
Lecture 03
Image Formation 2

Davide Scaramuzza



Lab Exercise 1 - Today afternoon

 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: implement an augmented reality wireframe cube
 Practice the perspective projection



Course Schedule update
For updates, slides, and additional material:  http://rpg.ifi.uzh.ch/teaching.html

Date Time Description of the lecture/exercise Lecturer

22.09.2016 10:15 - 12:00 01 – Introduction Scaramuzza

29.09.2016 10:15 - 12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza

06.10.2016 10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza

14:15 – 16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq

13.10.2016 10:15 - 12:00

14:15 – 16:00

04 - Filtering & Edge detection 

Lab Exercise 2: PnP problem
Scaramuzza

Titus Cieslewski/Henri Rebecq

20.10.2016 10:15 - 12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza

14:15 – 16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq

27.10.2016 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza

3.11.2016 10:15 - 12:00

14:15 – 16:00

07 - Multiple-view geometry 1

Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation
Scaramuzza

Titus Cieslewski/Henri Rebecq

10.11.2016 10:15 - 12:00

14:15 – 16:00

08 - Multiple-view geometry 2

Exercise 5: Eight-point algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

17.11.2016 10:15 - 12:00

14:15 – 16:00

09 - Multiple-view geometry 3

Exercise 6: P3P algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

24.11.2016 10:15 - 12:00

14:15 – 16:00

10 - Dense 3D Reconstruction (Multi-view Stereo)

Exercise 7: Intermediate VO Integration
Scaramuzza

Titus Cieslewski/Henri Rebecq

01.12.2016 10:15 - 12:00

14:15 – 16:00

11 - Optical Flow and Tracking  (Lucas-Kanade)

Exercise 8: Lucas-Kanade tracker
Scaramuzza

Titus Cieslewski/Henri Rebecq

08.12.2016 10:15 - 12:00 12 – Place recognition Scaramuzza

14:15 – 16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq

10:15 - 12:00 13 – Visual inertial fusion Scaramuzza

15.12.2016 14:15 – 16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq

22.12.2016 10:15 - 12:00

14:15 – 16:00

14 - Event based vision + lab visit and live demonstrations

Exercise 11: final VO integration 
Scaramuzza

Titus Cieslewski/Henri Rebecq

http://rpg.ifi.uzh.ch/teaching.html


Goal of today’s lecure
• Study the algorithms behind robot-position control and augmented reality



Outline of this lecture

• Camera calibration

– Non-linear algorithms: P3P and PnP for calibrated 
cameras

• From general 3D objects

– Linear algorithms (DLT) for uncalibrated cameras

• From 3D objects 

• From planar grids

• Non conventional camera models



Camera

world

Landmarks

Image

Pose determination from n Points (PnP)  Problem

• Assumption: camera intrinsic parameters are known

• Given known 3D landmarks in the world frame and given their image 
correspondences in the camera frame, determine the 6DOF pose of the camera 
in the world frame (including the intrinsinc parameters if uncalibrated)



How Many Points are Enough?

• 1 Point: infinitely many solutions.

• 2 Points: infinitely many solutions, but bounded.

• 3 Points: 
– (no 3 collinear) finitely many solutions (up to 4).

• 4 Points:
– Unique solution
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Algebraic Approach: reduce to 4th order equation
(Fischler and Bolles, 1981)
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• With 3 points, it generates up to 4 valid solutions.

• A 4th point can be used to disambiguate the solutions.

• Can be extended to 𝑛 points; unique solution



Visual Odometry Application: camera pose estimation 
from known 3D-2D correspondences

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

Current frame
New keyframe



AR Application: Microsoft HoloLens



Outline of this lecture

• Camera calibration

– Non-linear algorithms: P3P and PnP for calibrated 
cameras

• From general 3D objects

– Linear algorithms (DLT) for uncalibrated cameras

• From 3D objects 

• From planar grids

• Non conventional camera models



Camera calibration
• Calibration is the process to determine the intrinsic and extrinsic parameters of the 

camera model

• A method proposed in 1987 by Tsai consists of measuring the 3D position of 𝑛 ≥ 6 control 
points on a three-dimensional calibration target and the 2D coordinates of their projection 
in the image. This problem is also called “Resection”, or “Perspective from 𝒏 Points”, or 
“Camera pose from 3D-to-2D correspondences”, and is one of the most widely used 
algorithms in Computer Vision and Robotics

• Solution: The intrinsic and extrinsic parameters are computed directly from the 
perspective projection equation; let’s see how!
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3D position of control points is assigned
in a reference frame specified by the user



Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)
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Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)
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Camera calibration: Direct Linear Transform (DLT)

Our goal is to compute K, R, and T that satisfy the perspective projection equation (we 
neglect the radial distortion)

where           is the i-th row of M
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Camera calibration: Direct Linear Transform (DLT)
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:
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Camera calibration: Direct Linear Transform (DLT)
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:

Camera calibration: Direct Linear Transform (DLT)
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Minimal solution

• 𝑄(2𝑛×12) should have rank 11 to have a unique (up to a scale) non-trivial solution 𝑀

• Each 3D-to-2D point correspondence provides 2 independent equations

• Thus, 5+
1

2
point correspondences are needed (in practice 6 point correspondences!)

Over-determined solution

• n ≥ 6 points

• A solution is to minimize | 𝑄𝑀 |2 subject to the constraint | 𝑀 |2 = 1.
It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄 (because it is the 
unit vector 𝑥 that minimizes | 𝑄𝑥 |2 = 𝑥𝑇𝑄𝑇𝑄𝑥). 

• Matlab instructions:

• [U,S,V] = svd(Q);

• M = V(:,12);

Camera calibration: Direct Linear Transform (DLT)
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Degenerate configurations

1. Points lying on a plane and/or along a single line passing through the projection center

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)

Camera calibration: Direct Linear Transform (DLT)
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that 

Camera calibration: Direct Linear Transform (DLT)
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that 

• However, notice that we are not enforcing the constraint that 𝑅 is 
orthogonal, i.e., 𝑅 ∙ 𝑅𝑇= 𝐼

• To do this, we can use the so-called QR factorization of 𝑀, which 
decomposes 𝑀 into a 𝑅 (orthogonal), T, and an upper triangular matrix 
(i.e., 𝐾)

Camera calibration: Direct Linear Transform (DLT)
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Tsai’s (1987) Calibration example
1. Edge detection

2. Straight line fitting to the detected edges

3. Intersecting the lines to obtain the images corners (corner accuracy <0.1 pixels!)

4. Use more than 6 points (ideally more than 20)

What are the «skew» 
and «residuals»?

Why is this ratio 
not 1?



Tsai’s (1987) Calibration example
• The original Tsai calibration (1987) used to consider two different focal lengths 𝛼𝑢, 𝛼𝑣

(which means that the pixels are not squared) and a skew factor (𝐾12 ≠ 0, which means 
the pixes are parallelograms instead of rectangles) to account for possible misalignments 
between image plane and lens

• Most today’s cameras are well manufactured, thus, we can assume  
𝛼𝑢

𝛼𝑣
= 1 and 𝐾12 = 0

• What is the residual? The residual is the average “reprojection error”. The reprojection 
error is computed as the distance (in pixels) between the observed pixel point and the 
camera-reprojected 3D point. The reprojection error gives as a quantitative measure of the 
accuracy of the calibration (ideally it should be zero).



DLT algorithm applied to mutual robot localization

In this case, the camera has been pre-calibrated (i.e., K is known). Can you 
think of how the DLT algorithm could be modified so that only R and T need 
to determined and not K?



Course Schedule update
For updates, slides, and additional material:  http://rpg.ifi.uzh.ch/teaching.html

Date Time Description of the lecture/exercise Lecturer

22.09.2016 10:15 - 12:00 01 – Introduction Scaramuzza

29.09.2016 10:15 - 12:00 02 - Image Formation 1: perspective projection and camera models Scaramuzza

06.10.2016 10:15 - 12:00 03 - Image Formation 2: camera calibration algorithms Scaramuzza

14:15 – 16:00 Lab Exercise 1: Augmented reality wireframe cube Titus Cieslewski/Henri Rebecq

13.10.2016 10:15 - 12:00

14:15 – 16:00

04 - Filtering & Edge detection 

Lab Exercise 2: PnP problem
Scaramuzza

Titus Cieslewski/Henri Rebecq

20.10.2016 10:15 - 12:00 05 - Point Feature Detectors 1: Harris detector Scaramuzza

14:15 – 16:00 Lab Exercise 3: Harris detector + descriptor + matching Titus Cieslewski/Henri Rebecq

27.10.2016 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK Scaramuzza

3.11.2016 10:15 - 12:00

14:15 – 16:00

07 - Multiple-view geometry 1

Lab Exercise 4: Stereo vision: rectification, epipolar matching, disparity, triangulation
Scaramuzza

Titus Cieslewski/Henri Rebecq

10.11.2016 10:15 - 12:00

14:15 – 16:00

08 - Multiple-view geometry 2

Exercise 5: Eight-point algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

17.11.2016 10:15 - 12:00

14:15 – 16:00

09 - Multiple-view geometry 3

Exercise 6: P3P algorithm and RANSAC
Scaramuzza

Titus Cieslewski/Henri Rebecq

24.11.2016 10:15 - 12:00

14:15 – 16:00

10 - Dense 3D Reconstruction (Multi-view Stereo)

Exercise 7: Intermediate VO Integration
Scaramuzza

Titus Cieslewski/Henri Rebecq

01.12.2016 10:15 - 12:00

14:15 – 16:00

11 - Optical Flow and Tracking  (Lucas-Kanade)

Exercise 8: Lucas-Kanade tracker
Scaramuzza

Titus Cieslewski/Henri Rebecq

08.12.2016 10:15 - 12:00 12 – Place recognition Scaramuzza

14:15 – 16:00 Exercise 9: Recognition with Bag of Words Titus Cieslewski/Henri Rebecq

10:15 - 12:00 13 – Visual inertial fusion Scaramuzza

15.12.2016 14:15 – 16:00 Exercise 10: Pose graph optimization and Bundle adjustment Titus Cieslewski/Henri Rebecq

22.12.2016 10:15 - 12:00

14:15 – 16:00

14 - Event based vision + lab visit and live demonstrations

Exercise 11: final VO integration 
Scaramuzza

Titus Cieslewski/Henri Rebecq

http://rpg.ifi.uzh.ch/teaching.html


Lab Exercise 2 - Today afternoon

 Room ETH HG E 33.1 from 14:15 to 16:00

 Work description: your first camera motion estimator using DLT



Outline of this lecture

• Camera calibration

– Non-linear algorithms: P3P and PnP for calibrated 
cameras

• From general 3D objects

– Linear algorithms (DLT) for uncalibrated cameras

• From 3D objects 

• From planar grids

• Non conventional camera models



Camera calibration from planar grids: homographies

• Tsai calibration is based on DLT algorithm, which requires points not to lie 
on the same plane

• An alternative method (today’s standar camera calibration method) consists 
of using a planar grid (e.g., a chessboard) and a few images of this shown at 
different orientations

• This method was invented by Zhang (1999)



• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion)

• Since the points lie on a plane, we have 𝑍𝑤 = 0
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• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion)

• Since the points lie on a plane, we have 𝑍𝑤 = 0

where           is the i-th row of 𝐻
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Camera calibration from planar grids: homographies

This matrix is called 
Homography
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Conversion back from homogeneous coordinates to pixel coordinates leads to:

where P = (𝑋𝑤, 𝑌𝑤, 1)
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By re-arranging the terms, we obtain

For 𝑛 points, we can stack all these equations into a big matrix:
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Camera calibration from planar grids: homographies
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Minimal solution

• 𝑄(2𝑛×9) should have rank 8 to have a unique (up to a scale) non-trivial solution 𝐻

• Each point correspondence provides 2 independent equations

• Thus, a minimum of 4 non-collinear points is required

Over-determined solution

• n ≥ 4 points

• It can be solved through Singular Value Decomposition (SVD)

Solving for K, R and T
• H can be decomposed by recalling that 

0HQ 
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Types of 2D Transformations 

This transformation is called 
Homography



Camera calibration from planar grids: homographies

• Demo of Camera Calibration Toolbox for Matlab (world’s standard toolbox for 

calibrating perspective cameras): 
http://www.vision.caltech.edu/bouguetj/calib_doc/

http://www.vision.caltech.edu/bouguetj/calib_doc/


Application of calibration from planar grids
• Today, there are thousands of application of this algorithm:

– Augmented reality

AR Tags: http://april.eecs.umich.edu/wiki/index.php/April_Tags

http://april.eecs.umich.edu/wiki/index.php/April_Tags


Application of calibration from planar grids

AR Tags: http://april.eecs.umich.edu/wiki/index.php/April_Tags

ETH, Pollefeys group, 2010RPG (us) 2013

• Today, there are thousands of application of this algorithm:

– Augmented reality

– Robotics (beacon-based localization)

• Do we need to know the metric size of the tag? 
– For Augmented Reality?

– For Robotics?

http://april.eecs.umich.edu/wiki/index.php/April_Tags


If the camera is calibrated, only R and T need to be determined. In this 
case, should we use DLT (linear system of equations) or PnP (non 
linear)?

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’09

DLT vs PnP: Accuracy vs noise



DLT vs PnP: Accuracy vs number of points

If the camera is calibrated, only R and T need to be determined. In this 
case, should we use DLT (linear system of equations) or PnP (non 
linear)?

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’09



DLT vs PnP: Timing

Lepetit, Moreno Noguer, Fua, EPnP: An Accurate O(n) Solution to the PnP Problem, IJCV’09



Concepts to remember
• Camera calibration

– DLT algorithm 

– Calibration from planar grids

• Readings: 

– Chapter 2.1 of Szeliski book



Outline of this lecture

• Camera calibration

– From 3D objects 

– From planar grids

• Non conventional camera models



Omnidirectional Cameras

Rome, St. Peter’s square



Overview on Omnidirectional Cameras

Dioptric Catadioptric Polydioptric

~180º FOV

Wide FOV dioptric 

cameras (e.g. fisheye)

>180º FOV

Catadioptric cameras (e.g. 

cameras and mirror systems)

~360º FOV

Polydioptric cameras (e.g. 

multiple overlapping cameras)

Omnidirectional sensors come in many varieties, but by definition must have 
a wide field-of-view.



Catadioptric Cameras



Nikon Coolpix

FC-E9 Lens

360º×183º

Canon EOS-1

Sigma Lens

360º×180º

Dioptric Cameras (fisheye)



Example:

http://rpg.ifi.uzh.ch/fov.html
Z. Zhang et al. (RPG), Benefit of Large Field-of-View Cameras for Visual Odometry, ICRA 2016

Same scene viewed by three different camera models:

http://rpg.ifi.uzh.ch/fov.html


Applications



Applications

(Courtesy of Daimler)

• Daimler, Bosch: for car driving assistance 
systems



Applications

• Daimler, Bosch: for car driving assistance 
systems

• Meteorology: for sky observation



Applications

• Daimler, Bosch: for car driving assistance 
systems

• Meteorology: for sky observation

• Endoscopic Imagery: distortion removal (for 
the surgeon)

(Courtesy of Endo Tools Therapeutics, Brussels)



Applications

• Daimler, Bosch: for car driving assistance 
systems

• Meteorology: for sky observation

• Endoscopic Imagery: distortion removal (for 
the surgeon)

• RoboCup domain



Applications

• Daimler, Bosch: for car driving assistance 
systems

• Meteorology: for sky observation

• Endoscopic Imagery: distortion removal (for 
the surgeon)

• RoboCup domain

• Google Street View



• mirror

•  perspective camera

Catadioptric cameras



Camera Models

Central catadioptric cameras

• mirror

• camera

• single effective viewpoint

(surface of revolution of a conic)

Catadioptric cameras



• hyperbola + perspective camera

• parabola + orthographic lens

Types of central catadioptric cameras

F1

F2

F1

Catadioptric cameras



68

Why is it important that the camera be central (i.e., 
have a single effective viewpoint)?

• We can unwrap parts or all omnidirectional image into a perspective one

http://www.cis.upenn.edu/~kostas/omnigrasp.html
http://www.cis.upenn.edu/~kostas/omnigrasp.html


Why is it important that the camera be central (i.e., 
have a single effective viewpoint)?

69

• We can unwrap parts or all omnidirectional image into a perspective one

• We can transform image points normalized vectors in the unit sphere

• We can apply standard algorithms valid for perspective geometry.



Omnidirectional camera calibration toolbox for 
Matlab (Scaramuzza, 2006)

https://sites.google.com/site/scarabotix/ocamcalib-toolbox

• World’s standard toolbox for calibrating omnidirectional cameras (used at NASA, 
Daimler, IDS, Volkswagen, Audi, VW, Volvo, …)

• Main applications are in robotics, endoscopy, video-surveillance, sky observation, 
automotive (Audi, VW, Volvo, …)

https://sites.google.com/site/scarabotix/ocamcalib-toolbox


Equivalence between Perspective and Omnidirectional 
model



Equivalence between Perspective and Omnidirectional 
model

Measures the ray direction (angles).



Equivalence between Perspective and Omnidirectional model:
the Spherical Model

Measures the ray direction (angles).



Representation of image points on the unit sphere
Always possible after the camera has been calibrated!



Summary (things to remember)

• P3P and PnP problems

• DLT algorithm

• Calibration from planar grid (Homography algorithm)

• Omnidirectional cameras

– Central and non central projection 

– Dioptric

– Catadioptric (working principle of conic mirrors)

• Unified (spherical) model for perspective and 
omnidirectional cameras


