant regions

– High absolute value at points of high contrast

• Filters act as templates
• Highest response for regions that “look the most like the filter”

• Correlation as Scalar Product

Other Similarity measures

• Sum of Absolute Differences (SAD) (used in optical mice)

• Sum of Squared Differences (SSD)

• Normalized Cross Correlation (NCC): takes values between -1 and +1 (+1 =
identical)

k

ku

k

kv

k

ku

k

kv

k

ku

k

kv

vuFvuH

vuFvuH

NCC
22),(),(

),(),(

k

ku

k

kv

vuFvuHSSD
2

),(),(

k

ku

k

kv

vuFvuHSAD),(),(

Zero-mean SAD, SSD, NCC
To account for the difference in mean of the two images (typically caused by
illlumination changes), we substract the mean value of each image:

• Zero-mean Sum of Absolute Differences (ZSAD) (used in optical mice)

• Zero-mean Sum of Squared Differences (ZSSD)

• Zero-mean Normalized Cross Correlation (ZNCC)

k

ku

k

kv

F

k

ku

k

kv

H

k

ku

k

kv

FH

vuFvuH

vuFvuH

ZNCC
22

),(),(

),(),(

k

ku

k

kv

FH vuFvuHZSAD),(),(

k

ku

k

kv

FH vuFvuHZSSD
2

),(),(

2

2

12

),(

12

),(

N

vuF

N

vuH

k

ku

k

kv
F

k

ku

k

kv
H

Census Transform
• Maps an image patch to a bit string:

– if a pixel is greater than the center pixel its corresponding bit is set to 1, else
to 0

– For a 𝑤 × 𝑤 window the string will be 𝑤2 − 1 bits long

• The two bit strings are compared using the Hamming distance which is the
number of bits that are different. This can be computed by counting the number
of set bits in the Exclusive-OR of the two bit strings

Advantages

• More robust to mixed-pixel problem

• No square roots or division are required,
thus very efficient to implement, especially
on FPGA

• Intensities are considered relative to the center
pixel of the patch making it invariant to overall
changes in intensity or gradual intensity gradients

Outline

• Filters for feature extraction

• Point-feature extraction: today and next lecture

Point-feature extraction and matching Example

Video from “Forster, Pizzoli, Scaramuzza, SVO: Semi-Direct Visual Odometry, ICRA’16]”

Why do we need to extract keypoints?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

Example features tracks

Recall the Visual-Odometry flow chart:

Why do we need to extract keypoints?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

𝑇𝑘,𝑘−1 = ?

𝒑𝑖

𝒖′𝑖 𝒖𝑖

Keypoint extraction is the key ingredient of motion estimation!

Point Features in image stitching

This panorama was generated using AUTOSTITCH:
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

Point Features are also used for:

• Object recognition

• 3D reconstruction

• Place recognition

• Indexing and database retrieval Google Images or http://tineye.com

Image matching: why is it hard?

NASA Mars Rover images

Image matching: why is it hard?

NASA Mars Rover images with SIFT feature matches

Image matching: why is it hard?
Answer below

• We need to match (align) images

• How would you do it?

Local features and alignment

• Detect feature points in both images

Local features and alignment

• Detect feature points in both images

• Find corresponding pairs

Local features and alignment

• Detect feature points in both images

• Find corresponding pairs

• Use these pairs to align images

Local features and alignment

Matching with Features

• Problem 1:

– Detect the same points independently in both images

We need a repeatable feature detector

no chance to match!

Matching with Features

• Problem 2:

– For each point, identify its correct correspondence in the other
image(s)

We need a reliable and distinctive feature descriptor that is
robust to geometric and illumination changes

?

Geometric changes

• Rotation

• Scale (i.e., zoom)

• View point (i.e, perspective changes)

Illumination changes

Subset of local feature types designed to be invariant to common
geometric and photometric transformations.

Basic steps:

1) Detect distinctive interest points

2) Extract invariant descriptors

Invariant local features

Main questions

• What features are salient ? (i.e., that can be re-detected from other views)

• How to describe a local region?

• How to establish correspondences, i.e., compute matches?

What is a distinctive feature?
• Consider the image pair below with extracted patches
• Notice how some patches can be localized or matched with higher accuracy

than others

Image 1 Image 2

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

 A corner is defined as the intersection of one or more edges
 A corner has high localization accuracy

 Corner detectors are good for VO

 It’s less distinctive than a blob

 E.g., Harris, Shi-Tomasi, SUSAN, FAST

 A blob is any other image pattern, which is not a corner, that
differs significantly from its neighbors in intensity and texture
(e.g., a connected region of pixels with similar color, a circle, etc.)
 Has less localization accuracy than a corner

 Blob detectors are better for place recognition

 It’s more distinctive than a corner

 E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE

Corner detection
• Key observation: in the region around a corner, image gradient

has two or more dominant directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ , 1988 Proceedings of the 4th Alvey Vision Conference:
pages 147--151.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf

Identifying Corners
• How do we identify corners?

• We can easily recognize the point by looking through a small window

• Shifting a window in any direction should give a large change in intensity (e.g., in
SSD) in at least 2 directions

“flat” region:

no intensity change

(i.e., SSD ≈ 0 in all directions)

“corner”:

significant change in at least 2

directions

(i.e., SSD ≫ 0 in all directions)

“edge”:

no change along the edge

direction

(i.e., SSD ≈ 0 along edge but

≫ 0 in other directions)

• Consider two image patches of size P. One centered at and one centered
at

• The Sum of Squared Differences between them is:

• Let and . Approximating with a 1st order Taylor expansion:

• This produces the approximation

x

yxI
I x

),(

Pyx

yyxxIyxIyxSSD
,

2
),(),(),(

),(yyxx

),(yx

yyxIxyxIyxIyyxxI yx),(),(),(),(

y

yxI
I y

),(

Pyx

yx yyxIxyxIyxSSD
,

2
)),(),(),(

 How do we implement this?

• This can be written in a matrix form as

Pyx

yx yyxIxyxIyxSSD
,

2
)),(),(),(

y

x
MyxyxSSD),(

 How do we implement this?

y

x

III

III
yxyxSSD

yyx

yxx
),(

2

2

2

2

, yyx

yxx

Pyx III

III
M

• This can be written in a matrix form as

Pyx

yx yyxIxyxIyxSSD
,

2
)),(),(),(

y

x
MyxyxSSD),(

 How do we implement this?

2

2

2

2

, yyx

yxx

yyx

yxx

Pyx III

III

III

III
M

y

x

III

III
yxyxSSD

yyx

yxx
),(

2

2

Alternative way to write M 2nd moment matrix

Notice that these are
NOT matrix products

but pixel-wise
products!

What does this matrix reveal?
• First, consider an edge or a flat region.

• We can conclude that if either λ is close to 0, then this is not a corner.

• Now, let’s consider an axis-aligned corner:

• This means dominant gradient directions are at 45 degrees with 𝑥 and 𝑦 axes

• What if we have a corner that is not aligned with the image axes?

4
cos

4
s-

4
s

4
cos

0

0

4
cos

4
s

4
s-

4
cos

2

1

2

2

in

in

in

in

III

III
M

yyx

yxx

2

2

2

0

00

yyx

yxx

III

III
M

00

00
2

2

yyx

yxx

III

III
M

Corner

Edge

Flat region

General Case

Since M is symmetric, it can always be decomposed into RRM

2

11

0

0

• We can visualize as an ellipse with axis lengths determined

by the eigenvalues and the two axes’ orientations determined by R (i.e., the

eigenvectors of M)

• The two eigenvectors identify the directions of largest and smallest changes of SSD

 direction of the slowest
change of SSD

direction of the fastest
change of SSD

(max)
-1/2

(min)
-1/2

 const
y

x
Myx

How to compute λ1, λ2, R from M
Eigenvalue/eigenvector review

• You can easily proof that λ1, λ2 are the eigenvalues of M.

• The eigenvectors and eigenvalues of a matrix A are the vectors x and scalars λ that
satisfy:

• The scalar is the eigenvalue corresponding to x

– The eigenvalues are found by solving:

– In our case, A = M is a 2x2 matrix, so we have

– The solution is:

– Once you know , you find the two eigenvectors x (i.e., the two columns of R) by solving:

xAx

0)det(IA

0det
2221

1211

mm

mm

 0)(4)(
2

1 2

2211211222112,1 mmmmmm

0
2221

1211

y

x

mm

mm

Visualization of 2nd moment matrices

Visualization of 2nd moment matrices

Interpreting the eigenvalues
• Classification of image points using eigenvalues of M

• A corner can then be identified by checking whether the minimum of
the two eigenvalues of M is larger than a certain user-defined threshold

 ⇒ R = min(1,2) > threshold

• R is called “cornerness function”

• The corner detector using
this criterion is called
«Shi-Tomasi» detector

1

2
“Corner”

1 and 2 are large,

⇒ R > threshold

⇒ SSD increases in all

directions

1 and 2 are small;

SSD is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

J. Shi and C. Tomasi (June 1994). "Good Features
to Track,". 9th IEEE Conference on Computer
Vision and Pattern Recognition

http://citeseer.ist.psu.edu/shi94good.html
http://citeseer.ist.psu.edu/shi94good.html

Interpreting the eigenvalues

1

2

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region 1

“Corner”

1 and 2 are large,

⇒ R > threshold

⇒ SSD increases in all

directions

• Computation of λ1 and λ2 is expensive Harris & Stephens
suggested using a different cornerness function:

)(trace)det()(22

2121 MkMkR

• 𝑘 is a magic number in the
range (0.04 to 0.15)

Harris Corner Detector
Algorithm:

1. Compute derivatives in x and y directions (𝐼𝑥, 𝐼𝑦) e.g. with Sobel filter

2. Compute 𝐼𝑥
2, 𝐼𝑦

2, 𝐼𝑥𝐼𝑦

3. Convolve 𝐼𝑥
2, 𝐼𝑥

2, 𝐼𝑥𝐼𝑦 with a box filter to get 𝐼𝑥
2 , 𝐼𝑦

2 , 𝐼𝑥𝐼𝑦, which are

the entries of the matrix 𝑀 (optionally use a Gaussian filter instead of a box
filter to avoid aliasing and give more “weight” to the central pixels)

4. Compute Harris Corner Measure 𝑅 (according to Shi-Tomasi or Harris)

5. Find points with large corner response (𝑅 > threshold)

6. Take the points of local maxima of R

Harris Corner Detector

Image 𝐼 Cornerness response 𝑅

Harris vs. Shi-Tomasi

Harris
operator

Shi-Tomasi
operator

Harris Detector: Workflow

Harris Detector: Workflow
• Compute corner response 𝑅

Harris Detector: Workflow
• Find points with large corner response: 𝑅 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

Harris Detector: Workflow
• Take only the points of local maxima of thresholded 𝑅

Harris Detector: Workflow

Harris Detector: Some Properties

How does the size of the Harris detector affect the performance?

Repeatability:

• How does the Harris detector behave to common image transformations?

• Can it re-detect the same image patches (Harris corners) when the image
exhibits changes in

• Rotation,

• View-point,

• Scale (zoom),

• Illumination ?

• Solution: Identify properties of detector & adapt accordingly

Harris Detector: Some Properties

• Rotation invariance

Ellipse rotates but its shape (i.e., eigenvalues) remains the same

Corner response R is invariant to image rotation

Image 1 Image 2

Harris Detector: Some Properties

• But: non-invariant to image scale!

All points will be
classified as edges

Corner!

Image 1 Image 2

Harris Detector: Some Properties

• Quality of Harris detector for different scale changes

Repeatability=

correspondences detected

correspondences present

Scaling the image by ×2
 ~18% of correspondences get

matched

