
Lecture 09
Multiple View Geometry 3

Prof. Dr. Davide Scaramuzza

sdavide@ifi.uzh.ch

mailto:sdavide@ifi.uzh.ch

Today’s outline

• RANSAC for robust Structure from Motion

• Visual Odometry

“Robust” Structure from Motion

• All Structure-from-Motion algorithms (including the 8-point algorithms) assume
that image correspondences are correct

• However, finding the correct correspondences is not always successful
– We call false image correspondences outliers

– We call correct image correspondences inliers

Image 1 Image 2

“Robust” Structure from Motion

• All Structure-from-Motion algorithms (including the 8-point algorithms) assume
that image correspondences are correct

• However, finding the correct correspondences is not always successful
– We call false image correspondences outliers (assuming that the scene is static)

– We call correct image correspondences inliers

Image 1 Image 2

RANSAC (RAndom SAmple Consensus)

• RANSAC is the standard method for model fitting in the presence of outliers
(very noisy points or wrong data)

• It can be applied to all sorts of problems where the goal is to estimate the
parameters of a model from the data (e.g., camera calibration, Structure from
Motion, DLT, homography, etc.)

• Let’s review RANSAC for line fitting and see how we can adapt it to SfM

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image
analysis and automated cartography. Graphics and Image Processing, 24(6):381–395, 1981.

RANSAC
6

RANSAC
• Select sample of 2 points at
random

7

RANSAC
• Select sample of 2 points at
random

• Calculate model
parameters that fit the data
in the sample

8

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

9

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

10

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

• Repeat sampling

11

RANSAC
• Select sample of 2 points at
random

• Calculate model parameters
that fit the data in the sample

• Calculate error function for
each data point

• Select data that supports
current hypothesis

• Repeat sampling

12

RANSAC

Set with the maximum number of

inliers obtained within 𝒌 iterations

13

How many iterations does RANSAC need?

• Ideally: check all possible combinations of 2 points in a dataset of N points.

• Number all pairwise combinations: N(N-1)/2

  computationally unfeasible if N is too large.
 example: 1000 edge points  need to check all 1000*999/2= 500’000 possibilities!

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?
Checking a subset of combinations is enough if we have a rough estimate of the
percentage of inliers in our dataset

• This can be done in a probabilistic way

RANSAC
14

How many iterations does RANSAC need?

• w := number of inliers/N
N := total number of data points

 w : fraction of inliers in the dataset  w = P(selecting an inlier-point out of the dataset)

• Assumption: the 2 points necessary to estimate a line are selected independently

 w 2 = P(both selected points are inliers)

1-w 2 = P(at least one of these two points is an outlier)

• Let k := no. RANSAC iterations executed so far

•  (1-w 2) k = P(RANSAC never selected two points that are both inliers)

• Let p := P(probability of success)

•  1-p = (1-w 2) k and therefore :

RANSAC

)1log(

)1log(
2w

p
k






15

How many iterations does RANSAC need?

• The number of iterations k is

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability p of
finding a set of points free of outliers

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations
– these are dramatically fewer than the number of all possible combinations! As you can see, the
number of points does not influence the estimated number of iterations, only w does!

• In practice we only need a rough estimate of w.
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at
every iteration

RANSAC

)1log(

)1log(
2w

p
k






16

RANSAC

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 2 points from A

4. Fit a line through the 2 points

5. Compute the distances of all other points to this line

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

RANSAC applied to general model fitting

1. Initial: let A be a set of N points

2. repeat

3. Randomly select a sample of 𝒔 points from A

4. Fit a model from the 𝒔 points

5. Compute the distances of all other points from this model

6. Construct the inlier set (i.e. count the number of points whose distance < d)

7. Store these inliers

8. until maximum number of iterations k reached

9. The set with the maximum number of inliers is chosen as a solution to the problem

In order to implement RANSAC for Structure from Motion, we need three ingredients:
1. What’s the model in SfM?
2. What’s the minimum number of points to estimate the model?
3. How do we compute the distance of a point from the model? In other words, can we

define a distance that measures how well a point fits the model?

Answers

1. What’s the model in SfM?
1. Possible models are:

1. R, T

2. E (i.e., essential Matrix, for calibrated cameras) or F (Fundamental matrix, for uncalibrated
cameras)

2. What’s the minimum number of points to estimate the model?
1. We know that 5 points is the theoretical minimum number of points

2. However, if we use the 8-point algorithm, then, 8 is the minimum

3. How do we compute the error, i.e., the distance of a point from the model?
1. If we use E for the model, then we can use the epipolar constraint 𝑝2

𝑇𝐸𝑝1 = 0 to measure
how well a correspondence pair (𝑝1, 𝑝2) verifies the model E. For instance, we can use a
threshold 𝒕𝒉 and count as inliers all correspondence pairs that satisfy 𝑝2

𝑇𝐸𝑝1 < 𝑡ℎ

2. In the next three slides, we give an overview of four different popular error measures:
1. Algebraic error

2. Directional error

3. Epipolar-Line distance

4. Reprojection error

1. Algebraic Error

Using the definition of dot product, it can be observed that

𝒑𝑇2 ∙ 𝑬𝒑1 = 𝒑2 𝑬𝒑1 cos (𝜃)

which is zero when, 𝒑𝑇1, 𝒑2, and 𝑻 are coplanar.

2
12)(iTi pperr E

2. Directional Error

Angular distance to the Epipolar plane

 err = cos (𝜃)

From the previous slide, we obtain:

err = cos (𝜃) =
𝒑𝑇1 ∙ 𝑬𝒑2
𝒑𝑇1 𝑬𝒑2

3. Epipolar-Line Distance

Minimize sum of squared epipolar distances

C1
C2

p1

p2

P = ?

1l 2l

2

22

2

11)),(d()),(d(lplperr 

4. Reprojection Error

• Definition: is the sum of the squared distances between the observed image
points and the reprojection of the triangulated 3D point

))(())((2

2

1

2 PpdPpderr  ,, 21 

C1
C2

p1

p2

P = ?

)()(1 PpPMpd  111 ,

Observed point

Reprojected point
Observed point

Reprojected point

R, T

)(1 P

)(2 P

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

Image 1 Image 2

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

Example: 8-point RANSAC applied to SfM

• Let’s consider the following image pair and its image correspondences (e.g.,
Harris, SIFT, etc.), denoted by arrows

• For convenience, we overlay the features of the second image in the first image
and use arrows to denote the motion vectors of the features

Image 1

1. Randomly select 8 point
correspondences

2. Fit the model to all other points and
count the inliers

3. Repeat from 1 for 𝒌 times

))1(1log(

)1log(
8




p
k

RANSAC iterations 𝒌 vs. 𝒔

• 8-point RANSAC
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 8 points (8-point algorithm)

• 5-point RANSAC
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 5 points (5-point algorithm of David Nister (2004))

• 2-point RANSAC (e.g., line fitting)
– Assuming

• 𝒑 = 99%,

• 𝜺 = 50% (fraction of outliers)

• 𝒔 = 2 points

iterations
p

k
s

 1177
))1(1log(

)1log(









iterations
p

k
s

 145
))1(1log(

)1log(









iterations
p

k
s

 16
))1(1log(

)1log(









𝒌 is exponential in the number of points 𝒔 necessary to estimate the model:

RANSAC iterations 𝒌 vs. 𝜺

• 𝒌 is increases exponentially with the fraction of outliers 𝜺

RANSAC iterations

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the
model

• The 8-point algorithm is extremely simple and was very successful; however, it
requires more than 1177 iterations

• Because of this, there has been a large interest by the research community in
using smaller motion parameterizations

• The first efficient solution to the minimal-case solution (5-point algorithm) took
almost a century (Kruppa 1913 → Nister, 2004)

• The 5-point RANSAC only requires 145 iterations; however:
– The 5-point algorithm can return up to 10 solutions of E

– The 8-point algorithm only returns a unique solution of E

Can we use less than 5 points?

Yes, if you use motion constraints!

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

0 12 pEpT
Epipolar constraint

RT][E  Essential matrix

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

  RTE][















 























100

0cossin

0sincos

0cossin

cos00

sin00































0cossin

cos00

sin00

][







T

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

Let’s compute the Epipolar Geometry

  RTE][

 

 

    



















0cossin

cos00

sin00



























0cossin

cos00

sin00

][







T

Planar Motion















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ

x

y

  RTE][

 

 

    



















0cossin

cos00

sin00







Observe that E has 2DoF; thus, 2 correspondences are sufficient to estimate  and φ

[“2-Point RANSAC”, Ortin, 2001]

Can we use less than 2 point correspondences?

Yes, if we exploit ground, wheeled vehicles with non-holonomic constraints

Planar & Circular Motion (e.g., cars)
Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)

Example of Ackerman steering principle Locally-planar circular motion

Planar & Circular Motion (e.g., cars)

Example of Ackerman steering principle Locally-planar circular motion

φ = θ/2 => only 1 DoF (θ);

thus, only 1 point correspondence is needed

This is the smallest parameterization possible and results in

the most efficient algorithm for removing outliers

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011

Wheeled vehicles, like cars, follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry

0 12 pEpT
Epipolar constraint

RT][E  Essential matrix

Planar & Circular Motion (e.g., cars)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry

  RTE][









































 





























0
2

cos
2

sin

2
cos00

2
sin00

100

0cossin

0sincos

0
2

cos
2

sin

2
cos00

2
sin00





























Planar & Circular Motion (e.g., cars)















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry



























0
2

cos
2

sin

2
cos00

2
sin00







E

Planar & Circular Motion (e.g., cars)

 0 12 pEpT 0)(
2

cos)(
2

sin 1212 
















vvuu















 

12

121tan2
uu

vv


1-Point RANSAC algorithm

Only 1 iteration!

The most efficient algorithm for

removing outliers, up to 1000 Hz!

Compute θ for

every point

correspondence

1-Point RANSAC is ONLY used to find the inliers.

Motion is then estimated from them in 6DOF!













 

12

121tan2
uu

vv


Comparison of RANSAC algorithms

8-Point RANSAC 5-Point RANSAC
[Nister’03]

2-Point RANSAC
[Ortin’01]

1-Point RANSAC
[Scaramuzza,

IJCV’10]

Numb. of
iterations

> 1177 >145 >16 =1

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Fraction of outliers in the data (%)

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s
,

N 5-point RANSAC

2-point RANSAC

1-point RANSAC

%99 use typically we where
))1(1log(

)1log(





 p

p
N

s

Visual Odometry with 1-Point RANSAC

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic
Constraints, International Journal of Computer Vision, 2011

Today’s outline

• Review of last lecture

• RANSAC for robust Structure from Motion

• Visual Odometry

References: Tutorial on Visual Odometry

 Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30
Years and Fundamentals, IEEE Robotics and Automation Magazine,
Volume 18, issue 4, 2011.
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf

 Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching,
Robustness, and Applications, IEEE Robotics and Automation Magazine,
Volume 19, issue 1, 2012.
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf

http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf

Visual Odometry (VO)

input output

Image sequence (or video stream)

from one or more cameras attached to a moving vehicle

Camera trajectory (3D structure is a plus):

VO is the process of incrementally estimating the pose of the vehicle by examining
the changes that motion induces on the images of its onboard cameras

Google Project Tango

Example 1: VO for Phones
Application to Augmented Reality for smartphones

Example 2: VO for Flying Robots

[Scaramuzza et al., Vision-Controlled Micro Flying Robots: from System Design to Autonomous

Navigation and Mapping in GPS-denied Environments, IEEE RAM, September, 2014

Example 3: VO for Mouse Scanners

World-first mouse scanner

Currently distributed by LG: SmartScan LG LSM100

A Brief history of VO

• 1980: First known stereo VO real-time implementation on a robot by Moraveck
PhD thesis (NASA/JPL) for Mars rovers using a sliding camera.

• 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of
2004 Mars mission (see papers from Matthies, Olson, etc. From JPL)

• 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity

• 2004: VO was revived in the academic environment
by Nister «Visual Odometry» paper.
The term VO became popular.

• Contrary to wheel odometry, VO is not affected by wheel slip on
uneven terrain or other adverse conditions.

• More accurate trajectory estimates compared
to wheel odometry
(relative position error 0.1% − 2%)

• VO can be used as a complement to
– wheel odometry
– GPS
– inertial measurement units (IMUs)
– laser odometry

• In GPS-denied environments,
such as underwater and aerial,
VO has utmost importance

Why VO ?

VO work flow

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

• VO computes the camera path incrementally (pose after pose)

Tk,k-1

Tk+1,k

Ck-1

Ck

Ck+1

SIFT features tracks

SFM is more general than VO and tackles the problem of 3D reconstruction of both
the structure and camera poses from unordered image sets

VO or Structure from Motion (SFM) ?

Reconstruction from 3 million images from Flickr.com

Cluster of 250 computers, 24 hours of computation!

Paper: “Building Rome in a Day”, ICCV’09

• VO is a particular case of SFM

• VO focuses on estimating the 3D motion of the camera sequentially (as a new
frame arrives) and in real time.

• Terminology: sometimes SFM is used as a synonym of VO

VO or Structure from Motion (SFM) ?

Motion Estimation

time

• Motion estimation is the core computation step performed for every
image in a VO system

• It computes the camera motion 𝑇𝑘 between the previous and the
current image:

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

• By concatenation of all these single movements, the full trajectory of
the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

Motion Estimation
• Motion estimation is the core computation step performed for every

image in a VO system

• It computes the camera motion 𝑇𝑘 between the previous and the
current image:

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

• By concatenation of all these single movements, the full trajectory of
the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1

• An iterative refinement over the last 𝑚 poses can be performed to get a
more accurate estimate of the local trajectory

m-poses windowed bundle adjustment

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

• Triangulated 3D points are determined by intersecting backprojected rays from
2D image correspondences of at least two image frames

• In reality, they never intersect due to

– image noise,

– camera model and calibration errors,

– and feature matching uncertainty

• The point at minimal distance from all intersecting rays can be taken as an
estimate of the 3D point position

Triangulation and Keyframe Selection

Triangulation and Keyframe Selection

• When frames are taken at nearby positions compared to the scene distance,
3D points will exibit large uncertainty

Triangulation and Keyframe Selection

. . .

• One way to avoid this consists of skipping frames until the average uncertainty
of the 3D points decreases below a certain threshold. The uncertainty can be
compute by intersecting back-projected cones. The selected frames are called
keyframes

• Keyframe selection is a very important step in VO and should always be done
before updating the motion

• So far we assumed that the transformations are between consecutive
frames

• Transformations can be computed also between non-adjacent frames 𝑇𝑖𝑗

(e.g., when features from previous keyframes are still observed). They
can be used as additional constraints to improve cameras poses by
minimizing the following

• For efficiency, only the last 𝑚 keyframes are used

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it

Camera-Pose Optimization

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

 𝐶𝑖 − 𝑇𝑖𝑗𝐶𝑗
2

𝑗𝑖

• Similar to pose-optimization but it also optimizes 3D points

• In order to not get stuck in local minima, the initialization should be
close the minimum

• Gauss-Newton or Levenberg-Marquadt can be used

Bundle Adjustment (BA)

...

𝑪𝟎 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏

𝑻𝟐,𝟎
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐

How do we estimate the motion?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

Local optimization

Tk,k-1

Tk+1,k

Ck-1

Ck

Ck+1

How do we estimate the motion?

Image sequence

Feature detection

Feature matching (tracking)

Motion estimation

2D-2D 3D-3D 3D-2D

Local optimization

Tk,k-1

Tk+1,k

Ck-1

Ck

Ck+1

Motion Estimation
Motion estimation

2D-2D 3D-3D 3D-2D

2D-to-2D
Motion from Image Feature Correspondences

Motion estimation

2D-2D 3D-3D 3D-2D

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 2D

 The minimal-case solution involves 5-point correspondences

 The solution is found by determining the transformation that
minimizes the reprojection error of the triangulated points in each image

3D-to-3D
Motion from 3D-3D Point Correspondences

Motion estimation

2D-2D 3D-3D 3D-2D

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D

 To do this, it is necessary to triangulate 3D points (e.g. use a stereo
camera)

 The minimal-case solution involves 3 non-collinear correspondences

 The solution is found by determining the aligning transformation that
minimizes the 3D-3D distance

3D-to-3D
Motion from 3D-3D Point Correspondences

Motion estimation

2D-2D 3D-3D 3D-2D

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D

 To do this, it is necessary to triangulate 3D points (e.g. use a stereo
camera)

 The minimal-case solution involves 3 non-collinear correspondences

 The solution is found by determining the aligning transformation that
minimizes the 3D-3D distance

3D-to-2D
Motion from 3D Structure and Image Correspondences

Motion estimation

2D-2D 3D-3D 3D-2D

 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D

 This problem is known as camera resection or PnP (perspective from
n points)

 The minimal-case solution involves 3 correspondences

 The solution is found by determining the transformation that
minimizes the reprojection error

3D-to-2D
Motion from 3D Structure and Image Correspondences

Motion estimation

2D-2D 3D-3D 3D-2D

 In the monocular case, the 3D structure needs to be triangulated
from two adjacent camera views (e.g., 𝐼𝑘−2 and 𝐼𝑘−1) and then
matched to 2D image features in a third view (e.g., 𝐼𝑘).

Motion Estimation: Summary

Type of
correspondences

Monocular Stereo

2D-2D X X

3D-3D X

3D-2D X X

Stereo Visual Odometry (i.e., with 3D-to-3D Motion

Estimation)

Courtesy of Stefan Leutenegger

Visual Odometry with 3D-to-2D Motion Estimation

Keyframe 1 Keyframe 2

Initial pointcloud New triangulated points

Current frame
New keyframe

• Compute camera position from known 3D-to-2D feature
correspondences

Visual Odometry with 3D-to-2D Motion Estimation

• Compute camera position from known 3D-to-2D feature
correspondences

• What’s the minimal number of points correspondences
– 3 for a non linear solution (P3P algorithm)

– 6 for linear solution (DLT algorithm, see lecture 3, Image Formation 2)

• You want to solve for 𝑅, 𝑡. 𝐾 is known

 

























































1

1~

~

~

~

w

w

w

Z

Y

X

TRKv

u

w

v

u

p 

Visual Odometry with 3D-to-2D Motion Estimation

• Applications

• Visual odometry with 3D-to-2D motion estimation is commonly used
in monocular visual odometry

• There are several open source packages:
– PTAM [Klein, 2007] -> Oxford, Murray’s lab

– ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab

– LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab

– SVO [Forster, ICRA’14] -> Zurich, Scaramuzza’s lab ;-)

PTAM: Parallel Tracking and Mapping for Smal AR

Workspaces, by Klein and Murray, ISMAR’07

ORB-SLAM,
by Mur-Artal, Montiel, Tardos, TRO’15

Feature-based vs. Direct Methods

Feature-based (e.g., PTAM, ORB-SLAM)

1. Feature extraction

2. Feature matching

3. RANSAC + P3P

4. Reprojection error
 minimization

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖 2

𝑖

Direct approaches (e.g., Meilland’13)

1. Minimize photometric error

𝑇𝑘,𝑘−1

𝐼𝑘
𝒖′𝑖

𝒑𝑖

𝒖𝑖
𝐼𝑘−1

𝑇𝑘,𝑘−1 = ?

𝒑𝑖

𝒖′𝑖 𝒖𝑖

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖

[Soatto’95, Meilland and Comport, IROS 2013], DVO [Kerl et al., ICRA
2013], DTAM [Newcombe et al., ICCV ‘11], ...

Feature-based vs. Direct Methods

1. Feature extraction

2. Feature matching

3. RANSAC + P3P

4. Reprojection error
 minimization

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖 2

𝑖

Direct approaches

1. Minimize photometric error

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖

 Large frame-to-frame motions

 Slow (20-30 Hz) due to costly feature
extraction and matching

 Not robust to high-frequency and
repetive texture

 Every pixel in the image can be
exploited (precision, robustness)

 Increasing camera frame-rate reduces
computational cost per frame

 Limited to small frame-to-frame
motion

Feature-based (e.g., PTAM, ORB-SLAM)

LSD-SLAM: Large Scale Direct Monocular SLAM,
by Engel, Stueckler, Cremers, ECCV’14

Feature-based vs. Direct Methods

1. Feature extraction

2. Feature matching

3. RANSAC + P3P

4. Reprojection error
 minimization

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖 2

𝑖

Direct approaches

1. Minimize photometric error

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖

 Large frame-to-frame motions

 Slow (20-30 Hz) due to costly feature
extraction and matching

 Not robust to high-frequency and
repetive texture

 Every pixel in the image can be
exploited (precision, robustness)

 Increasing camera frame-rate reduces
computational cost per frame

 Limited to small frame-to-frame
motion

Feature-based (e.g., PTAM, ORB-SLAM)

Our solution:

SVO: Semi-direct Visual Odometry [ICRA’14]

Combines feature-based and direct methods

SVO: Semi-Direct Visual Odometry [ICRA’14]

Direct

Feature-based

• Frame-to-frame motion
estimation

• Frame-to-Keyframe pose
refinement

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]

SVO: Semi-Direct Visual Odometry [ICRA’14]

Direct

Feature-based

• Frame-to-frame motion
estimation

• Frame-to-Kreyframe pose
refinement

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14]

Mapping

 Feature extraction only for
every keyframe

 Probabilistic depth estimation
of 3D points

SVO: Semi-direct Visual Odometry, by Forster,
Pizzoli, Scaramuzza, ICRA»14

Processing Times of SVO

Laptop (Intel i7, 2.8 GHz)

Embedded ARM Cortex-A9, 1.7 GHz

400 frames per second

Up to 70 frames per second

 Open Source available at: github.com/uzh-rpg/rpg_svo

 Works with and without ROS

 Closed-Source professional edition available for companies

Source Code

Probabilistic Depth Estimation

Depth-Filter:

• Depth Filter for every feature

• Recursive Bayesian depth estimation

Mixture of Gaussian + Uniform distribution

[Forster, Pizzoli, Scaramuzza, SVO: Semi Direct Visual Odometry, IEEE ICRA’14]

𝜌 𝜌 𝜌 𝜌

𝑑 𝑑 𝑑 𝑑

Probabilistic Depth Estimation

Depth-Filter:

• Depth Filter for every feature

• Recursive Bayesian depth estimation

Mixture of Gaussian + Uniform distribution

[Forster, Pizzoli, Scaramuzza, SVO: Semi Direct Visual Odometry, IEEE ICRA’14]

 Fusion is solved as a non-linear optimization problem (no Kalman filter):

 Increased accuracy over filtering methods

IMU residuals Reprojection residuals

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-

Inertial Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]

Visual-Inertial Fusion [RSS’15]

500 m trajectory - Accuracy: 0.1% of the travel distance

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]

Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15]

Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15]

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]

800 m trajectory - Accuracy: 0.1% of the travel distance

Accuracy: 0.1% of the travel distance

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist]

Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15]

Generalization to Multiple Cameras
 4 non overlapping cameras (dataset courtesy of AUDI)

 SVO on 4 camera streams at 50 Hz on CPU

Software and Dataset

Software and Dataset

