
Exercise 3: Stereo Vision

In this exercise, we will implement a stereo vision pipeline. The algorithm is able to recover 3D
structure from two calibrated (both intrinsics and extrinsics) cameras.

IMPLEMENTATION TIPS: Matlab uses a row major convention to access the elements of
a matrix. For example, M(1,2) gives the element of the first row and the second column. However,
in computer vision, a commonly used convention is a column major one, which fixes the origin of
the image coordinates to the top-left corner of the image and the x-axis is along the image width
(Fig.1). We use the column major convention consistently in this exercise. Therefore you may need
to switch the coordinate components when you need to access an image pixel directly.

1 Exercise setup
We work with a simplified case: the two stereo cameras are calibrated and aligned. The exercise
setup is shown in Fig. 1

The left camera is located at the origin and is taken as the reference (thus its rotation should be
an identity matrix and translation zero). The right camera only has a translational motion along
the x-axis with respect to the left camera and we call the length of this translation the baseline of
the stereo pair. We use I0 and I1to denote the images from the left and right cameras respectively.

This setup can be characterized by the projection matrices of the two cameras. A projection ma-
trix M converts the homogeneous coordinates of 3D point P to the homogeneous image coordinates
p and can be formulated as:

M = KR[I| − C]
= K[R|t] (1)

where t = −RC, R is the rotation matrix (identity in our exercise) and C is the coordinates of
the projection center. K is the intrinsic matrix:

K =

 fx 0 cx
0 fy cy
0 0 1

 (2)

where fx and fy are the focal lengths; cx and cy are the image center coordinates.

EXERCISE 1 : implement the function projectionMatrix.m. Read the comment at the begin-
ning of the function to be clear about the interface.

Use the following command to load the parameters of the exercise setup:� �
load(’playroom_calib ’);� �
The data in playroom_calib.mat1 are:

• f0, f1: focal lengths of the left and right cameras

• c0, c1: image centers of the left and right cameras

• img_size: the size of the images, the same for both cameras

• baseline: the length of the stereo pair baseline
1the data in this exercise is from Middleburry, a famous benchmark dataset for computer vision.
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http://vision.middlebury.edu/stereo/data/scenes2014/
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Figure 1: Exercise setup and epipolar search

• D_range: disparity range, used in EXERCISE 5

Then use the projectionMatrix function to calculate the projection matrices of the stereo cameras.
This function will also be used in the following exercises.

2 Correspondence search
Before the 3D structure can be recovered, we need to establish correspondences between the images.

When the relative pose between two cameras is known, for a specific pixel p0 in I0, the corre-
sponding pixel p1 in I1 can only appear on the epipolar line. Furthermore, in the simplified case,
where the images are aligned, the epipolar line should be a row in I1.

For each pixel on the epipolar line in I1, a similarity score can be calculated with respect to
p0. Commonly used similarity measurements are SSD (Sum of Squared Differences), SAD (Sum of
Absolute Differences) and ZNCC (Zero-mean Normalized Cross Correlation)2.

Then the pixel on epipolar line which is most similar to p0 is taken as the correspondence in I1.
The correspondence search process is illustrated in Fig.1.

EXERCISE 2 : finish the function searchEpipolar.m and run run_stereo_interactive.m. The
script will visualize the epipolar line and the correspondence for the pixel you click in the left image,
along with the scores with different similarity measurements. First read the comment at the beginning
of the searchEpipolar.m function carefully to be clear about the interface. You will need to do the
following:

1. implement the function rectifiedEpipolarLine.m which returns the epipolar line in the right
image.

2refer to the feature detection slide (page 12) for details
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http://rpg.ifi.uzh.ch/docs/teaching/05_feature_detection_1.pdf
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2. implement three similarity measurements: SSD.m, SAD.m and ZNCC.m.

3. find the best match on the epipolar line based on the similarity score (implement in searchEpipolar.m).

After each step, you can run run_stereo_interactive.m for visualization. The result after the
above steps should be similar to Fig.2.

3 Triangulation
For two cameras whose intrinsics and extrinsics are already known, triangulation is the process of
estimating the 3D point P from a pair of correspondences p0 and p1. The 3D point and image points
are related by:

λ0p0 = M0P
λ1p1 = M1P

(3)

Note that both p and P are the homogeneous coordinates and λ0/λ1 are scalars. Based on the
definition of vector cross product, we have p0× (M0P) = 0,p1× (M1P) = 0. Also, the cross product
of two vectors can be expressed using the skew-symmetric matrix, therefore the following equations
hold:

[p0]×M0 ·P = 0
[p1]×M1 ·P = 0

(4)

where []× stands for the skew-symmetric matrix from a vector. Eq.4 gives an (overdetermined)
equation system and can be solved for P. For a detailed derivation, please refer to the slide from the
lecture3.

EXERCISE 3 : complete triangulatePoint.m. Part of the function is already given. Then
uncomment the corresponding part in run_stereo_interactive.m and run the script to observe
the triangulated point (Fig.2, bottom left window).

4 Reprojection
Once the 3D point P is determined, we can project it into I0 and I1 and compare the projected pixels
with the original one. The projection is done via Eq.3. Remember to normalize the last component
of the homogeneous coordinates to 1 to get the image coordinates.

EXERCISE 4 : implement projection3d.m and run run_stereo_interactive.m to observe the
reprojection error (output in the Matlab console). Note that in the simplified case, which has a
perfect calibration, the reprojected pixels should be exactly the same as the original ones and the
reprojection errors should be very small (only numerical error).

5 Disparity map
One useful representation for dense 3D reconstruction is the disparity map. To construct a disparity
map, we need to perform the aforementioned correspondence search for each pixel in I0 and calculate
the disparity as:

d = ‖p1 − p0‖ (5)

From the disparity, the depth z can be recovered:

z =
fxb

d
(6)

where b denotes the baseline length. Calculating the dense disparity map is computationally
expensive since the correspondence search is done for every pixel. Often we can limit the range of

3multiple view geometry-1, page 64-67
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http://rpg.ifi.uzh.ch/docs/teaching/07_multiple_view_geometry_1.pdf
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Figure 2: Exercise Snapshot

search to one part of the epipolar line based on the knowledge about the structure. As can be seen
from Eq.6, if we know the depth range of the scene (i.e., the range of z), the range of disparity
can also be determined. Then only the pixels that fall in that range need to be checked. In the
following exercise, we use a downsampled dataset (playroom_s_calib.mat, playroom_s0.png and
playroom_s1.png) to reduce the running time.

EXERCISE5: First add an extra argument to rectifiedEpipolarLine.m to make the function
work with limited disparity range. Note that searchEpipolar.m also needs to be changed accord-
ingly, since it calls rectifiedEpipolarLine.m. Then finish run_dense_disparity.m to generate
the disparity map and calculate the corresponding depth map. The disparity map should look like
Fig.3.

Figure 3: Disparity map using window size of 7 and 13 pixel respectively.
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