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Today’s outline 

• RANSAC for robust Structure from Motion 

• Visual Odometry 



“Robust” Structure from Motion 

• All Structure-from-Motion algorithms (including the 8-point algorithms) assume 
that image correspondences are correct 

• However, finding the correct correspondences is not always successful 
– We call false image correspondences outliers 

– We call correct image correspondences inliers 

Image 1 Image 2 



“Robust” Structure from Motion 

• All Structure-from-Motion algorithms (including the 8-point algorithms) assume 
that image correspondences are correct 

• However, finding the correct correspondences is not always successful 
– We call false image correspondences outliers (assuming that the scene is static) 

– We call correct image correspondences inliers 

Image 1 Image 2 



RANSAC (RAndom SAmple Consensus) 

• RANSAC is the standard method for model fitting in the presence of outliers 
(very noisy points or wrong data) 

• It can be applied to all sorts of problems where the goal is to estimate the 
parameters of a model from the data (e.g., camera calibration, Structure from 
Motion, DLT, homography, etc.) 

• Let’s review RANSAC for line fitting and see how we can adapt it to SfM 

M. A.Fischler and R. C.Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image 
analysis and automated cartography. Graphics and Image Processing, 24(6):381–395, 1981. 



RANSAC 
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RANSAC 
• Select sample of 2 points at 
random 
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RANSAC 
• Select sample of 2 points at 
random 

 
• Calculate model parameters 
that fit the data in the sample 

 
• Calculate error function for 
each data point 

 
• Select data that supports 
current hypothesis 
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RANSAC 

Set with the maximum number of 

inliers obtained within 𝒌 iterations 
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How many iterations does RANSAC need?  

• Ideally: check all possible combinations of 2 points in a dataset of N points.  

• Number all pairwise combinations: N(N-1)/2  

       computationally unfeasible if N is too large.  
      example: 1000 edge points  need to check all 1000*999/2= 500’000 possibilities! 

 

• Do we really need to check all possibilities or can we stop RANSAC after some iterations?  
Checking a subset of combinations is enough if we have a rough estimate of the 
percentage of inliers in our dataset 

 

• This can be done in a probabilistic way 

RANSAC 
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How many iterations does RANSAC need? 

• w := number of inliers/N  
N := total number of data points  

 w : fraction of inliers in the dataset  w = P(selecting an inlier-point out of the dataset) 

• Assumption: the 2 points necessary to estimate a line are selected independently 

 w 2   = P(both selected points are inliers) 

1-w 2 = P(at least one of these two points is an outlier) 

• Let k := no. RANSAC iterations executed so far 

•  ( 1-w 2 ) k = P(RANSAC never selected two points that are both inliers)  

• Let  p := P(probability of success)  

•  1-p = ( 1-w 2 ) k and therefore : 

RANSAC 
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How many iterations does RANSAC need? 

 

• The number of iterations k is 

 

 

 

 

 

•  knowing the fraction of inliers w, after k RANSAC iterations we will have a probability  p of 
finding a set of points free of outliers 

 

• Example: if we want a probability of success p=99% and we know that w=50%  k=16 iterations 
– these are dramatically fewer than the number of all possible combinations! As you can see, the 
number of points does not influence the estimated number of iterations, only w does! 
 

• In practice we only need a rough estimate of w.  
More advanced variants of RANSAC estimate the fraction of inliers and adaptively update it at 
every iteration 

RANSAC 
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RANSAC 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 2 points from A 

4.  Fit a line through the 2 points 

5.  Compute the distances of all other points to this line 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 



RANSAC applied to general model fitting 

1. Initial: let A be a set of N points 

2. repeat 

3.  Randomly select a sample of 𝒔 points from A 

4.  Fit a model from the 𝒔 points 

5.  Compute the distances of all other points from this model 

6.  Construct the inlier set (i.e. count the number of points whose distance < d) 

7.  Store these inliers 

8. until maximum number of iterations k reached 

9. The set with the maximum number of inliers is chosen as a solution to the problem 

In order to implement RANSAC for Structure from Motion, we need three ingredients: 
1. What’s the model in SfM? 
2. What’s the minimum number of points to estimate the model? 
3. How do we compute the distance of a point from the model? In other words, can we  

define a distance that measures how well a point fits the model? 



Answers 

1. What’s the model in SfM? 
1. Possible models are: 

1. R, T 

2. E (i.e., essential Matrix, for calibrated cameras) or F (Fundamental matrix, for uncalibrated 
cameras) 

 

2. What’s the minimum number of points to estimate the model? 
1. We know that 5 points is the theoretical minimum number of points 

2. However, if we use the 8-point algorithm, then, 8 is the minimum 

 

3. How do we compute the error, i.e., the distance of a point from the model? 
1. If we use E for the model, then we can use the epipolar constraint   𝑝2

𝑇𝐸𝑝1 = 0  to measure  
how well a correspondence pair (𝑝1, 𝑝2) verifies the model E. For instance, we can use a 
threshold 𝒕𝒉 and count as inliers all correspondence pairs that satisfy   𝑝2

𝑇𝐸𝑝1 < 𝑡ℎ 

2. In the next three slides, we give an overview of four different popular error measures: 
1. Algebraic error 

2. Directional error 

3. Epipolar-Line distance 

4. Reprojection error 

 



1. Algebraic Error 

 

 
 

Using the definition of dot product, it can be observed that  

 
𝒑𝑇2 ∙ 𝑬𝒑1 = 𝒑2 𝑬𝒑1 cos (𝜃) 

 

which is zero when, 𝒑𝑇1, 𝒑2, and 𝑻 are coplanar. 
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2. Directional Error 

Angular distance to the Epipolar plane 
 

                err =  cos (𝜃) 
 

From the previous slide, we obtain: 

 

err =  cos (𝜃) = 
𝒑𝑇1 ∙ 𝑬𝒑2
𝒑𝑇1 𝑬𝒑2

 

 

 



3. Epipolar-Line Distance 

Minimize sum of squared epipolar distances 

C1 
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4. Reprojection Error 

• Definition: is the sum of the squared distances between the observed image 
points and the reprojection of the triangulated 3D point 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

Image 1 Image 2 
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and use arrows to denote the motion vectors of the features 
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2. Fit the model to all other points and 
count the inliers 
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• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 

Image 1 
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2. Fit the model to all other points and 
count the inliers 

3. Repeat from 1 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 
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Example: 8-point RANSAC applied to SfM 

• Let’s consider the following image pair and its image correspondences (e.g., 
Harris, SIFT, etc.), denoted by arrows 

• For convenience, we overlay the features of the second image in the first image 
and use arrows to denote the motion vectors of the features 

Image 1 

1. Randomly select 8 point 
correspondences 

2. Fit the model to all other points and 
count the inliers 

3. Repeat from 1 for 𝒌 times 
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RANSAC iterations 𝒌 vs. 𝒔 

• 8-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 8 points (8-point algorithm) 

 

• 5-point RANSAC  
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 5 points (5-point algorithm of David Nister (2004)) 

 

• 2-point RANSAC (e.g., line fitting) 
– Assuming  

• 𝒑 = 99%,  

• 𝜺 = 50% (fraction of outliers)  

• 𝒔 = 2 points 
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𝒌 is exponential in the number of points 𝒔 necessary to estimate the model: 



RANSAC iterations 𝒌 vs. 𝜺 

• 𝒌 is increases exponentially with the fraction of outliers 𝜺 

 

 

 

 

 

 

 

 

 

 

 



RANSAC iterations 

• As observed, 𝒌 is exponential in the number of points 𝒔 necessary to estimate the 
model 

• The 8-point algorithm is extremely simple and was very successful; however, it 
requires more than 1177 iterations 

• Because of this, there has been a large interest by the research community in 
using smaller motion parameterizations 

• The first efficient solution to the minimal-case solution (5-point algorithm) took 
almost a century (Kruppa 1913 → Nister, 2004) 

• The 5-point RANSAC only requires 145 iterations; however: 
– The 5-point algorithm can return up to 10 solutions of E 

– The 8-point algorithm only returns a unique solution of E 

Can we use less than 5 points? 

Yes, if you use motion constraints! 



Planar Motion 















 



100

0cossin

0sincos





R



















0

sin

cos





T

Planar motion is described by three parameters: θ, φ, ρ  

x 

y 

Let’s compute the Epipolar Geometry 
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Planar Motion 
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Planar Motion 
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Observe that E has 2DoF; thus, 2 correspondences are sufficient to estimate  and φ 

[“2-Point RANSAC”, Ortin, 2001] 



Can we use less than 2 point correspondences? 

Yes, if we exploit ground, wheeled vehicles with non-holonomic constraints 



Planar & Circular Motion (e.g., cars) 
Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 

Example of Ackerman steering principle Locally-planar circular motion 



Planar & Circular Motion (e.g., cars) 

Example of Ackerman steering principle Locally-planar circular motion 

φ = θ/2 => only 1 DoF (θ);  

thus, only 1 point correspondence is needed 

This is the smallest parameterization possible and results in  

the most efficient algorithm for removing outliers 

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 

Wheeled vehicles, like cars,  follow locally-planar circular motion about the Instantaneous Center of Rotation (ICR) 
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Planar & Circular Motion (e.g., cars) 

















 



100

0cossin

0sincos





R

























0
2

sin

2
cos







T

Let’s compute the Epipolar Geometry 

  RTE ][









































 





























0
2

cos
2

sin

2
cos00

2
sin00

100

0cossin

0sincos

0
2

cos
2

sin

2
cos00

2
sin00





























Planar & Circular Motion (e.g., cars) 
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1-Point RANSAC algorithm 

Only 1 iteration! 

The most efficient algorithm for  

removing outliers, up to 1000 Hz! 

Compute θ for  

every point 

correspondence 

1-Point RANSAC is ONLY used to find the inliers. 

Motion is then estimated from them in 6DOF! 
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Comparison of RANSAC algorithms 

8-Point RANSAC 5-Point RANSAC 
[Nister’03] 

2-Point RANSAC 
[Ortin’01] 

1-Point RANSAC 
[Scaramuzza, 

IJCV’10] 

Numb. of 
iterations 
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Visual Odometry with 1-Point RANSAC  

Scaramuzza, 1-Point-RANSAC Structure from Motion for Vehicle-Mounted Cameras by Exploiting Non-holonomic  
Constraints, International Journal of Computer Vision, 2011 



Today’s outline 

• Review of last lecture 

• RANSAC for robust Structure from Motion 

• Visual Odometry 



References: Tutorial on Visual Odometry 

 Scaramuzza, D., Fraundorfer, F., Visual Odometry: Part I - The First 30 
Years and Fundamentals, IEEE Robotics and Automation Magazine, 
Volume 18, issue 4, 2011. 
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf  
 
 
 
 
 
 

 Fraundorfer, F., Scaramuzza, D., Visual Odometry: Part II - Matching, 
Robustness, and Applications, IEEE Robotics and Automation Magazine, 
Volume 19, issue 1, 2012. 
http://rpg.ifi.uzh.ch/docs/VO_Part_II_Scaramuzza.pdf  

http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf
http://rpg.ifi.uzh.ch/docs/VO_Part_I_Scaramuzza.pdf


Visual Odometry (VO) 

input output 

Image sequence (or video stream) 

from one or more cameras attached to a moving vehicle 

Camera trajectory (3D structure is a plus): 

VO is the process of incrementally estimating the pose of the vehicle by examining 
the changes that motion induces on the images of its onboard cameras 



Google Project Tango 

Example 1: VO for Phones 
Application to Augmented Reality for smartphones 



Example 2: VO for Flying Robots 

[Scaramuzza et al., Vision-Controlled Micro Flying Robots: from System Design to Autonomous 

Navigation and Mapping in GPS-denied Environments, IEEE RAM, September, 2014 

 



Example 3: VO for Mouse Scanners 

World-first mouse scanner 

Currently distributed by LG: SmartScan LG LSM100 



A Brief history of VO 

• 1980: First known stereo VO real-time implementation on a robot by Moraveck  
PhD thesis (NASA/JPL) for Mars rovers using a sliding camera. 

 

• 1980 to 2000: The VO research was dominated by NASA/JPL in preparation of 
2004 Mars mission (see papers from Matthies, Olson, etc. From JPL) 

 

• 2004: VO used on a robot on another planet: Mars rovers Spirit and Opportunity 

 

• 2004: VO was revived in the academic environment  
by Nister «Visual Odometry» paper.  
The term VO became popular. 



• Contrary to wheel odometry, VO is not affected by wheel slip on 
uneven terrain or other adverse conditions.  
 

• More accurate trajectory estimates compared  
to wheel odometry  
(relative position error 0.1% − 2%) 
 

• VO can be used as a complement to  
– wheel odometry  
– GPS 
– inertial measurement units (IMUs) 
– laser odometry  

 

• In GPS-denied environments,  
such as underwater and aerial,  
VO has utmost importance 

Why VO ? 



VO work flow 

Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

Local optimization 

• VO computes the camera path incrementally (pose after pose) 

Tk,k-1 

Tk+1,k 

Ck-1 

Ck 

Ck+1 

SIFT features tracks 



 

SFM is more general than VO and tackles the problem of 3D reconstruction of both 
the structure and camera poses from unordered image sets 

VO or Structure from Motion (SFM) ? 

Reconstruction from 3 million images from Flickr.com 

Cluster of 250 computers, 24 hours of computation! 

Paper: “Building Rome in a Day”, ICCV’09 

 



 

• VO is a particular case of SFM  

 

• VO focuses on estimating the 3D motion of the camera sequentially (as a new 
frame arrives) and in real time. 

 

• Terminology: sometimes SFM is used as a synonym of VO 

VO or Structure from Motion (SFM) ? 



Motion Estimation 

time 

• Motion estimation is the core computation step performed for every 
image in a VO system 

• It computes the camera motion 𝑇𝑘 between the previous and the 
current  image: 

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

 

• By concatenation of all these single movements, the full trajectory of 
the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 



Motion Estimation 
• Motion estimation is the core computation step performed for every 

image in a VO system 

• It computes the camera motion 𝑇𝑘 between the previous and the 
current  image: 

𝑇𝑘 =
𝑅𝑘,𝑘−1 𝑡𝑘,𝑘−1
0 1

 

• By concatenation of all these single movements, the full trajectory of 
the camera can be recovered , i.e.: 𝐶𝑘 = 𝑇𝑘,𝑘−1𝐶𝑘−1 

• An iterative refinement over the last 𝑚 poses can be performed to get a 
more accurate  estimate of the local trajectory 

m-poses windowed bundle adjustment 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 



 

• Triangulated 3D points are determined by intersecting backprojected rays from 
2D image correspondences of at least two image frames 

 

• In reality, they never intersect due to  

– image noise,  

– camera model and calibration errors,  

– and feature matching uncertainty 

 

• The point at minimal distance from all intersecting rays can be taken as an 
estimate of the 3D point position 

Triangulation and Keyframe Selection 



Triangulation and Keyframe Selection 

• When frames are taken at nearby positions compared to the scene distance, 
3D points will exibit large uncertainty 

 



Triangulation and Keyframe Selection 

. . .  

• One way to avoid this consists of skipping frames until the average uncertainty 
of the 3D points decreases below a certain threshold. The uncertainty can be 
compute by intersecting back-projected cones. The selected frames are called 
keyframes 

 

• Keyframe selection is a very important step in VO and should always be done 
before updating the motion 



• So far we assumed that the transformations are between consecutive 
frames 

 

 

 

 

 

 

• Transformations can be computed also between non-adjacent frames 𝑇𝑖𝑗 

(e.g., when features from previous keyframes are still observed). They 
can be used as additional constraints to improve cameras poses by 
minimizing the following 

 

 

 

• For efficiency, only the last 𝑚 keyframes are used 

• Gauss-Newton or Levenberg-Marquadt are typically used to minimize it 

 

Camera-Pose Optimization 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 

𝑻𝟐,𝟎 
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐 

  𝐶𝑖 − 𝑇𝑖𝑗𝐶𝑗
2

𝑗𝑖

 



• Similar to pose-optimization but it also optimizes 3D points 

 

 

 

• In order to not get stuck in local minima, the initialization should be 
close the minimum 

• Gauss-Newton or Levenberg-Marquadt can be used 

Bundle Adjustment (BA) 

... 

𝑪𝟎  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝒏−𝟏 𝑪𝒏 

𝑻𝟏,𝟎 𝑻𝟐,𝟏 𝑻𝟑,𝟐 𝑻𝒏,𝒏−𝟏 

𝑻𝟐,𝟎 
𝑻𝟑,𝟎 𝑻𝒏−𝟏,𝟐 



How do we estimate the motion? 

Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

Local optimization 

Tk,k-1 

Tk+1,k 

Ck-1 

Ck 

Ck+1 



How do we estimate the motion? 

Image sequence 

Feature detection 

Feature matching (tracking) 

Motion estimation 

2D-2D 3D-3D 3D-2D 

Local optimization 

Tk,k-1 

Tk+1,k 

Ck-1 

Ck 

Ck+1 



Motion Estimation 
Motion estimation 

2D-2D 3D-3D 3D-2D 



2D-to-2D 
Motion from Image Feature Correspondences 

Motion estimation 

2D-2D 3D-3D 3D-2D 

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 2D 

 The minimal-case solution involves 5-point correspondences 

 The solution is found by determining the transformation that  
minimizes the reprojection error of the triangulated points in each image 



3D-to-3D 
Motion from 3D-3D Point Correspondences 

Motion estimation 

2D-2D 3D-3D 3D-2D 

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D 

 To do this, it is necessary to triangulate 3D points (e.g. use a stereo  
camera) 

 The minimal-case solution involves 3 non-collinear correspondences 

 The solution is found by determining the aligning transformation that 
minimizes the 3D-3D distance 



3D-to-3D 
Motion from 3D-3D Point Correspondences 

Motion estimation 

2D-2D 3D-3D 3D-2D 

 Both 𝑓𝑘−1 and 𝑓𝑘 are specified in 3D 

 To do this, it is necessary to triangulate 3D points (e.g. use a stereo  
camera) 

 The minimal-case solution involves 3 non-collinear correspondences 

 The solution is found by determining the aligning transformation that 
minimizes the 3D-3D distance 



3D-to-2D 
Motion from 3D Structure and Image Correspondences 

Motion estimation 

2D-2D 3D-3D 3D-2D 

 𝑓𝑘−1 is specified in 3D and 𝑓𝑘 in 2D 

 This problem is known as camera resection or PnP (perspective from  
n points) 

 The minimal-case solution involves 3 correspondences 

 The solution is found by determining the transformation that 
minimizes the reprojection error 



3D-to-2D 
Motion from 3D Structure and Image Correspondences 

Motion estimation 

2D-2D 3D-3D 3D-2D 

 In the monocular case, the 3D structure needs to be triangulated  
from two adjacent camera views (e.g., 𝐼𝑘−2 and 𝐼𝑘−1) and then  
matched to 2D image features in a third view (e.g., 𝐼𝑘). 



Motion Estimation: Summary 

Type of 
correspondences 

Monocular Stereo 

2D-2D X X 

3D-3D X 

3D-2D X X 



Stereo Visual Odometry (i.e., with 3D-to-3D Motion 

Estimation) 

Courtesy of Stefan Leutenegger 



Visual Odometry with 3D-to-2D Motion Estimation 

Keyframe 1 Keyframe 2 

Initial pointcloud New triangulated points 

Current frame 
New keyframe 

• Compute camera position from known 3D-to-2D feature 
correspondences 



Visual Odometry with 3D-to-2D Motion Estimation 

• Compute camera position from known 3D-to-2D feature 
correspondences 

• What’s the minimal number of points correspondences 
– 3 for a non linear solution (P3P algorithm) 

– 6 for linear solution (DLT algorithm, see lecture 3, Image Formation 2) 

 

• You want to solve for 𝑅, 𝑡. 𝐾 is known 
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Visual Odometry with 3D-to-2D Motion Estimation 

• Applications 

• Visual odometry with 3D-to-2D motion estimation is commonly used 
in monocular visual odometry 

• There are several open source packages: 
– PTAM [Klein, 2007] -> Oxford, Murray’s lab 

– ORB-SLAM [Mur-Artal, T-RO, 15] -> Zaragoza, Tardos’ lab 

– LSD-SLAM [Engel, ECCV’14] -> Munich, Cremers’ lab 

– SVO [Forster, ICRA’14]  -> Zurich, Scaramuzza’s lab ;-)  



PTAM: Parallel Tracking and Mapping for Smal AR 

Workspaces, by Klein and Murray, ISMAR’07 



ORB-SLAM,  
by Mur-Artal, Montiel, Tardos, TRO’15 



Feature-based vs. Direct Methods 

Feature-based (e.g., PTAM, ORB-SLAM) 

1. Feature extraction 

2. Feature matching 

3. RANSAC + P3P 

4. Reprojection error 
     minimization 

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖  2

𝑖

 

Direct approaches (e.g., Meilland’13)  

1. Minimize photometric error 

𝑇𝑘,𝑘−1 

𝐼𝑘 
𝒖′𝑖 

𝒑𝑖 

𝒖𝑖 
𝐼𝑘−1 

𝑇𝑘,𝑘−1 = ? 

𝒑𝑖 

𝒖′𝑖 𝒖𝑖 

𝑇𝑘,𝑘−1 =  argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖  

[Soatto’95, Meilland and Comport, IROS 2013], DVO [Kerl et al., ICRA 
2013], DTAM [Newcombe et al., ICCV ‘11], ... 



Feature-based vs. Direct Methods 

1. Feature extraction 

2. Feature matching 

3. RANSAC + P3P 

4. Reprojection error 
     minimization 

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖  2

𝑖

 

Direct approaches 

1. Minimize photometric error 

𝑇𝑘,𝑘−1 =  argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖  

 Large frame-to-frame motions 

 Slow (20-30 Hz) due to costly feature 
extraction and matching 

 Not robust to high-frequency and 
repetive texture 

 Every pixel in the image can be 
exploited (precision, robustness) 

 Increasing camera frame-rate reduces 
computational cost per frame 

 Limited to small frame-to-frame 
motion 

 

 

Feature-based (e.g., PTAM, ORB-SLAM) 



LSD-SLAM: Large Scale Direct Monocular SLAM, 
by Engel, Stueckler, Cremers, ECCV’14 



Feature-based vs. Direct Methods 

1. Feature extraction 

2. Feature matching 

3. RANSAC + P3P 

4. Reprojection error 
     minimization 

𝑇𝑘,𝑘−1 = argmin
𝑇
 𝒖′𝑖 − 𝜋 𝒑𝑖  2

𝑖

 

Direct approaches 

1. Minimize photometric error 

𝑇𝑘,𝑘−1 =  argmin
𝑇
 𝐼𝑘 𝒖′𝑖 − 𝐼𝑘−1(𝒖𝑖)

2
𝑖  

 Large frame-to-frame motions 

 Slow (20-30 Hz) due to costly feature 
extraction and matching 

 Not robust to high-frequency and 
repetive texture 

 Every pixel in the image can be 
exploited (precision, robustness) 

 Increasing camera frame-rate reduces 
computational cost per frame 

 Limited to small frame-to-frame 
motion 

 

 

Feature-based (e.g., PTAM, ORB-SLAM) 

Our solution:  
 

SVO: Semi-direct Visual Odometry [ICRA’14] 
 

Combines feature-based and direct methods 



SVO: Semi-Direct Visual Odometry [ICRA’14] 

Direct 

Feature-based 

• Frame-to-frame motion 
estimation 

• Frame-to-Keyframe pose 
refinement 

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14] 

 



SVO: Semi-Direct Visual Odometry [ICRA’14] 

Direct 

Feature-based 

• Frame-to-frame motion 
estimation 

• Frame-to-Kreyframe pose 
refinement 

[Forster, Pizzoli, Scaramuzza, «SVO: Semi Direct Visual Odometry», ICRA’14] 

 

Mapping 

 Feature extraction only  for 
every keyframe 

 Probabilistic depth estimation 
of 3D points 



SVO: Semi-direct Visual Odometry, by Forster, 
Pizzoli, Scaramuzza, ICRA»14 



Processing Times of SVO 

Laptop (Intel i7, 2.8 GHz)       

Embedded ARM Cortex-A9, 1.7 GHz 

400 frames per second 

Up to 70 frames per second 

 Open Source available at: github.com/uzh-rpg/rpg_svo   

 Works with and without ROS  

 Closed-Source professional edition available for companies 

 

Source Code 



Probabilistic Depth Estimation 

Depth-Filter: 

• Depth Filter for every feature 

• Recursive Bayesian depth estimation  

Mixture of Gaussian + Uniform distribution  

[Forster, Pizzoli, Scaramuzza, SVO: Semi Direct Visual Odometry, IEEE ICRA’14] 

𝜌 𝜌 𝜌 𝜌 

𝑑 𝑑 𝑑 𝑑 



Probabilistic Depth Estimation 

Depth-Filter: 

• Depth Filter for every feature 

• Recursive Bayesian depth estimation  

Mixture of Gaussian + Uniform distribution  

[Forster, Pizzoli, Scaramuzza, SVO: Semi Direct Visual Odometry, IEEE ICRA’14] 



 Fusion is solved as a non-linear optimization problem (no Kalman filter):  

 Increased accuracy over filtering methods 

 

IMU residuals Reprojection residuals 

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-

Inertial Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist] 

Visual-Inertial Fusion [RSS’15] 



500 m trajectory - Accuracy: 0.1% of the travel distance 

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial 

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist] 

Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15] 



Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15] 

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial 

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist] 

800 m trajectory - Accuracy: 0.1% of the travel distance 



Accuracy: 0.1% of the travel distance 

[Forster, Carlone, Dellaert, Scaramuzza, IMU Preintegration on Manifold for efficient Visual-Inertial 

Maximum-a-Posteriori Estimation, RSS’15, Best Paper Award Finalist] 

Visual-Inertial Odometry with Pre-integrated IMU Factors [RSS’15] 



Generalization to Multiple Cameras 
 4 non overlapping cameras (dataset courtesy of AUDI) 

 SVO on 4 camera streams at 50 Hz on CPU 



Software and Dataset 



Software and Dataset 


