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3D Reconstruction from Multiple views 

Assumption 

• Cameras are calibrated  

– both intrinsically  

• 𝑲 matrix for each camera is known 

– and extrinsically  

• relative positions 𝑻 and orientations 𝑹 between cameras are 
known, for instance through Structure from Motion 



Multi-view stereo 

Figures by Carlos Hernandez 

Input:  calibrated images from several viewpoints 

Output:  3D object model 
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Review: The Epipolar Plane 

  

C2 
C1 

𝑝 

The two camera centers and the feature 𝑝 determine a plane called the 

“epipolar plane”, which intersect each camera image plane into an epipolar 

line. 



Thanks to the epipolar constraint, corresponding points only need to be 

searched along epipolar lines 

 

 

Left image Right image 

Review: Epipolar Lines for Correspondence Search 



Sparse Reconstruction 
• Estimate the structure from a “sparse” set of features 



Dense Reconstruction 
• Estimate the structure from a “dense” region of pixels 



Dense reconstruction 

• Local methods 

– Estimate depth for every pixel 
independently 

 

 

 

 

• Global methods 

– Refine the depth surface as a 
whole by enforcing smoothness 
constraint 

  



Photometric error (e.g., SSD, SAD, ZNCC) 

error 

depth 

IDEA: the optimal depth minimizes the photometric error in all 
the images as a function of the depth in the first image 

This error plot is derived for every combination of the 
reference image and any further image 



Aggregated photometric error 

• Dense reconstruction requires 
establishing dense correspondences 

• Correspondences are computed 
based on photometric error 

– Difference among pixel intensity 
values or  

– patch-based correlation 

• SAD, SSD, NCC 

• Not all the pixels can be matched 
reliably 

– Viewpoint and illumination 
changes, occlusions 

• Take advantage of many small 
baseline views where high quality 
matching is possible 

 

[Newcombe et al. 2011] 



• Photometric error shows multiple minima (because of noise, lack of 
textures or repetitive textures) 

• For distinctive pixels (as in b) the aggregated photometric error has one 
clear minimum. 

 

 

Aggregated photometric error 



Generalized Disparity Space Image 
• For discrete depth hypotheses the 

aggregate photometric error with 
respect to the reference image can be 
stored in the generalized disparity space 
image 

𝐶 𝑢, 𝑣, 𝑑 = 𝜌(𝐼𝑘 𝑢′, 𝑣′, 𝑑 − 𝐼𝑟(𝑢, 𝑣))

𝑘

 

 

𝐼𝑘 𝑢′, 𝑣′, 𝑑, 𝑘  is the pixel in the 𝑘-th 
image associated with the pixel 𝑢′, 𝑣′  
in the reference image 𝐼𝑟  and depth 
hypothesis 𝑑 

• 𝜌(∙) is the photometric error (e.g., SSD, 
SAD) 

[Szeliski and Golland 1999] 



The solution to the depth estimation problem is a function in disparity space 
that best describes the shape of the surface in scene: 
• find a surface embedded in the disparity space image that presents some 

optimality properties 
• Minimum aggregated photometric cost 

𝑎𝑟𝑔min
𝑑

𝐶 

• AND (optionally) best piecewise smoothness (global methods) 
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Solution 

• Global methods 

– Formulated in terms of energy minimization 

– The objective is to find 𝑑(𝑢, 𝑣) that minimizes a global energy 

 
𝐸 𝑑 =  𝐸𝑑 𝑑 + λ𝐸𝑠(𝑑) 

 

 

 

      𝐸𝑑 𝑑 =  𝐶(𝑢, 𝑣, 𝑑 𝑢, 𝑣 )(𝑢,𝑣)  

 

𝐸𝑠 𝑑 =  𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢 + 1, 𝑣(𝑢,𝑣) +𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢, 𝑣 + 1  

– 𝜌𝑑is a norm (e.g. 𝐿2, 𝐿1 or Huber norm) 

– λ  controls the tradeoff data / regularization 

Data term Regularization term 



Regularized depth maps 

• The regularization term 𝐸𝑠(𝑑) 
acts as a prior in the minimization 
of the energy functional 𝐸 𝑑  

• Penalizes non smooth 
surfaces (results of noisy 
measurements) 

• “Fills the holes” by means of a 
priori information 

[Newcombe et al. 2011] 



Regularized depth maps 

– Popular assumption: discontinuities in intensity coincide with 
discontinuities in depth 

– Control smoothness penalties according to image gradient 

𝜌𝑑 𝑑 𝑢, 𝑣 − 𝑑 𝑢 + 1, 𝑣 ∙ 𝜌𝐼 𝐼 𝑢, 𝑣 − 𝐼 𝑢 + 1, 𝑣  

– 𝜌𝐼 is some monotonically decreasing function of intensity differences: 
lowers smoothness costs at high intensity gradients 



GPGPU 
• GPGPU = General Purpose computing 

on Graphics Processing Unit 

• Perform demanding calculations on the 
GPU instead of the CPU 

• On the GPU: high processing power in 
parallel 

• More transistors devoted to data 
processing 



GPU Capabilities 
• Fast pixel processing 

– Ray tracing, draw textures, shaded 
triangles faster than CPU 

• Fast matrix / vector operations 

– Transform vertices 

• Programmable 

– Shading, bump mapping 

• Floating-point support 

– Accurate computations 



When GPGPU 

• GPUs run thousands of lightweight 
threads in parallel 

– Typically on consumer hardware: 
1024 threads per multiprocessor; 
30 multiprocessor => 30k 
threads. 

– Compared to CPU: 4 quad core 
support 32 threads (with 
HyperThreading). 

• Well suited for data-parallelism 

– The same instructions executed 
on multiple data in parallel 

– High arithmetic intensity: 
arithmetic operations / memory 
operations 

 

[Source: nvidia] 



Why GPGPU 



GPGPU for 3D Reconstruction 

• Image processing 

– Filtering 

– Warping 

– Feature extraction 

• Multi-view geometry 

– Search for dense correspondence 

• Pixel-wise operations (correlation) 

• Matrix and vector operations (epipolar geometry) 

– Photometric Cost Aggregation 

• Global optimization 

– Variational methods 

• Parallel, in-place operations for gradient / 
divergence computation 

 

 



DTAM: Dense Tracking and Mapping in Real-Time, ICCV’11 
by Newcombe, Lovegrove, Davison 



REMODE: 

Regularized Monocular Dense 
Reconstruction 

[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense 
Reconstruction in Real Time,  

IEEE International Conference on Robotics and Automation 2014] 
 



REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
ICRA’14, by Pizzoli, Forster, Scaramuzza 



[M. Pizzoli, C. Forster, D. Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA’14] 
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[Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time ICRA’14] 
 

 Tracks every pixel (like DTAM) but Probabilistically 
 Runs live on video streamed from MAV (50 Hz on GPU) 
 Copes well with low texture surfaces 

REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, 
ICRA’14, by Pizzoli, Forster, Scaramuzza 
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 Tracks every pixel (like DTAM) but Probabilistically 
 Runs live on video streamed from MAV (50 Hz on GPU) 
 Copes well with low texture surfaces 

REMODE applied to autonomous flying 3D scanning 

Live demonstration at the Firefighter Training Area of Zurich 
Featured on ARTE Tv channel on November 22 and SRF 10vo10 



2x 

Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D Mapping with 
a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015. 

REMODE applied to autonomous flying 3D scanning 



Faessler, Fontana, Forster, Mueggler, Pizzoli, Scaramuzza, Autonomous, Vision-based Flight and Live Dense 3D Mapping with 
a Quadrotor Micro Aerial Vehicle, Journal of Field Robotics, 2015. 
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[Pizzoli, Forster, Scaramuzza, REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time ICRA’14] 
 

Live demonstration at the Firefighter Training Area of Zurich 
Featured on ARTE Tv channel on November 22 and SRF 10vo10 

REMODE applied to autonomous flying 3D scanning 



3DAround iPhone App 
Dacuda 


