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Course Topics 

• Principles of image formation 

• Image filtering 

• Feature detection 

• Multi-view geometry 

• 3D Reconstruction 

• Recognition 



San Marco square, Venice 
14,079 images, 4,515,157 points 

Multiple View Geometry 



 

 3D reconstruction from multiple views:  

• Assumptions: K, T and R are known.  

• Goal: Recover the 3D structure from images 

 

 Structure From Motion:  

• Assumptions: none (K, T,  and R are unknown).  

• Goal: Recover simultaneously 3D scene structure and camera poses (up to scale) 
from multiple images 

Multiple View Geometry 

𝐾1, 𝑅1,𝑇1 
𝐾2, 𝑅2,𝑇2 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖 

𝑃𝑖 =? 

𝐾1, 𝑅1,𝑇1 =? 
𝐾2, 𝑅2,𝑇2 =? 

𝐾𝑖 , 𝑅𝑖,𝑇𝑖=? 

𝑃𝑖 =? 



Review: Perspective Projection 
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Normalized image coordinates 

Perspective Projection Equation 



Today’s outline 

• Structure from Motion 



• Problem formulation: Given 𝑛 points in correspondence across two images, 
{(𝑢𝑖

1, 𝑣𝑖
1), (𝑢𝑖

2, 𝑣𝑖
2)}, simultaneously compute the 3D location 𝑷𝑖 , the camera 

relative-motion parameters (𝑹, 𝒕), and camera intrinsic 𝑲1,2
 that satisfy 

 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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• Two variants exist: 

– Uncalibrated camera(s) -> K is unknown 

– Calibrated camera(s) -> K is known 
 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



• Let’s study the case in which the camera(s) is «calibrated» 

• For convenience, let’s use normalized image coordinates 

• Thus, we want to find R, T, Pi that satisfy 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 
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Scale Ambiguity 
• With a single camera, we only know the relative scale 

• No information about the metric scale 



Scale Ambiguity 
• With a single camera, we only know the relative scale 

• No information about the metric scale 

• If we scale the entire scene by some factor 𝑠, the projections of the 
scene points in the image remain exactly the same: 

 



Scale Ambiguity 

• In monocular vision, it is impossible to recover the absolute scale of the scene! 

• Stereo vision? 

• Thus, only 5 degrees of freedom are measurable: 

• 3 parameters to describe the rotation 

• 2 parameters for the translation up to a scale (we can only compute the direction of 
translation but not its length) 



Structure from Motion (SfM) 

• How many knowns and unknowns? 

– 𝟒𝒏 knowns: 

• 𝑛 correspondences; each one (𝑢𝑖
1

, 𝑣𝑖
1) and (𝑢𝑖

2
, 𝑣𝑖

2), 𝑖 = 1 … 𝑛 

– 𝟓 + 𝟑𝒏 unknowns 

• 5 for the motion up to a scale (rotation-> 3, translation->2) 

• 3𝑛 = number of coordinates of the 𝑛 3D points 

 

• Does a solution exist? 

– If and only if  

number of independent equations ≥ number of unknowns 

⇒ 4𝑛 ≥ 5 + 3𝑛 ⇒ n ≥ 𝟓 



Cross Product (or Vector Product) 

 
 

• Vector cross product takes two vectors and returns a third vector  
that is perpendicular to both inputs 
 
 
 
 

• So here, 𝒄 is perpendicular to both 𝒂 and 𝒃, which means the dot product = 0 
• Also, recall that the cross product of two parallel vectors = 0 

 
• The cross product between a and b can also be expressed in matrix form as the 

product between the skew-symmetric matrix of a and a vector b 
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Epipolar Geometry 
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   epipolar plane 

𝑃 

𝑝1 𝑝2 

T

𝑝1, 𝑝2, 𝑇 are coplanar:  

0)'( 12  pTpT

𝑝′1 =  𝑅𝑝1 

0))(( 12  RpTpT

0 ][ 1

T

2   pRTp 0  12  pEpT

RT  ][ E essential matrix 

𝑛 

   02 npT

epipolar constraint 



0  12 pEpT
Epipolar constraint or Longuet-Higgins equation 

RT  ][ E Essential matrix 

Normalized image coordinates 

Epipolar Geometry 
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• The Essential Matrix can be computed from 5 image correspondences [Kruppa, 
1913]. The more points, the higher accuracy in presence of noise 
 

• The Essential Matrix can be decomposed into 𝑅 and 𝑇 recalling that  
Four distinct solutions for R and T are possible. 

RT  ][ E

H. Christopher Longuet-Higgins (September 1981). "A computer algorithm for reconstructing a 

scene from two projections". Nature 293 (5828): 133–135. PDF. 

https://cseweb.ucsd.edu/classes/fa01/cse291/hclh/SceneReconstruction.pdf


How to compute the Essential Matrix? 

• The Essential Matrix can be computed from 5 image correspondences [Kruppa, 
1913]. However, this solution is not simple. It took almost one century until an 
efficient solution was found! [Nister, CVPR’2004] 

 

• The first popular solution uses 8 points and is called 8-point algorithm  
Longuet Higgins. A computer algorithm for reconstructing a scene from two projections. Nature 
(1981) 
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The eight-point algorithm 
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For 𝑛 = 8 points, a unique solution exists if the points are not coplanar. For 𝑛 > 8  non-

coplanar points, a linear least-square solution is given by the eigenvector of Q 

corresponding to its smallest eigenvalue (which is the unit vector that minimizes               ). 

It can be done using Singular Value Decomposition. 

2
EQ 

Q (this matrix is known)                               

E (this matrix is unknown) 

Minimize: 

under the constraint 
||E||2=1 

2
EQ 



8-point algorithm: Matlab code 

• function F = calibrated_eightpoint( p1, p2) 
•   
• p1 = p1'; % 3xN vector; each column = [u;v;1] 
• p2 = p2'; % 3xN vector; each column = [u;v;1] 
•   
• Q = [p1(:,1).*p2(:,1) , ... 
•      p1(:,2).*p2(:,1) , ... 
•      p1(:,3).*p2(:,1) , ... 
•      p1(:,1).*p2(:,2) , ... 
•      p1(:,2).*p2(:,2) , ... 
•      p1(:,3).*p2(:,2) , ... 
•      p1(:,1).*p2(:,3) , ... 
•      p1(:,2).*p2(:,3) , ... 
•      p1(:,3).*p2(:,3) ] ; 
•   
• [U,S,V] = svd(Q); 
• F = V(:,9); 
•   
• F = reshape(V(:,9),3,3)'; 

 



The eight-point algorithm 

Meaning of the linear least-square error 
 
Using the definition of dot product, it can be observed that  

 
𝒑𝑇

1 ∙ 𝑬𝒑2 = 𝒑𝑇
1 𝑬𝒑2 cos (𝜃) 

 

It can be observed that this product is non zero when, 𝒑𝑇
1, 𝒑2, and 𝑻 are not 

coplanar. 
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The eight-point algorithm 

Nonlinear approach: minimize sum of squared epipolar distances 

C1 
C2 

p1 

p2 

P = ? 

21 pEl T
12 Epl 

 



N

i

ii lplp
1

11
2

22
2 ),(d),(d



Problem with eight-point algorithm 
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Problem with eight-point algorithm 

• Poor numerical conditioning 

• Can be fixed by rescaling the data: Normalized 8-point algorithm [Hartley, 1995] 
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Comparison of estimation algorithms 

8-point Normalized 8-point Nonlinear least squares 

Reprojection error 1 2.33 pixels 0.92 pixel 0.86 pixel 

Reprojection error 2 2.18 pixels 0.85 pixel 0.80 pixel 



Extract R and T from E  
(this slide will not be asked at the exam) 

• Singular Value Decomposition 

Enforcing rank-2 constraint 
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Only one solution where points are in front of both cameras 

4 possible solutions of R and T 

These two views are rotated of 180  ͦ 



• Two variants exist: 

– Calibrated camera(s) -> K is known 
• Uses the Essential Matrix 

– Uncalibrated camera(s) -> K is unknown 
• Uses the Fundamental Matrix 

 

𝑅, 𝑇 = ? 

𝑃𝑖 = ? 

𝐶1 

𝐶2 

Structure from Motion (SFM) 



The Fundamental Matrix 

• Before, we assumed to know the camera intrinsic parameters and we used 
normalized image coordinates 
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