__—7 ROBOTICS &
=7 PERCEPTION
% GROUP

“Hli) Universitat
- Ziirich™

Lecture 04
Image Filtering

Prof. Dr. Davide Scaramuzza
sdavide@ifi.uzh.ch

mailto:sdavide@ifi.uzh.ch

Lab Exercise 2 - Today afternoon

» Room ETH HG E 33.1 from 14:15 to 16:00
» Work description: your first camera motion estimator using DLT

Course Schedule update

For updates, slides, and additional material: http://rpg.ifi.uzh.ch/teaching.html

22.09.2016 10:15-12:00

29.09.2016

06.10.2016

13.10.2016

20.10.2016

17.11.2016

01 - Introduction

Scaramuzza
10:15-12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza
10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza
14:15-16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq
10:15-12:00 04 - Filtering & Edge detection s
caramuzza
14:15-16:00 Lab Exercise 2: PnP problem . . X X
Titus Cieslewski/Henri Rebecq
10:15-12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza
14:15-16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq
10:15- 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza
10:15-12:00 07 - Multiple-view geometry 1 s
caramuzza
14:15-16:00 Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation . § X i
Titus Cieslewski/Henri Rebecq
10:15-12:00 08 - Multiple-view geometry 2 Scaramuzza
ZZ
14:15-16:00 Exercise 5: Eight-point algorithm and RANSAC § . . X
Titus Cieslewski/Henri Rebecq
10:15-12:00 09 - Multiple-view geometry 3 s
caramuzza
14:15-16:00 Exercise 6: P3P algorithm and RANSAC . = = =
Titus Cieslewski/Henri Rebecq
10:15-12:00 10 - Dense 3D Reconstruction (Multi-view Stereo)
. . . Scaramuzza
14:15-16:00 Exercise 7: Intermediate VO Integration
Titus Cieslewski/Henri Rebecq
10:15-12:00 11 - Optical Flow and Tracking (Lucas-Kanade)
= Scaramuzza
14:15- 16:00 Exercise 8: Lucas-Kanade tracker . = = =
Titus Cieslewski/Henri Rebecq
10:15-12:00 12 — Place recognition Scaramuzza
14:15-16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq
10:15- 12:00 13 - Visual inertial fusion Scaramuzza
14:15-16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq
10:15-12:00 14 - Event based vision + lab visit and live demonstrations
. " . . Scaramuzza
14:15-16:00 Exercise 11: final VO integration

Titus Cieslewski/Henri Rebecq

http://rpg.ifi.uzh.ch/teaching.html

Image filtering

* The word filter comes from frequency-domain processing, where “filtering” refers to the
process of accepting or rejecting certain frequency components

* We distinguish between low-pass and high-pass filtering
— A low-pass filter smooths an image (retains low-frequency components)

— A high-pass filter retains the contours (also called edges) of an image (high frequency)

Low-pass filtering

Low-pass filtering
Motivation: noise reduction

—

* Salt and pepper noise: random
occurrences of black and white
pixels

* Impulse noise: random
occurrences of white pixels

e @Gaussian noise: variations in
intensity drawn from a Gaussian
normal distribution

Impulse noise Gaussian noise

Source: S. Seitz

Gaussian noise

'{"-/M A (Jm s
(J ¢
ﬂ : .If
v
Ide_al Image Noise process Gaussian i.i.d. (“white") noise:
f(z,y)= f(z,y) + n(z,y) n(z,y) ~ N(u, o)

How could we reduce the noise to try to recover the “ideal image”?

Moving average

e Replaces each pixel with an average of all the values in its neighborhood
e Assumptions:

— Expect pixels to be like their neighbors

— Expect noise processes to be independent from pixel to pixel

Moving average

e Replaces each pixel with an average of all the values in its neighborhood
e Moving average in 1D:

Weighted Moving Average

* (Can add weights to our moving average
 Weights [1,1,1,1,1] /5

Weighted Moving Average

iform weights [1, 4, 6, 4, 1] / 16

T 001464100 -

This operation is called convolution

Example of convolution of two sequences (or “signals”)
— One of the sequences is flipped (right to left) before sliding over the other

— Notation: axb
— Nice properties: linearity, associativity, commutativity, etc.

Input signal a

15

”mhm

-10 S5 0 15 20 25 30 35

Input signal b and reversed & shifted signal a

S

-10 S 35

[

Convolution a* b

: ,mHHH\HIHHHInh,

-10 -5 30 35

2D Filtering

e Convolution:
— Flip the filter in both dimensions (bottom to top, right to left)

— Then slide the filter over the image

Gli, 7] = Z Z Hlu,v]|F[i —u,j — v]

u=—kv=-=%k

H

G=H«F

180 deg turn

Filtering an image: replace each pixel
with a linear combination of its neighbors.

The filter H is also called “kernel” or “mask”.
It allows to have different weights depending on neighboring pixel’s relative position.

Example: Moving Average In 2D

Input image Filtered image

“box filter” F[{I}, y] G[LU, y

Example: Moving Average In 2D

Input image Filtered image

Flz, y] Glz, y.

O“ 10

Example: Moving Average In 2D

Input image Filtered image

Flz, y] Glz, y.

0 10 § 20 |

Example: Moving Average In 2D

Input image Filtered image

Flz, y] Glz, y.

o | 10 20 |

Example: Moving Average In 2D

Input image Filtered image

Flz, y] Glz, y.

0 10 | 20 | 30 “ 30

Example: Moving Average In 2D

Input image Filtered image

Flz, y] Glz, y.

Smoothing by averaging

Box filter:
white = high value, black = low value

original filtered

Gaussian filter

What if we want the closest pixels to have higher influence on the output?

This kernel is an
approximation of a
Gaussian function:

11211 1 _ul4e?
1 T3 h(u,v) = € 2072
-~ mo
16

11211

Flx,y]

Smoothing with a Gaussian

Compare the result with a box filter

Gaussian filters

 What parameters matter?
* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters use finite
kernels

o =5 pixels o =5 pixels
with 10 x 10 pixel kernel with 30 x 30 pixel kernel

Gaussian filters

 What parameters matter here?
e Variance of Gaussian: determines extent of smoothing

o = 2 pixels o =5 pixels
with 30 x 30 pixel kernel with 30 x 30 pixel kernel

Recall: standard deviation = ¢ [pixels], variance = ¢? [pixels?]

Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian kernel, and controls
the amount of smoothing.

0 10 20 30 0 10 20 30 0 10 20 30

In practice there is just one parameter:
the kernel size is computed given the variance or vice versa.

Sample Matlab code

>> hsize = 10;
>> sigma = 5;
>> h = fspecial (‘gaussian’ hsize, sigma);

>> mesh (h) ;

>> imagesc (h) ; n

>> im = imread(‘panda.jpg’);
>> outim = imfilter (im, h);
>> imshow (outim) ;

outim

Boundary issues

 What about near the edge?

— the filter window falls off the edge of the image
— need to pad the image borders
— methods:

» zero padding (black)

* wrap around

e copy edge

* reflect across edge

Summary on (linear) filters

* Smoothing
— Filter has positive values (also called coefficients)
— Sum to 1 = preserve brightness of constant regions
— Amount of smoothing is proportional to mask size
— Remove “high-frequency” components; “low-pass” filter

Non-linear filtering

Effect of smoothing filters

SXNS

Additive Gaussian noise Salt and pepper noise

Linear smoothing filters do not alleviate salt and pepper noise!

Median filter

e |tis a non-linear filter

e Removes spikes: good for impulse, salt & pepper noise

Input image 10115120
23190127
N U Sort
Median value 33 (3130 l

10 15 20 23 |27]30 31 33 90

Output image 10115120 I Replace
232727
33131130

Median filter

Salt and
pepper noise

Median
filtered

a" N o J(W\\
. 1] - \ "W
g wm ' J M‘M’*ww H “U

(1] 100 X0 i @0

B

o " I " "
e (] 00 20 =0 P) 0o

Plots of a row of the image

Median filter

 Median filter preserves sharp transitions (i.e., edges),

L I T O A LI B

INPUT

& 3 8% & &8 08

MEDIAN

MEAN

... but it removes small brightness variations.

High-pass filtering
(edge detection)

Edge detection

* Ultimate goal of edge detection: an idealized line drawing.
* Edge contours in the image correspond to important scene contours.

Images as functions f (x, y)

* Edges look like steep cliffs

Derivatives and edges

An edge is a place of rapid change in the image intensity function.

intensity function
image (along horizontal scanline) first derivative

\

edges correspond to
extrema of derivative

Differentiation and convolution

For 2D function, f(x,y), the partial derivative is:

ot (x,y) _ i FOxr2,y) = F(x,y)
@X e—0 E

For discrete data, we can approximate using finite differences:

o (xy) T(X+Ly)-1T(xYy)
OX 1

To implement above as convolution, what would be the associated filter?

Partial derivatives of an image

Alternative Finite-difference filters

Prewitt filter Gy=|-1 0 +1| *A and G}r: 0 0 0l xA
-1 0 +1 +1 +1 +1
—1 0 +1] -1 -2 -1
Sobel filter G,=|-2 0 42|*A and G,=|0 0 0]|=xA
-1 0 +1 +1 +2 +1

Sample Matlab code

>> im = imread(‘lion.jpg’)

>> My = fspecial (‘'sobel’);

>> outim = imfilter (double (im), My);
>> 1magesc (outim) ;

>> colormap gray;

Image gradient

The gradient of an image:

V=[5

The gradient points in the direction of fastest intensity change

vf=1%L0] l MW
=i IR

The gradient direction (orientation of edge normal) is given by:
— -1 (9f a_f)
6 = tan (9y /5

The edge strength is given by the gradient magnitude

VAl = /(D% + (33

Effects of noise

Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(x)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(z)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Solution: smooth first

Sigma = 50

-
Signa

~
Kernel

600 800 1000 1200 1400 1600 1800 2000
= I T | I | | | I I
Sr L e e R A : ;. -
E
h]*f E]
c .
QL. — : e _
U | | | | | | | |
] 200 400 600 800 1200 1400 1600 1800 2000
c T T T T T T T T
2 : : : :
9 s 5 ' 5 5
< (hxf) & 5 S
Ox g b N
QD """" i I I I I I I []
] 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

.0
Look for peaks in %(h * f)

Alternative: combined derivative and smoothing filter

Ge(hx) = (55h) f

Differentiation property of convolution. o e
igma =

...

-
Signal

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

..

Q

S
Py

Kerne

| | | | | | I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
QO
SgS

Py

N’

>
~~
Convolution

| | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Derivative of Gaussian filters

2

x-direction y-direction

Laplacian of Gaussian

Consider

Sigma = 50

]
1200

]
1400

]
1600

]
1800

2000

| | | | |
0 200 400 600 800 1000 2000
]]]]]]]]]
82 .. _
h Laplauan of Gau55|an
O 12 ; operator ;
i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800
T T T T
5 §
= .
(Qh) xf gop]
é)ﬂ? {E 5
i | | |
0 200 400 600 800 1000 1200 1400 1600 1800

Where is the edge?

Zero-crossings of bottom graph

2000

2D edge detection filters

Laplacian of Gaussian

il
IR
‘ o
3:',’;':{,’:0:::::‘:.:%“0“":‘\\\ it
-

T,
s

Gaussian
1 _u2—|—v2
ho(u,v) = € 202
TO

V<is the Laplacian operator:

92 92
sz — 8:1:£ | 8y£

Summary on (linear) filters

* Smoothing
— Filter has positive values (also called coefficients)
— Sum to 1 = preserve brightness of constant regions
— Amount of smoothing is proportional to mask size

— Remove “high-frequency” components; “low-pass” filter

* Derivatives
— Opposite signs used to get high response in regions of high contrast

— Sum to 0 = no response in constant regions
— High absolute value at points of high contrast

The Canny edge-detection algorithm (1986)

 Compute gradient of smoothed image in both directions
* Discard pixels whose gradient magnitude is below a certain threshold
 Non-maximal suppression: identify local maxima along gradient direction

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

https://en.wikipedia.org/wiki/Lenna

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

https://en.wikipedia.org/wiki/Lenna

The Canny edge-detection algorithm (1986)

IvVfll = \/<§—£)2+ (35" : Edge strength

Convolve the image
with x and y derivatives
of Gaussian filter

Vi =V(G, *1)

The Canny edge-detection algorithm (1986)

Thresholding |Vf|

Threshold it (i.e., set to
0 all pixels who value is

below a given
threshold)

The Canny edge-detection algorithm (1986)

Take local maximum
along gradient direction

Thinning: non-maxima suppression (local-maxima detection)
along edge direction

Summary (things to remember)

* Image filtering (definition, motivation, applications)
* Moving average
e Linear filters and formulation: box filter, Gaussian filter
* Boundary issues
* Non-linear filters
— Median filter and its applications
* Edge detection
— Derivating filters (Prewitt, Sobel)
— Combined derivative and smoothing filters (deriv. of Gaussian)
— Laplacian of Gaussian

— Canny edge detector
 Book chapters 3.2, pages 108-109, 386-387,4.2.1,11.3.1

