
Lecture 04
Image Filtering

Prof. Dr. Davide Scaramuzza

sdavide@ifi.uzh.ch

mailto:sdavide@ifi.uzh.ch

Lab Exercise 2 - Today afternoon

 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: your first camera motion estimator using DLT

Course Schedule update
For updates, slides, and additional material: http://rpg.ifi.uzh.ch/teaching.html

Date Time Description of the lecture/exercise Lecturer

22.09.2016 10:15 - 12:00 01 – Introduction Scaramuzza

29.09.2016 10:15 - 12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza

06.10.2016 10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza

14:15 – 16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq

13.10.2016 10:15 - 12:00

14:15 – 16:00

04 - Filtering & Edge detection

Lab Exercise 2: PnP problem
Scaramuzza

Titus Cieslewski/Henri Rebecq

20.10.2016 10:15 - 12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza

14:15 – 16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq

27.10.2016 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza

3.11.2016 10:15 - 12:00

14:15 – 16:00

07 - Multiple-view geometry 1

Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation
Scaramuzza

Titus Cieslewski/Henri Rebecq

10.11.2016 10:15 - 12:00

14:15 – 16:00

08 - Multiple-view geometry 2

Exercise 5: Eight-point algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

17.11.2016 10:15 - 12:00

14:15 – 16:00

09 - Multiple-view geometry 3

Exercise 6: P3P algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

24.11.2016 10:15 - 12:00

14:15 – 16:00

10 - Dense 3D Reconstruction (Multi-view Stereo)

Exercise 7: Intermediate VO Integration
Scaramuzza

Titus Cieslewski/Henri Rebecq

01.12.2016 10:15 - 12:00

14:15 – 16:00

11 - Optical Flow and Tracking (Lucas-Kanade)

Exercise 8: Lucas-Kanade tracker
Scaramuzza

Titus Cieslewski/Henri Rebecq

08.12.2016 10:15 - 12:00 12 – Place recognition Scaramuzza

14:15 – 16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq

10:15 - 12:00 13 – Visual inertial fusion Scaramuzza

15.12.2016 14:15 – 16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq

22.12.2016 10:15 - 12:00

14:15 – 16:00

14 - Event based vision + lab visit and live demonstrations

Exercise 11: final VO integration
Scaramuzza

Titus Cieslewski/Henri Rebecq

http://rpg.ifi.uzh.ch/teaching.html

Image filtering

• The word filter comes from frequency-domain processing, where “filtering” refers to the
process of accepting or rejecting certain frequency components

• We distinguish between low-pass and high-pass filtering

– A low-pass filter smooths an image (retains low-frequency components)

– A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtered image High-pass filtered image

Low-pass filtering

Low-pass filtering
Motivation: noise reduction

• Salt and pepper noise: random
occurrences of black and white
pixels

• Impulse noise: random
occurrences of white pixels

• Gaussian noise: variations in
intensity drawn from a Gaussian
normal distribution

Source: S. Seitz

Gaussian noise

How could we reduce the noise to try to recover the “ideal image”?

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Assumptions:

– Expect pixels to be like their neighbors

– Expect noise processes to be independent from pixel to pixel

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

This operation is called convolution
Example of convolution of two sequences (or “signals”)
 One of the sequences is flipped (right to left) before sliding over the other
 Notation: a b
 Nice properties: linearity, associativity, commutativity, etc.

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left)

– Then slide the filter over the image

2D Filtering

F

H

180 deg turn

Filtering an image: replace each pixel
with a linear combination of its neighbors.

The filter 𝑯 is also called “kernel” or “mask”.
It allows to have different weights depending on neighboring pixel’s relative position.

Example: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

111
111
111

“box filter”

Example: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

Example: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

Example: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Input image Filtered image

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Example: Moving Average In 2D
Input image Filtered image

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Example: Moving Average In 2D
Input image Filtered image

Box filter:
white = high value, black = low value

original filtered

Smoothing by averaging

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want the closest pixels to have higher influence on the output?

Gaussian filter

This kernel is an
approximation of a
Gaussian function:

Smoothing with a Gaussian

Compare the result with a box filter

• What parameters matter?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters use finite
kernels

σ = 5 pixels
with 10 x 10 pixel kernel

σ = 5 pixels
with 30 x 30 pixel kernel

Gaussian filters

• What parameters matter here?

• Variance of Gaussian: determines extent of smoothing

σ = 2 pixels
with 30 x 30 pixel kernel

σ = 5 pixels
with 30 x 30 pixel kernel

Gaussian filters

Recall: standard deviation =  [pixels], variance = 2 [pixels2]

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls
the amount of smoothing.

Smoothing with a Gaussian

In practice there is just one parameter:

the kernel size is computed given the variance or vice versa.

>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread(‘panda.jpg’);

>> outim = imfilter(im, h);

>> imshow(outim);

outim

Sample Matlab code

Boundary issues
• What about near the edge?

– the filter window falls off the edge of the image

– need to pad the image borders

– methods:

• zero padding (black)

• wrap around

• copy edge

• reflect across edge

Summary on (linear) filters
• Smoothing

– Filter has positive values (also called coefficients)

– Sum to 1  preserve brightness of constant regions

– Amount of smoothing is proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

Non-linear filtering

Additive Gaussian noise Salt and pepper noise

Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

Median filter
• It is a non-linear filter

• Removes spikes: good for impulse, salt & pepper noise

Input image

Output image

Salt and
pepper noise

Median
filtered

Plots of a row of the image

Median filter

Median filter
• Median filter preserves sharp transitions (i.e., edges),

… but it removes small brightness variations.

High-pass filtering
(edge detection)

Edge detection

• Ultimate goal of edge detection: an idealized line drawing.

• Edge contours in the image correspond to important scene contours.

Images as functions 𝑓(𝑥, 𝑦)

• Edges look like steep cliffs

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

An edge is a place of rapid change in the image intensity function.

Derivatives and edges

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite differences:

To implement above as convolution, what would be the associated filter?







),(),(
lim

),(

0

yxfyxf

x

yxf 








1

),(),1(),(yxfyxf

x

yxf 






Differentiation and convolution

-1
1-1 1

x

yxf



),(

y

yxf



),(

Partial derivatives of an image

Alternative Finite-difference filters

Sample Matlab code

>> im = imread(‘lion.jpg’)

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My);

>> imagesc(outim);

>> colormap gray;

Prewitt filter

Sobel filter

Image gradient
The gradient of an image:

The gradient points in the direction of fastest intensity change

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Effects of noise
Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?

Where is the edge?

Solution: smooth first

Look for peaks in

Alternative: combined derivative and smoothing filter

Differentiation property of convolution.

Derivative of Gaussian filters

x-direction y-direction

Laplacian of Gaussian
Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Summary on (linear) filters
• Smoothing

– Filter has positive values (also called coefficients)

– Sum to 1  preserve brightness of constant regions

– Amount of smoothing is proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– Opposite signs used to get high response in regions of high contrast

– Sum to 0  no response in constant regions

– High absolute value at points of high contrast

The Canny edge-detection algorithm (1986)

• Compute gradient of smoothed image in both directions

• Discard pixels whose gradient magnitude is below a certain threshold

• Non-maximal suppression: identify local maxima along gradient direction

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

https://en.wikipedia.org/wiki/Lenna

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

https://en.wikipedia.org/wiki/Lenna

 IGf  

The Canny edge-detection algorithm (1986)

: Edge strength

Convolve the image
with 𝑥 and 𝑦 derivatives
of Gaussian filter

Thresholding f

The Canny edge-detection algorithm (1986)

Threshold it (i.e., set to
0 all pixels who value is
below a given
threshold)

Thinning: non-maxima suppression (local-maxima detection)

along edge direction

The Canny edge-detection algorithm (1986)

Take local maximum
along gradient direction

Summary (things to remember)

• Image filtering (definition, motivation, applications)

• Moving average

• Linear filters and formulation: box filter, Gaussian filter

• Boundary issues

• Non-linear filters

– Median filter and its applications

• Edge detection

– Derivating filters (Prewitt, Sobel)

– Combined derivative and smoothing filters (deriv. of Gaussian)

– Laplacian of Gaussian

– Canny edge detector

• Book chapters 3.2, pages 108-109, 386-387, 4.2.1, 11.3.1

