

Vision Algorithms for Mobile Robotics

01 - Introduction

Davide Scaramuzza

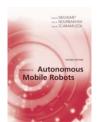
Today's Class

- About me
- What is Computer Vision?
- Example of Vision Applications
- Specifics of this course
- Overview of Visual Odometry

Who am I?

Current positions

- Professor of Robotics at the University of Zurich
- Adjunct Professor of ETH Master in Robotics, Systems, and Control



Education

- **ETH** > PhD from ETH Zurich with Roland Siegwart
- Post-doc at the University of Pennsylvania with Vijay Kumar

Highlights

- Coordinator of the European project *sFly* on visual navigation of micro drones
- Book "Autonomous Mobile Robots," 2011, MIT Press

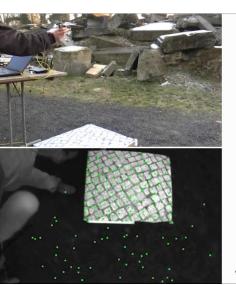
Research Background

Computer Vision

- Visual Odometry and SLAM
- Sensor fusion
- Camera calibration

Autonomous Robot Navigation

- Self driving cars
- Micro Flying Robots



ROBOTICS & PERCEPTION GROUP

http://rpg.ifi.uzh.ch Andreasstrasse 15, 2nd floor

My Current Research

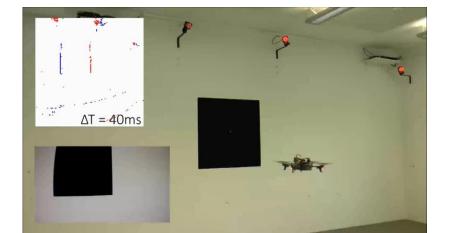
Visual-Inertial State Estimation

Dense Reconstruction

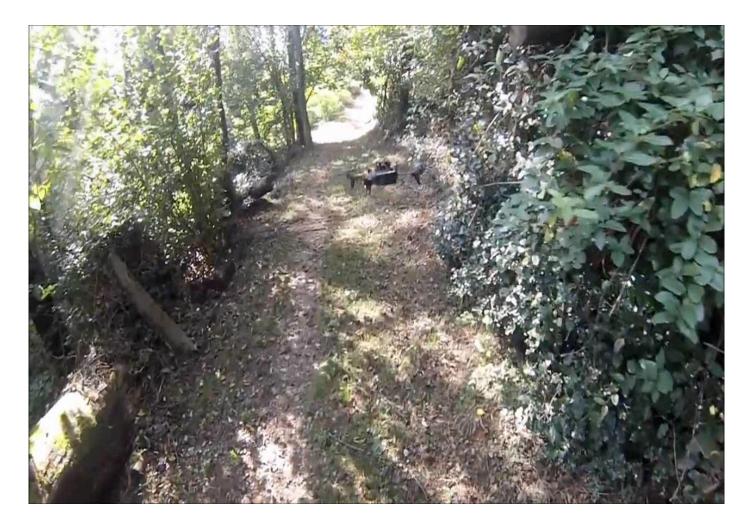
Vision-based Navigation of Flying Robots

Event-based Vision for Aggressive Flight





Recognizing and Following Forest Trails using Deep Learning



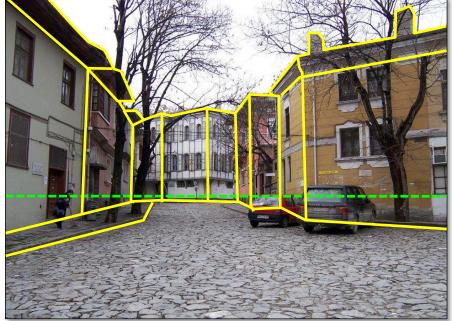
A. Giusti et al. A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots, IEEE Robotics and Automation Letters, 2016. Best AAAI Video Award finalist, featured on BBC News and Discovery Channel

Today's Class

- What is Computer Vision?
- Example of Vision Applications
- Specifics of this course
- Overview of Visual Odometry

What is computer vision?

Automatic extraction of "meaningful" information from images and videos



Semantic information

Geometric information (this course)

Vision Demo?

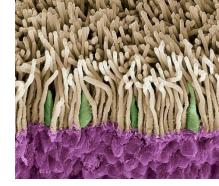
we're not quite there yet....

Terminator 2

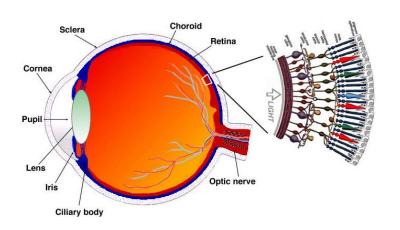
Why study computer vision?

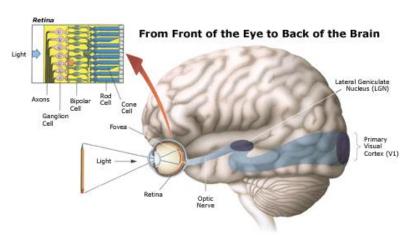
- Relieve humans of boring, easy tasks
- Enhance human abilities: human-computer interaction, visualization, augmenter reality (AR)
- Perception for autonomous robots
- Organize and give access to visual content
- Vision is difficult
 - Half of primate cerebral cortex is devoted to visual processing

Vision in humans



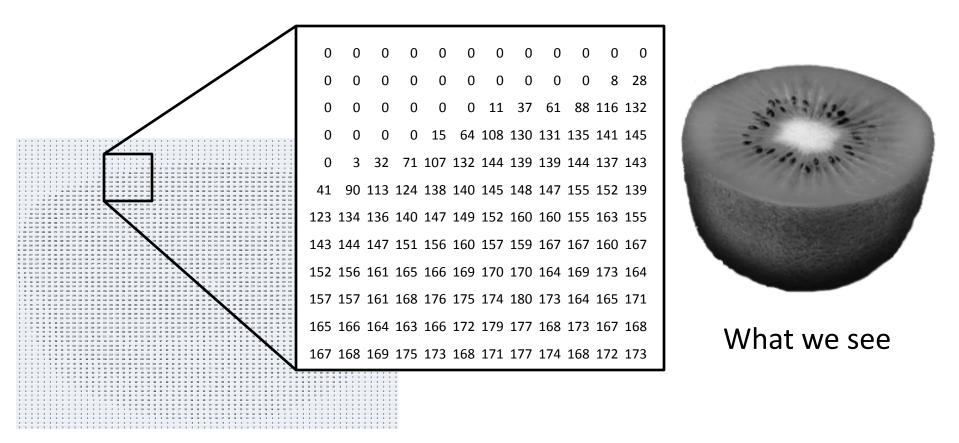
- Vision is our most powerful sense
- Retina is ~1000mm². Contains millions of photoreceptors (120 mil. rods and 7 mil. Cones for color sampling)
- Provides enormous amount of information: data-rate of ~3GBytes/s
 - a large proportion of our brain power is dedicated to processing the signals from our eyes
- Each eye has the equivalent of 500 Megapixels resolution





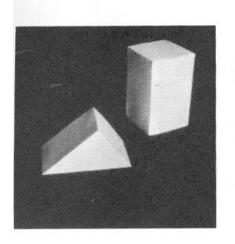
Why is vision hard?

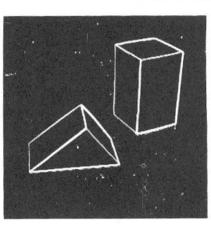
How do we go from an array of number to recognizing a fruit?



What a computer sees

Origins of computer vision



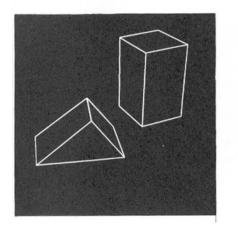


-23-4445(a-d)

(a) Original picture.

(b) Differentiated picture.

L. G. Roberts, *Machine Perception of* <u>*Three Dimensional Solids*</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

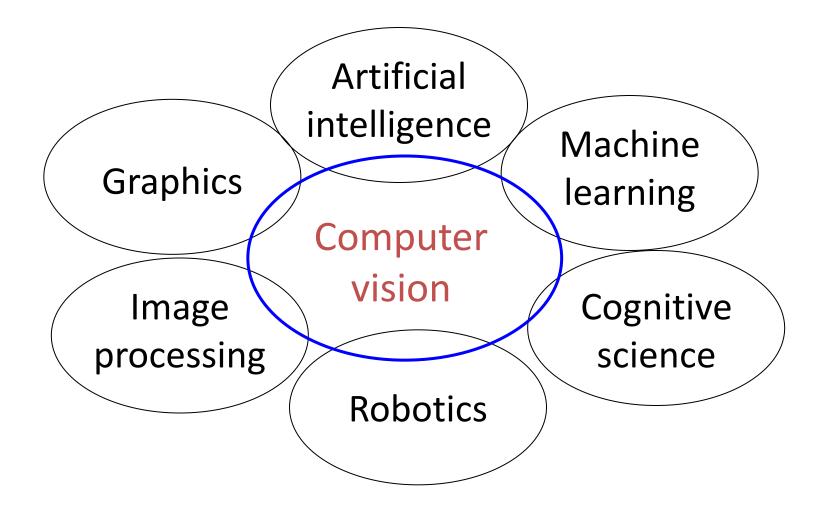


He is the inventor of ARPANET, the current Internet

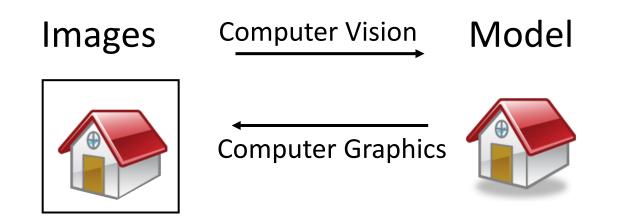
(c) Line drawing.

(d) Rotated view.

Related disciplines



Computer Vision vs Computer Graphics



Inverse problems: analysis and synthesis.

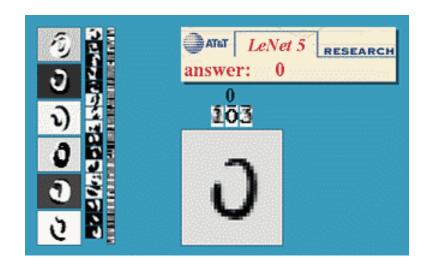
Today's Class

- About me
- What is Computer Vision?
- Examples of Vision Applications
- Specifics of this course
- Image Formation

Optical character recognition (OCR)

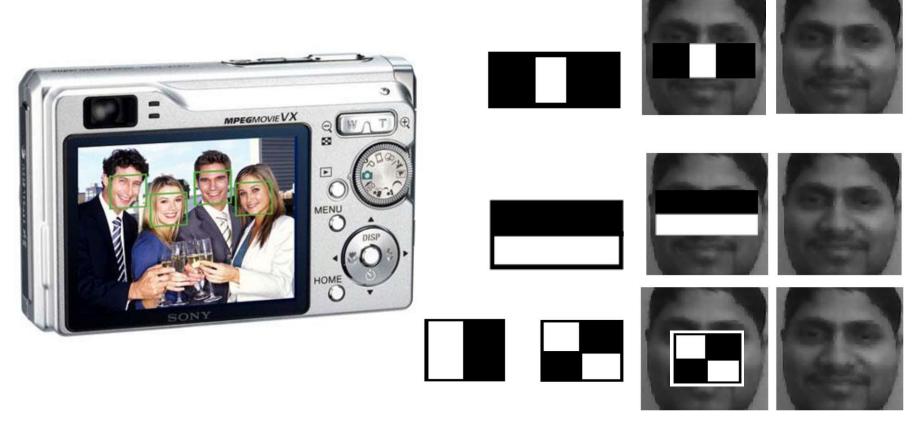
Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software



Digit recognition, AT&T labs, using CNN, by Yann LeCun (1993) <u>http://yann.lecun.com/</u> License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection



All new digital cameras and smartphones now

P. Viola, M. Jones: Robust Real-time Object Detection, Int. Journal of Computer Vision 2001

Object recognition (in mobile phones)

- This is becoming real:
 - Lincoln Microsoft Research
 - Point & Find, Nokia
 - SnapTell.com (Amazon)
 - Google Goggles

Special effects: shape and motion capture

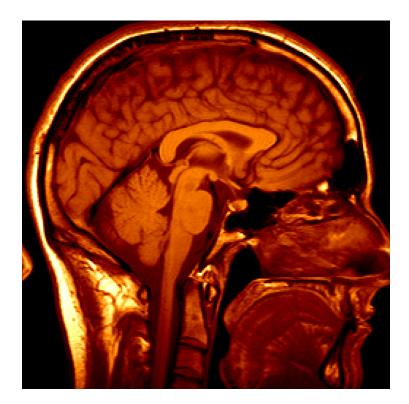
Sports

Augmented Reality

The AC Liveline system is bringing augmented reality to sailing.

2013 America's Cup

Medical imaging



3D imaging MRI, CT Image guided surgery Grimson et al., MIT

3D Reconstruction by Multi-View Stereo

YouTube Video

3D Reconstruction: Multi-View Stereo

YouTube Video

Microsoft Photosynth

Prove Photosynth Prove Pho

The **Photosynth Technology Preview** is a taste of the newest - and, we hope, most exciting - way to **view photos** on a computer. Our software takes a large collection of photos of a place or an object, analyzes them for similarities, and then displays the photos in a reconstructed **three-dimensional space**, showing you how each one relates to the next.

http://labs.live.com/photosynth/

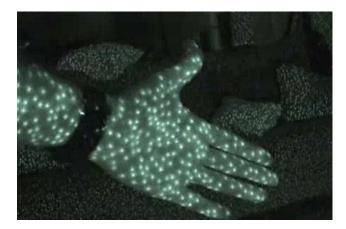
Based on <u>Photo Tourism technology</u> developed by Noah Snavely, Steve Seitz, and Rick Szeliski

• EPFL startup – Now a company

Automotive safety

- <u>Mobileye</u>: Vision systems in high-end Tesla, BMW, GM, Volvo models
 - Pedestrian collision warning
 - Forward collision warning
 - Lane departure warning
 - Headway monitoring and warning

Vision-based interaction: Xbox Kinect





<u>NASA'S Mars Exploration Rover Spirit</u> captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (made by JPL) used for several tasks

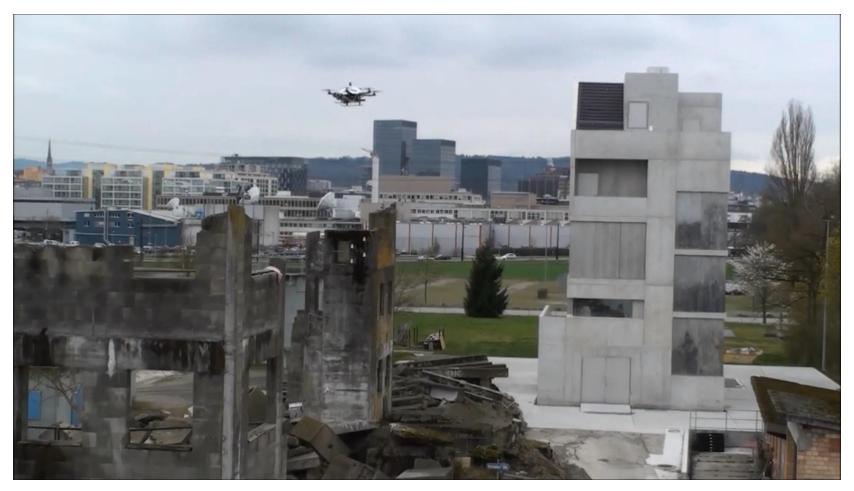
- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "<u>Computer Vision on Mars</u>" by Matthies et al.

Dacuda's mouse scanner

World's first mouse scanner, Distributed by LG, Logitech, etc.

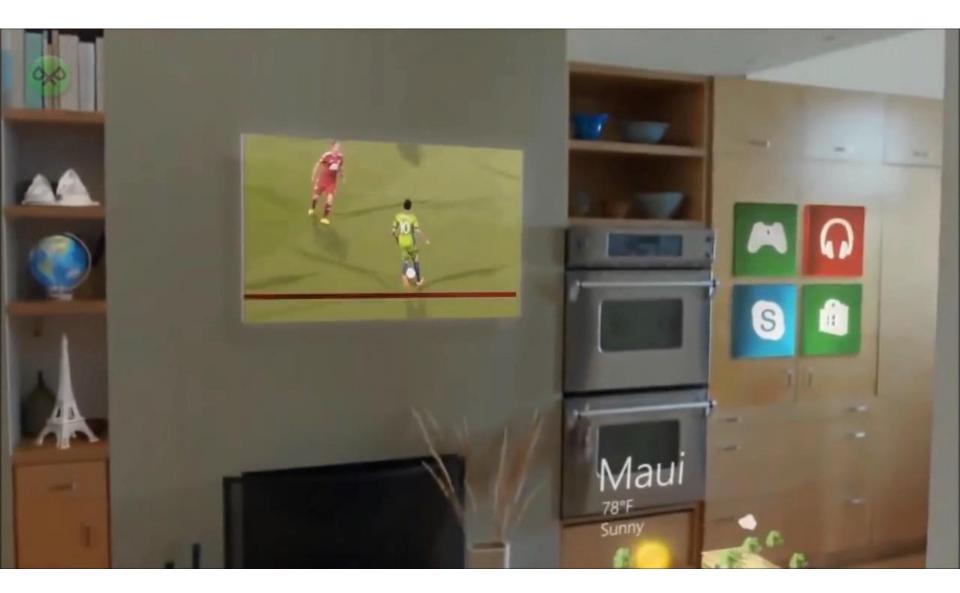
Visual Odometry for Autonomous Drone Navigation

Vision-based flight in GPS-denied Environments (EU project SFLY)

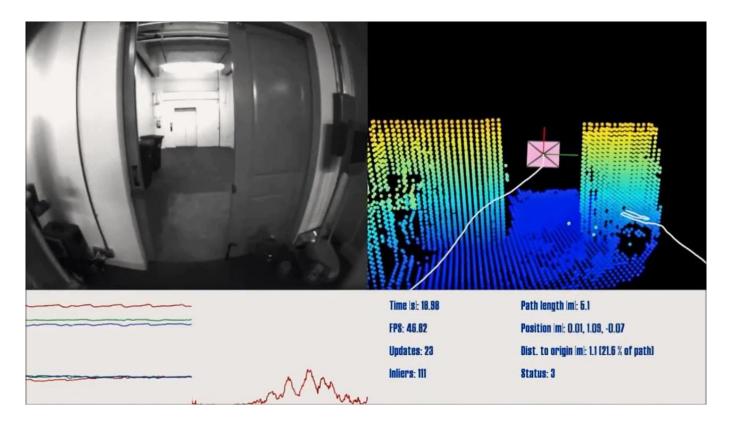


[Scaramuzza et al., Vision-Controlled Micro Flying Robots: from System Design to Autonomous Navigation and Mapping in GPS-denied Environments, IEEE RAM, September, 2014

Microsoft HoloLens



Google Tango



Current state of the art

- These were just few examples of current systems
 - Many of these are less than 5 years old
- Computer Vision is a very active field of research, and rapidly changing
 - Many new applications and phone apps in the next few years
- To learn more about vision applications and companies
 - <u>David Lowe</u> maintains an excellent overview of vision companies
 - <u>http://www.cs.ubc.ca/spider/lowe/vision.html</u>

Google Tango Demo

Today's Class

- About me
- What is Computer Vision?
- Example of Vision Applications
- Specifics of this course
- Overview of Visual Odometry

Organization of this Course

> Lectures:

- 10:15 to 12:00 every week
- Room: ETH LFW C5, Universitätstrasse 2

> Exercises:

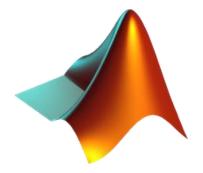
- 14:15 to 16:00: Starting from the 3rd week. Every 1-2 weeks.
- Room: HG E 33.1
- Official course website: <u>http://rpg.ifi.uzh.ch/teaching.html</u>
 - Check it out for the PDFs of the lecture slides and updates

Course Schedule

For updates, slides, and additional material: <u>http://rpg.ifi.uzh.ch/teaching.html</u>

Lecture #	Date	Time	Description of the lecture/exercise	Lecturer
01	22.09.2016	10:15 - 12:00	01 – Introduction	Scaramuzza
02	29.09.2016	10:15 - 12:00	02 - Image Formation 1: perspective projection and camera models	Scaramuzza
03	06.10.2016	10:15 - 12:00	03 - Image Formation 2: camera calibration algorithms	Scaramuzza
		<mark>14:15 – 16:00</mark>	Lab Exercise 1: Augmented reality wireframe cube	Titus Cieslewski/Henri Rebecq
04	13.10.2016	10:15 - 12:00	04 - Filtering & Edge detection	Scaramuzza
05	20.10.2016	10:15 - 12:00	05 - Point Feature Detectors 1: Harris detector	Scaramuzza
		<mark>14:15 – 16:00</mark>	Lab Exercise 2: Harris detector + descriptor + matching	<mark>Titus Cieslewski/Henri Rebecq</mark>
06	27.10.2016	10:15 - 12:00	06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK	Scaramuzza
07	3.11.2016	10:15 - 12:00	07 - Multiple-view geometry 1: Epipolar geometry and stereo	Scaramuzza
		<mark>14:15 – 16:00</mark>	Lab Exercise 3: Stereo vision: rectification, epipolar matching, disparity, triangulation	<mark>Titus Cieslewski/Henri Rebecq</mark>
08	10.11.2016	10:15 - 12:00	08 - Multiple-view geometry 2 (Part I): Two-view Structure from Motion	Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 4: Eight-point algorithm and RANSAC	Titus Cieslewski/Henri Rebecq
09	17.11.2016	10:15 - 12:00	09 - Multiple-view geometry 2 (Part II): Two-view Structure from Motion	Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 5: P3P algorithm and RANSAC	Titus Cieslewski/Henri Rebecq
10	24.11.2016	10:15 - 12:00	10 - Dense 3D Reconstruction (Multi-view Stereo)	Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 6: Intermediate VO Integration	Titus Cieslewski/Henri Rebecq
11	01.12.2016	10:15 - 12:00	11 - Optical Flow and Tracking (Lucas-Kanade)	6
		<mark>14:15 – 16:00</mark>	Exercise 7: Lucas-Kanade tracker	Scaramuzza Titus Cieslewski/Henri Rebecq
12	08.12.2016	10:15 - 12:00	12 – Place recognition	Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 8: Recognition with Bag of Words	Titus Cieslewski/Henri Rebecq
13	15.12.2016	10:15 - 12:00	13 – Visual inertial fusion	
13				Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 9: Pose graph optimization and Bundle adjustment	Titus Cieslewski/Henri Rebecq
14	22.12.2016	10:15 - 12:00	14 - Event based vision + lab visit and live demonstrations	Scaramuzza
		<mark>14:15 – 16:00</mark>	Exercise 10: final VO integration	Titus Cieslewski/Henri Rebecq

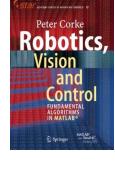
Exercises



- Every 1-2 weeks (check out course schedule)
- Bring your own laptop
- Each exercise will consist of coding a building block of a visual odometry pipeline. At the end of the course there will be one additional exercise dedicated to assembling all the blocks together into a full pipeline.
- Have Matlab pre-installed!
 - ETH
 - Download: <u>https://idesnx.ethz.ch/</u>
 - UZH
 - Download: http://www.id.uzh.ch/dl/sw/angebote 4.html
 - Info on how to setup the license can be found here: <u>http://www.s3it.uzh.ch/software/matlab/</u>
 - Please install all the toolboxes included in the license.

Recommended Textbook

- Robotics, Vision and Control: Fundamental Algorithms, by Peter Corke 2011. The PDF of the book can be freely downloaded (only with ETH VPN) from <u>Springer</u> or alternatively from <u>Library Genesys</u>
- Computer Vision: Algorithms and Applications, by Richard Szeliski, 2009. Can be freely downloaded from the author webpage: <u>http://szeliski.org/Book/</u>
- > Other books:
 - An Invitation to 3D Vision: Y. Ma, S. Soatto, J. Kosecka, S.S. Sastry
 - Multiple view Geometry: R. Hartley and A. Zisserman



Instructors

- Lectures
 - Davide Scaramuzza: sdavide (at) ifi (dot) uzh (dot) ch

- Exercises
 - Titus Cieslewski: titus (at) ifi (dot) uzh (dot) ch

- Henri Rebecq: rebecq (at) ifi (dot) uzh (dot) ch

Prerequisites

- Linear algebra
- Matrix calculus
- No prior knowledge of computer vision and image processing required

Grading and Exam

- **70%** of the final grade is based on the oral exam
- **30%** on a project completion. By the end of the course you will have to hand in a working VO pipeline. Group works possible.
- In addition, strong class participation can offset negative performance in any one of the above components.

Class Participation

- Class participation includes
 - showing up
 - being able to articulate key points from last lecture

Course Goals

- **High-level goals**: learn to implement current visual odometry pipelines used in mobile robots (drones and cars), and Virtual-reality (VR) and Augmented reality (AR) products: e.g., Google Tango, Microsoft HoloLens
- **Low-level goals**: learn the fundamental computer vision algorithms used in mobile robotics, in particular: feature extraction, multiple view geometry, dense reconstruction, object tracking, image retrieval, visual-inertial fusion, event-based vision.

Today's Class

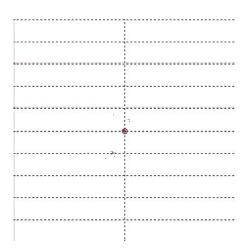
- About me
- What is Computer Vision?
- Example of Vision Applications
- Specifics of this course
- Overview of Visual Odometry

What is Visual Odometry (VO) ?

VO is the process of incrementally estimating the pose of the vehicle by examining the changes that motion induces on the images of its onboard cameras

input

Image sequence (or video stream) from one or more cameras attached to a moving vehicle



output

 $R_0,\,R_1,\ldots,R_i$

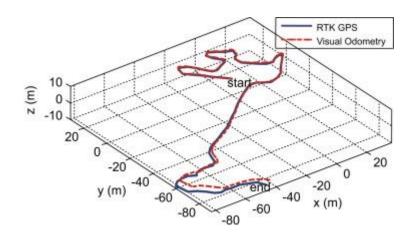
 t_0, t_1, \dots, t_i

Camera trajectory (3D structure is a plus)

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

Why VO?

- Contrary to wheel odometry, VO is not affected by wheel slippage on uneven terrain or other adverse conditions.
- More accurate trajectory estimates compared to wheel odometry (relative position error 0.1% – 2%)
- > VO can be used as a complement to
 - wheel encoders (wheel odometry)
 - GPS
 - inertial measurement units (IMUs)
 - Iaser odometry
- Crucial for flying, walking, and underwater robots



Assumptions

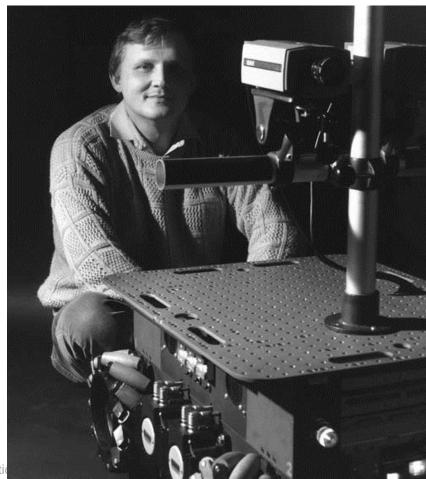
- Sufficient illumination in the environment
- > Dominance of static scene over moving objects
- > Enough texture to allow apparent motion to be extracted
- Sufficient scene overlap between consecutive frames

Is any of these scenes good for VO? Why?

izh.ch

A Brief history of VO

1980: First known VO real-time implementation on a robot by Hans Moraveck PhD thesis (NASA/JPL) for Mars rovers using one sliding camera (*sliding stereo*).



A Brief history of VO

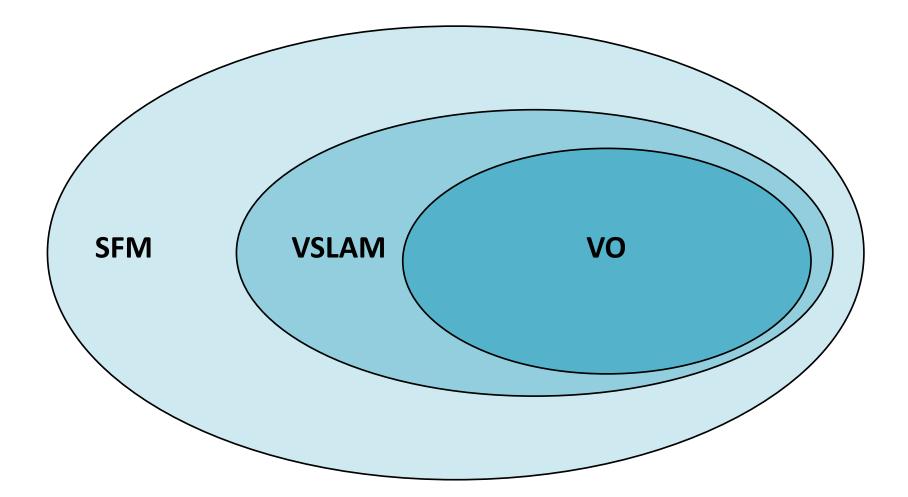
- 1980: First known VO real-time implementation on a robot by Hans Moraveck PhD thesis (NASA/JPL) for Mars rovers using one sliding camera (*sliding stereo*).
- > 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of the 2004 mission to Mars
- 2004: VO was used on a robot on another planet: Mars rovers Spirit and Opportunity (see seminal paper from <u>NASA/JPL, 2007</u>)
- 2004. VO was revived in the academic environment by David Nister's «Visual Odometry» paper. The term VO became popular.

More about history and tutorials

Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 Years and Fundamentals, IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011. <u>PDF</u>

Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, Robustness, and Applications, IEEE Robotics and Automation Magazine, Volume 19, issue 1, 2012. <u>PDF</u>

VO vs VSLAM vs SFM



Structure from Motion (SFM)

SFM is more general than VO and tackles the problem of 3D reconstruction and 6DOF pose estimation from **unordered image sets**

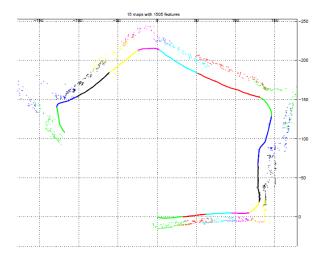
Reconstruction from 3 million images from Flickr.com Cluster of 250 computers, 24 hours of computation! Paper: "Building Rome in a Day", ICCV'09

VO vs SFM

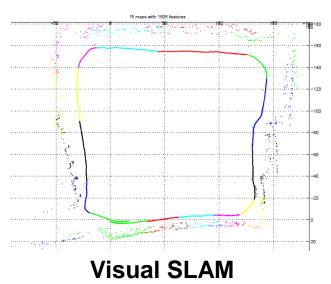
- > VO is a **particular case** of SFM
- > VO focuses on estimating the 3D motion of the camera sequentially (as a new frame arrives) and in real time.
- > Terminology: sometimes SFM is used as a synonym of VO

VO vs. Visual SLAM

- > VO is SLAM before closing the loop!
- > VO is a **building block** of SLAM
- > VO only aims to the **local consistency** of the trajectory
- SLAM aims to the global consistency of the trajectory and of the map
- The choice between VO and V-SLAM depends on the tradeoff between performance and consistency, and simplicity in implementation.
- > VO trades off consistency for real-time performance, without the need to keep track of all the previous history of the camera.



Visual odometry



VO Working Principle

1. Compute the relative motion T_k from images I_{k-1} to image I_k

$$T_k = \begin{bmatrix} R_{k,k-1} & t_{k,k-1} \\ 0 & 1 \end{bmatrix}$$

2. Concatenate them to recover the full trajectory

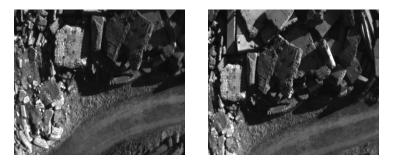
$$C_n = C_{n-1}T_n$$

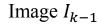
3. An optimization over the last *m* poses can be done to refine locally the trajectory (Pose-Graph or Bundle Adjustment)

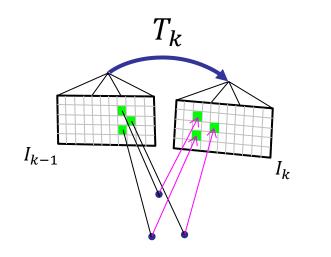


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

How do we estimate the relative motion T_k ?







 $\boldsymbol{T_{k}} = \arg\min_{\mathbf{T}} \iint_{\bar{\mathcal{R}}} \rho \left[I_{k} \left(\pi \left(\mathbf{T} \cdot \pi^{-1}(\mathbf{u}, d_{\mathbf{u}}) \right) \right) - I_{k-1}(\mathbf{u}) \right] d\mathbf{u}$

Direct Image Alignment

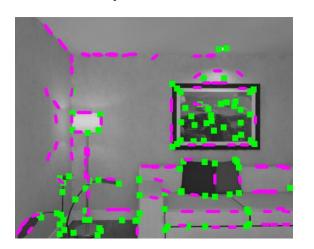
It minimizes the **per-pixel intensity difference** [1]

$$T_{k,k-1} = \arg \min_{T} \sum_{i} ||I_k(\boldsymbol{u}'_i) - I_{k-1}(\boldsymbol{u}_i)||_{\sigma}^2$$

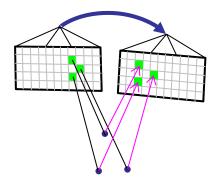
Dense

LSD [Engel et al. 2014] ~10'000 pixels

SVO [Forster et al. 2014] 100-200 features x 4x4 patch ~ 2,000 pixels

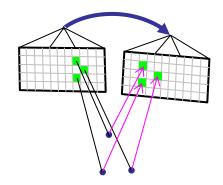


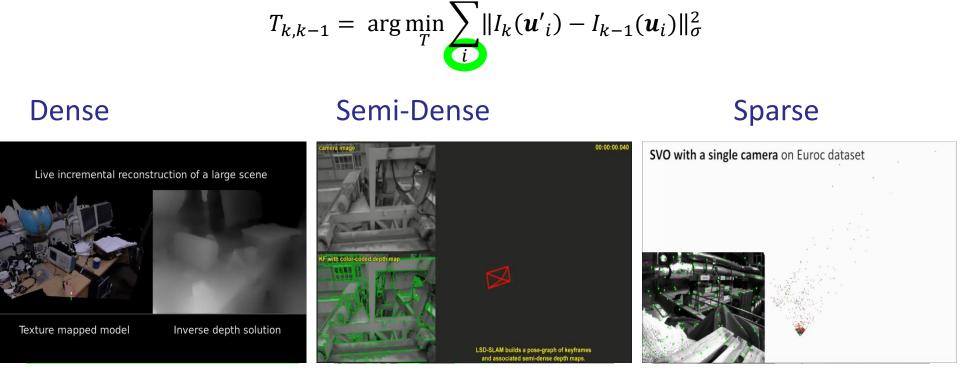
Sparse



It minimizes the **per-pixel intensity difference** [1]

Direct Image Alignment



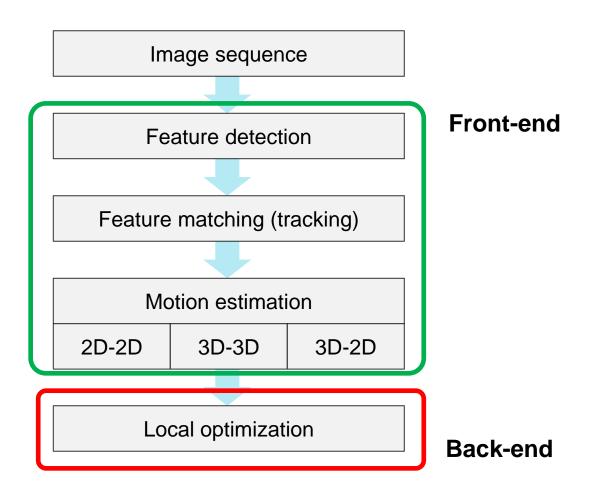


DTAM [Newcombe et al. '11] 300,000+ pixels LSD-SLAM [Engel et al. 2014] ~10,000 pixels SVO [Forster et al. 2014]
100-200 features x 4x4 patch
~ 2,000 pixels

[1] Irani & Anandan, "All About Direct Methods," Vision Algorithms: Theory and Practice, Springer, 2000

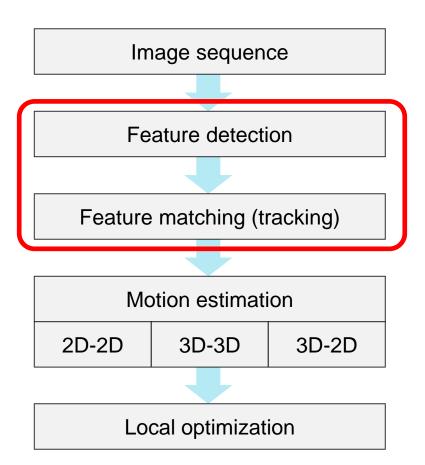
VO Flow Chart

VO computes the camera path incrementally (pose after pose)



VO Flow Chart

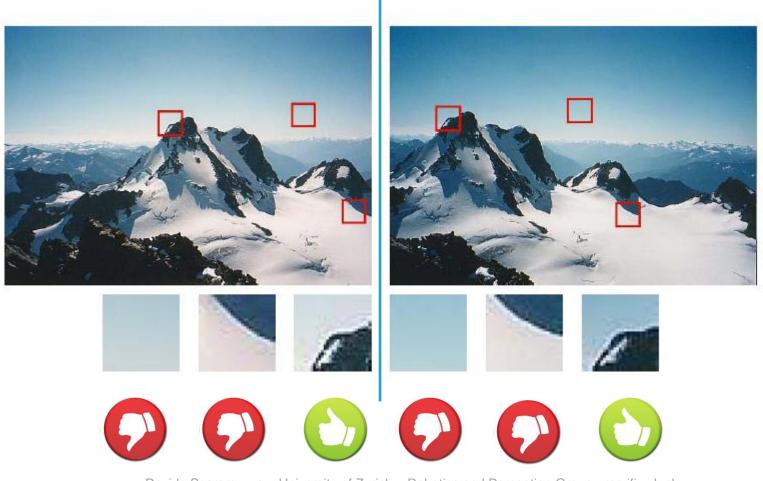
VO computes the camera path incrementally (pose after pose)



Example features tracks

What are Good Features to Track ?

Which of the patches below can be matched reliably?



Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

Corners vs Blob Detectors

> A **corner** is defined as the intersection of one or more edges

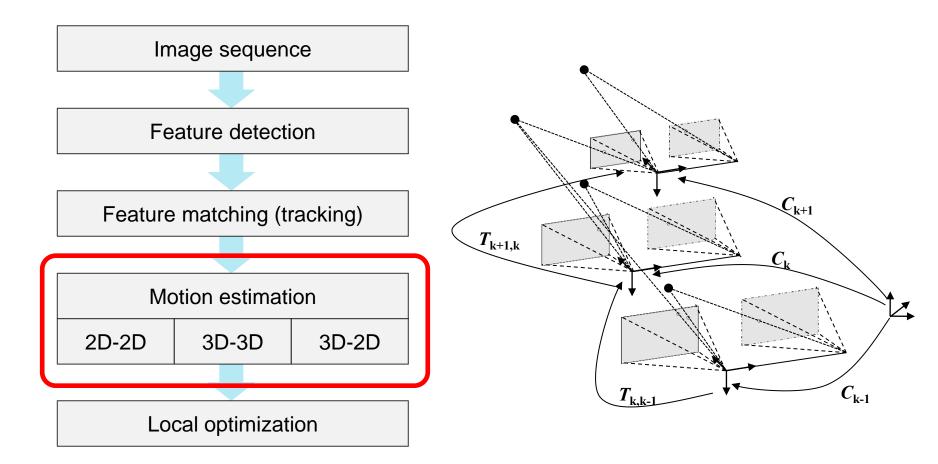
- A corner has high localization accuracy
 - Corner detectors are good for VO
- It's less distinctive than a blob
- E.g., Harris, Shi-Tomasi, SUSAN, FAST

Harris corners

- A blob is any other image pattern, which is not a corner, that significantly differs from its neighbors in intensity and texture
 - Has less localization accuracy than a corner
 - Blob detectors are better for place recognition
 - It's more distinctive than a corner
 - E.g., MSER, LOG, DOG (SIFT), SURF, CenSurE

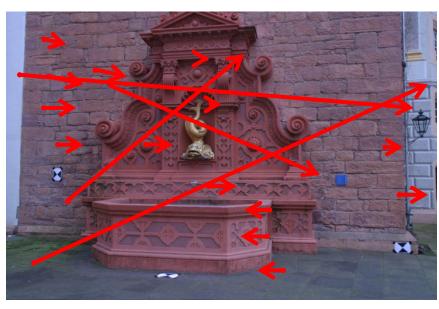
VO Flow Chart

VO computes the camera path incrementally (pose after pose)



Robust Estimation

- > Matched points are usually contaminated by outliers (i.e., wrong matches)
- Causes of outliers are:
 - image noise
 - occlusions
 - blur
 - changes in view point and illumination
- > For the camera motion to be estimated accurately, outliers must be removed
- > This is the task of Robust Estimation

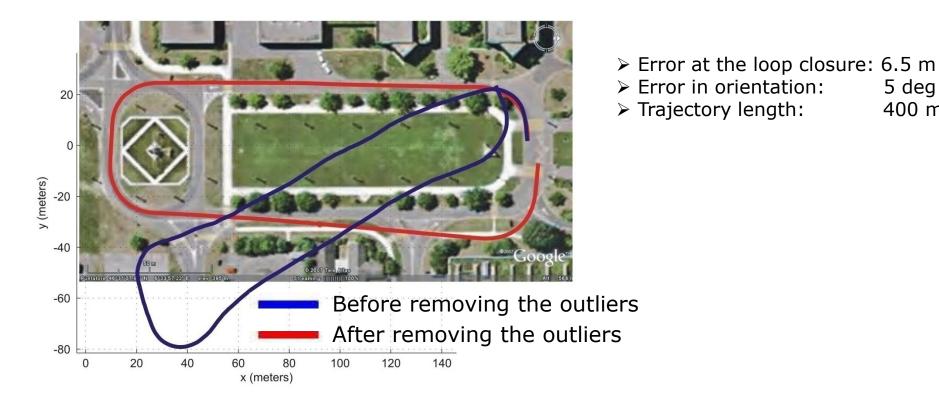


Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

Influence of Outliers on Motion Estimation

5 deg

400 m

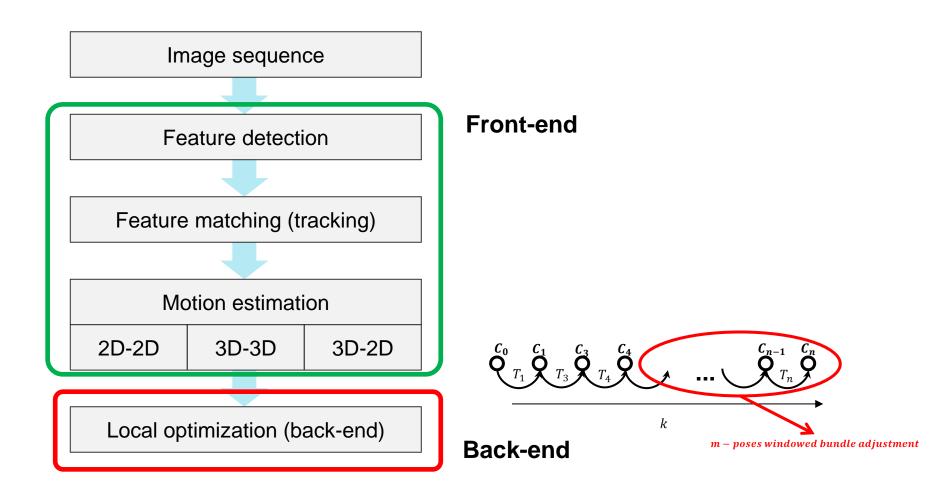


Outliers can be removed using RANSAC [Fishler & Bolles, 1981]

Davide Scaramuzza – University of Zurich – Robotics and Perception Group - rpg.ifi.uzh.ch

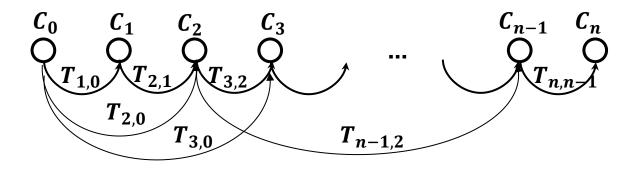
VO Flow Chart

VO computes the camera path incrementally (pose after pose)



Pose-Graph Optimization

So far we assumed that the transformations are between consecutive frames

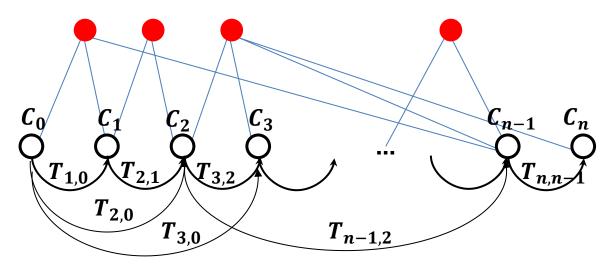


> Transformations can be computed also between non-adjacent frames T_{ij} (e.g., when features from previous keyframes are still observed). They can be used as additional constraints to improve cameras poses by minimizing the following:

$$\sum_{i}\sum_{j}\left\|C_{i}-T_{ij}C_{j}\right\|^{2}$$

- \blacktriangleright For efficiency, only the last m keyframes are used
- Gauss-Newton or Levenberg-Marquadt are typically used to minimize it. For large graphs, efficient open-source tools exist: g2o, GTSAM, Google Ceres.

Bundle Adjustment (BA)



Similar to pose-graph optimization but it also optimizes 3D points (in addition to poses)

$$\arg\min_{X^{i}, C_{k}} \sum_{i, k} \|p_{k}^{i} - g(X^{i}, C_{k})\|^{2}$$

- > In order to not get stuck in local minima, the initialization should be close to the minimum
- Gauss-Newton or Levenberg-Marquadt can be used. For large graphs, efficient opensource software exist: GTSAM, g2o, Google Ceres.

Course Topics

- Principles of image formation
- Feature detection and matching
- Multi-view geometry
- Visual place recognition
- Event-based Vision
- Dense reconstruction
- Visual inertial fusion