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REMINDER: Lab Exercise 2 - Today 

• At 14:15 in room 2.A.01 

• Harris corner detector 

• Download: http://rpg.ifi.uzh.ch/docs/teaching/ex02_harris.zip  

http://rpg.ifi.uzh.ch/docs/teaching/ex02_harris.zip
http://rpg.ifi.uzh.ch/docs/teaching/ex02_harris.zip


Outline 

• Filters for feature extraction 

• Point-feature extraction: today and next lecture 

• Line extraction algorithms: next lecture 



Filters for features 

• Previously, thinking of filtering as a way to remove 
or reduce noise 

• Now, consider how filters will allow us to abstract 
higher-level “features”. 

– Map raw pixels to an intermediate 
representation that will be used for subsequent 
processing 

– Goal: reduce amount of data, discard 
redundancy, preserve what’s useful 

• Template matching 

• Edge detection 

• Feature extraction 

– lines  

– points 



Template 

Detected template 

• Find locations in an image that are similar to a template 

• If we look at filters as templates, we can use correlation to detect these 
locations 

Filters as Templates 



Detected template 

• Find locations in an image that are similar to a template 

• If we look at filters as templates, we can use correlation to detect these 
locations 

Correlation map 

Template matching 



Scene 

Template 

Where’s Waldo? 



Where’s Waldo? 

Scene 

Template 



Scene 

Template 

Where’s Waldo? 



Scene 

Template 

• What if the template is not identical to the object we want to localize? 

Template matching 



Detected template 

Template matching 
• What if the template is not identical to the object we want to localize? 
• Match can be meaningful if scale, orientation, illumination, and general 

appearance are right 
 

Template 



Similarity measures 

• Sum of Squared Differences (SSD) 

 

 

 

• Sum of Absolute Differences (SAD) (used in optical mice) 

 

 

 

• Zero-mean Normalized Cross Correlation (ZNCC) 
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Correlation as an inner product 

• Considering the filter H and the portion of the  

image F as vectors  their correlation is: 
 

 

 

 

 

• In ZNCC we consider the unit vectors of H and F , hence we measure 
their similarity based on the angle      . Alternatively, ZNCC maximizes 
𝑐𝑜𝑠𝜃 
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Summary on filters 
• Smoothing 

– Values positive  

– Sum to 1  constant regions same as input 

– Amount of smoothing proportional to mask size 

– Remove “high-frequency” components; “low-pass” filter 
 

• Derivatives 
– Opposite signs used to get high response in regions of high contrast 

– Sum to 0  no response in constant regions 

– High absolute value at points of high contrast 
 

• Filters act as templates 
• Highest response for regions that “look the most like the filter” 

• Dot product as correlation 

 

 
 

 



Outline 

• Filters for feature extraction 

• Point-feature extraction: today and next lecture 

• Line extraction algorithms: next lecture 



Example: Point feature extraction and matching for 
robust place recognition 



Image matching: why is it hard? 



NASA Mars Rover images 

Image matching: why is it hard? 



NASA Mars Rover images with SIFT feature matches 

Image matching: why is it hard? 
Answer below 



Applications: Build a Panorama 
This panorama was generated using AUTOSTITCH (freeware) 

(Build your own: http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html) 

Feature points are used also for: 

• Robot navigation 

• Object recognition 

• 3D reconstruction 

• Motion estimation (structure from motion) 

• Indexing and database retrieval  Google Images or http://tineye.com 

• … 

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html
http://tineye.com/


• We need to match (align) images 

• How would you do it by eye? 

Local features and alignment 



Local features and alignment 

• Detect feature points in both images 



Local features and alignment 

• Detect feature points in both images 

• Find corresponding pairs 



Local features and alignment 

• Detect feature points in both images 

• Find corresponding pairs 

• Use these pairs to align images 



Matching with Features 

• Problem 1: 

– Detect the same points independently in both images, if they are in 
the field of view 

We need a repeatable feature detector 

no chance to match! 



Matching with Features 

• Problem 2: 

– For each point, identify its correct correspondence in the other 
image(s) 

We need a reliable and distinctive feature descriptor 

? 



Geometric changes 

• Rotation 

• Scale (i.e., zoom) 

• View point (i.e, perspective changes) 



Illumination changes 



Invariant local features 
Subset of local feature types designed to be invariant to common 
geometric and photometric transformations. 

 

Basic steps: 

1) Detect distinctive interest points  

2) Extract invariant descriptors 



Main questions 

• What features are salient ? (i.e., that can be re-detected from other views) 

• How to describe a local region? 

• How to establish correspondences, i.e., compute matches? 

 



What is a distinctive feature? 
• Consider the image pair below with extracted patches 
• Notice how some patches can be localized or matched with higher accuracy 

than others 

Image 1 Image 2 



Point Features: Corners vs Blobs 

• Depending on the type of texture of the image patch, we can have two 
different types of point features: 

– A corner is defined as the intersection of one or more edges 

• A corner has  high localization accuracy 

• It’s less distinctive than a blob 

 

 

– A blob is any other image pattern, which is not a corner, that 
significantly differs from its neighbors in intensity and texture (e.g., a a 
connected region of pixels with similar color, a circle, etc. 

• Has less localization accuracy than a corner 

• It’s more distinctive than a corner 

 



Finding Corners 
• Key property: in the region around a corner, image gradient has 

two or more dominant directions 

• Corners are repeatable and distinctive 

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ , 1988 Proceedings of the 4th Alvey Vision Conference: 
pages 147--151.   

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


Identifying Corners 
• How do we identify corners? 

• We can easily recognize the point by looking through a small window 

• Shifting a window in any direction should give a large change in intensity (e.g., in 
SSD) in at least 2 directions 

“flat” region: 

no intensity change  

(i.e., SSD ≈ 0 in all directions) 

“corner”: 

significant change in at least 2 

directions 

(i.e., SSD ≫ 0 in all directions) 

 

“edge”: 

no change along the edge 

direction 

(i.e., SSD ≈ 0 along edge but 

≫ 0 in other directions) 



• Consider two image patches of size P. One centered at              and one centered  
at   

 

• The Sum of Squared Differences between them is: 

 

 

 

 

•  Let                        and                        . Approximating with a 1st order Taylor expansion: 

 

 

 

 

• This produces the approximation 
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 How do we implement this? 



 

 

 

 

• This can be written in a matrix form as 
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• This can be written in a matrix form as 
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Alternative way to write M 2nd moment matrix 

Notice that these are 
NOT matrix products 

but pixel-wise 
products! 



What does this matrix reveal? 
• First, consider an axis-aligned corner: 

 

 

• This means dominant gradient directions align with 𝑥 or 𝑦 axis 

• If either λ is close to 0, then this is not a corner: 

 

 

 

 

 

 

• What if we have a corner that is not aligned with the image axes?  
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General Case 

Since M is symmetric, it can always be decomposed into  RRM 

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• We can visualize                                          as an ellipse with axis lengths determined 

by the eigenvalues and the two axes’ orientations determined by R (i.e., the 

eigenvectors of M) 

• The two eigenvectors identify the directions of largest and smallest changes of SSD 

 

 direction of the slowest 
change of SSD 
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How to compute λ1, λ2, R from M 
Eigenvalue/eigenvector review 

• You can easily proof that λ1, λ2 are the eigenvalues of M.   

• The eigenvectors and eigenvalues of a matrix A are the vectors x and scalars λ that 
satisfy: 

 
• The scalar  is the eigenvalue corresponding to x 

– The eigenvalues are found by solving: 

 

 

– In our case, A = M is a 2x2 matrix, so we have 

 

 

– The solution is: 

 

– Once you know , you find the two eigenvectors x (i.e., the two columns of R) by solving: 
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Visualization of 2nd moment matrices 



Visualization of 2nd moment matrices 



Interpreting the eigenvalues 
• Classification of image points using eigenvalues of M 

• A corner can then be identified by checking whether the minimum of 
the two eigenvalues of M is larger than a certain user-defined threshold 

      ⇒ R = min(1,2)  >  threshold 

 

• R is called “cornerness function” 

• The corner detector using  
this criterion is called  
«Shi-Tomasi» detector 

1 

2 
“Corner” 

1 and 2 are large, 

 

⇒ R >  threshold 
 

⇒ SSD increases in all 

directions 

1 and 2 are small; 

SSD is almost constant 

in all directions 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 

J. Shi and C. Tomasi (June 1994). "Good Features 
to Track,". 9th IEEE Conference on Computer 
Vision and Pattern Recognition 

http://citeseer.ist.psu.edu/shi94good.html
http://citeseer.ist.psu.edu/shi94good.html


Interpreting the eigenvalues 

1 

2 

“Edge”  

1 >> 2 

“Edge”  

2 >> 1 

“Flat” 

region 1 

“Corner” 

1 and 2 are large, 

 

⇒ R >  threshold 
 

⇒ SSD increases in all 

directions 

• Computation of λ1 and λ2 is expensive  Harris & Stephens  
suggested using a different  cornerness function: 

 
 

)(trace)det()( 22

2121 MkMkR  

• 𝑘 is a magic number in the 
range (0.04 to 0.15) 



Harris Corner Detector 
Algorithm: 

1. Compute derivatives in x and y directions (𝐼𝑥, 𝐼𝑦) e.g. with Sobel filter 

2. Compute 𝐼𝑥
2, 𝐼𝑦

2, 𝐼𝑥𝐼𝑦 

3. Convolve  𝐼𝑥
2, 𝐼𝑥

2, 𝐼𝑥𝐼𝑦 with a box filter to get  𝐼𝑥
2 ,  𝐼𝑦

2 ,  𝐼𝑥𝐼𝑦, which are 

the entries of the matrix 𝑀 (optionally use a Gaussian filter instead of a box 
filter to avoid aliasing and give more “weight” to the central pixels) 

4. Compute Harris Corner Measure 𝑅 (according to Shi-Tomasi or Harris) 

5. Find points with large corner response  (𝑅 > threshold) 

6. Take the points of local maxima of R 



Harris Corner Detector 

Image 𝐼 Cornerness response 𝑅 



Harris vs. Shi-Tomasi 

Harris  
operator 

Shi-Tomasi 
operator 



Harris Detector: Workflow 



Harris Detector: Workflow 
• Compute corner response 𝑅 



Harris Detector: Workflow 
• Find points with large corner response: 𝑅 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 



Harris Detector: Workflow 
• Take only the points of local maxima of thresholded 𝑅 



Harris Detector: Workflow 



Harris Detector: Some Properties 

Repeatability: 

• How does the Harris detector behave to common image transformations? 
 

• Can it re-detect the same image patches (Harris corners) when the image 
exhibits changes in 

• Rotation, 

• View-point, 

• Scale (zoom),  

• Illumination ? 

 

• Solution: Identify properties of detector & adapt accordingly 



Harris Detector: Some Properties 

• Rotation invariance 

Ellipse rotates but its shape (i.e.`, eigenvalues) remains the same 

Corner response R is invariant to image rotation 

Image 1 Image 2 



Harris Detector: Some Properties 

• But: non-invariant to image scale! 

All points will be 
classified as edges 

Corner! 

Image 1 Image 2 



Harris Detector: Some Properties 

• Quality of Harris detector for different scale changes 

Repeatability= 

# correspondences detected 

# correspondences present 

Scaling the image by ×2  
 ~18% of correspondences get 

matched 



Image 1 Image 2 

Scale changes 

• How can we match image patches corresponding to the same feature but 
belonging to images taken at different scales?  

– Possible solution: rescale the patch! 



Image 1 Image 2 

Scale changes 

• How can we match image patches corresponding to the same feature but 
belonging to images taken at different scales?  

– Possible solution: rescale the patch! 



Scale changes 

• How can we match image patches corresponding to the same feature but 
belonging to images taken at different scales?  

– Possible solution: rescale the patch! 

Image 1 Image 2 



Image 1 Image 2 

Scale changes 

• How can we match image patches corresponding to the same feature but 
belonging to images taken at different scales?  

– Possible solution: rescale the patch! 



Scale changes 

• Scale search is time consuming (needs to be done individually for all 
patches in one image) 

• Possible solution: assign each feature its own “scale” (i.e., size). 

–  What’s the optimal scale (i.e., size) of the patch? 

 



• Solution: 

– Design a function on the image patch, which is “scale 
invariant” (i.e., which has the same value for corresponding 
regions, even if they are at different scales) 
 
 

Can this function be the Cornerness Response function? 
Answer: no! Why? What kind of behavior does it have? 

scale = 1/2 

– For a point in one image, we can consider it as a 
function of region size (patch width)  
 

f 

region size 

Image 1 f 

region size 

Image 2 

Automatic Scale Selection 



• Common approach: 

scale = 1/2 

f 

region size 

Image 1 f 

region size 

Image 2 

Take a local maximum of this function 

Observation: region size, for which the maximum is 
achieved, should be invariant to image scale. 

s1 s2 

Important: this scale invariant region size is 
found in each image independently! 

Automatic Scale Selection 



Automatic Scale Selection 
• Function responses for increasing scale (scale signature)  
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Automatic Scale Selection 
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• Function responses for increasing scale (scale signature)  
Image 1 Image 2 



Automatic Scale Selection 
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Automatic Scale Selection 
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Automatic Scale Selection 
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Image 1 Image 2 



Automatic Scale Selection 
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• Function responses for increasing scale (scale signature)  
Image 1 Image 2 



Automatic Scale Selection 

• When the right scale is found, the patch must be normalized 



Scale Invariant Detection: Robustness 

• A “good” function for scale detection should have a single & sharp peak 

 

 

 

 

 

 

 

• Sharp, local intensity changes are good regions to monitor in order to 
identify the scale 

   Blobs and corners are the ideal locations! 

 

I 

region size 

bad 

I 

region size 

bad 

I 

region size 

Good ! 

A cornerness response 
function would exhibit this 

“flat ”behavior, why? 



Scale Invariant Detection 
• Functions for determining scale: convolve image with kernel to identify sharp intensity 

discontinuities 

 
• Laplacian of Gaussian kernel: 

 

 

 

• Correct scale is found as local maxima across consecutive smoothed images 
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Scale Invariant Detection 
• Functions for determining scale: convolve image with kernel to identify sharp intensity 

discontinuities 

 
• Laplacian of Gaussian kernel: 

 

 

 

• Correct scale is found as local maxima across consecutive smoothed images 

 

 

 

Kernel Imagef  
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Scale-space detection: Example 



Scale-space detection: Example 



Scale-space detection: Example 



Scale Invariant Detectors 

• Experimental evaluation of detectors  
w.r.t. scale change 

Repeatability= 

# correspondences detected 

# correspondences present 



Main questions 

• Where will the interest points come from? 

– What are salient features that we’ll detect in multiple views? 

• How to describe a local region? 

• How to establish correspondences, i.e., compute matches? 

 



• We know how to detect points 
• Next question: 

 
             How to describe them for matching? 

? 

• Simplest descriptor: list of intensities within a squared patch or gradient histogram 

• Alternative: Histograms of Oriented Gradients (like in SIFT, see later) 

• Then, descriptor matching can be done using SSD, SAD, or ZNCC 

 

Feature descriptors 



Feature descriptors 

• We’d like to find the same features regardless of the transformation 
(rotation, scale, view point, and illumination) 

– Most feature methods are designed to be invariant to  

• translation,  

• 2D rotation,  

• scale 

– Some of them can also handle 

• Small view-point invariance (3D rotation) (e.g., SIFT works up to 
about 60 degrees) 

• Linear illumination changes 

 



How to achieve invariance 

CSE 576: Computer Vision 

8 pixels 

Step 1: Re-scaling and De-rotation 
• Find correct scale using LoG operator 
• Rescale the patch to a default size (e.g., 8x8 pixels) 
• Find local orientation 

– Dominant direction of gradient for the image patch (e.g., Harris eigenvectors) 
• De-rotate patch  

– This puts the patches into a canonical orientation 
 

 

 



How to achieve invariance 
Step 2: Affine Un-warping (to achieve slight view-point invariance) 
• The second moment matrix M can be used to identify the two directions of fastest and 

slowest change of intensity around the feature. 

• Out of these two directions, an elliptic patch is extracted at the scale computed by with 
the LoG operator. 

• The region inside the ellipse is normalized to a circular one 



Example: de-rotation, re-scaling, and affine un-warping 

How to achieve invariance 



Feature descriptors 

• Disadvantage of patches as descriptors:  

– Very small errors in rotation, scale, view-point, and illumination can 
affect matching score significantly 

– Computationally expensive (need to unwarp every patch) 
 
 

• Better solution today: build descriptors from Histograms of Oriented 
Gradients (HOGs) 



HOG descriptor (Histogram of Oriented Gradients) 

• Compute a histogram of orientations of intensity gradients  

• Peaks in histogram: dominant orientations 

• Keypoint orientation = histogram peak  

– If there are multiple candidate peaks, construct a different keypoint for each 
such orientation 

• Rotate patch according to this angle 

• This puts the patches into a canonical orientation 

0 2 p 

Dominant orientation 



• Scale Invariant Feature Transform 

• Invented by David Lowe [IJCV, 2004] 

• Descriptor computation: 

– Divide patch into 4x4 sub-patches: 16 cells 

– Compute histogram of gradient orientations (8 reference angles) for all pixels 
inside each sub-patch 

– Resulting SIFT descriptor: 4x4x8 = 128 values 

– Descriptor Matching: Euclidean-distance between these descriptor vectors 
(i.e., SSD) 

SIFT descriptor 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV , 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Feature descriptors: SIFT 
• Extraordinarily robust matching technique 

– Can handle changes in viewpoint 

• Up to about 60 degree out of plane rotation 

– Can handle significant changes in illumination 

• Sometimes even day vs. night (below) 

– Fast and efficient—can run in real time 

– Original SIFT code (binary files): http://people.cs.ubc.ca/~lowe/keypoints  

http://people.cs.ubc.ca/~lowe/keypoints
http://people.cs.ubc.ca/~lowe/keypoints


Scale Invariant Detection 
Like to Harris Laplacian but Laplacian of Gaussian kernel is approximated with Difference of 
Gaussian (DoG) kernel (computationally cheaper): 

),(),( yxGyxGDoGLOG k  



SIFT detector (location + scale) 
 SIFT keypoints: local extrema in the DoG pyramid 

 

 



SIFT Features: Summary 
 SIFT: Scale Invariant Feature Transform [Lowe, IJCV 2004] 

 An approach to detect and describe regions of interest in an image.  
 

 SIFT features are reasonably invariant to changes in rotation, scaling, 
and small changes in viewpoint and illumination 
 

 Computationally a bit costly (10 Hz) 

 Expensive steps are the scale detection and descriptor extraction 

 



SIFT repeatability vs. viewpoint angle 

Repeatability= 

# correspondences detected 

# correspondences present 



SIFT repeatability vs. Scale 

Repeatability= 

# correspondences detected 

# correspondences present 

Harris 
SIFT                        



How many parameters are used to define a 

SIFT feature? 

• Descriptor: 128 parameters 

• Location (pixel coordinates of the center of the patch): 2D vector 

• Size (i.e., scale) of the patch: 1 scalar value 

• Orientation (i.e., angle of the patch): 1 scalar value 



SIFT for Planar recognition 

• Planar surfaces can be reliably recognized at a 
rotation of 60° away from the camera 

• Only 3 points are needed for recognition 

• But objects need to possess enough texture  

• Recognition under occlusion 

 



SIFT for Panorama Stitching 

[M. Brown and D. G. Lowe. Recognising Panoramas. ICCV 2003] 

AutoStitch: http://matthewalunbrown.com/autostitch/autostitch.html  

http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/autostitch/autostitch.html
http://matthewalunbrown.com/autostitch/autostitch.html


Main questions 

• Where will the interest points come from? 

– What are salient features that we’ll detect in multiple views? 

• How to describe a local region? 

• How to establish correspondences, i.e., compute matches? 

 



Feature matching 

? 



Feature matching 

• Given a feature in 𝐼1, how to find the best match in 𝐼2? 

1. Define distance function that compares two descriptors 

 SSD (also called L2 norm) 

 SAD 

 ZNCC 

2. Brute-force matching: Test all the features in 𝐼2, find the one with 
min distance 

 

• Problem with distance: can give good scores to very ambiguous (bad) 
matches! 

• Better approach:  ratio distance = d(f1, f2) / d(f1, f2’) < Threshold (e.g., 0.8) 

• f2 is best match to f1 in I2 

• f2’  is  2nd best match to f1 in I2 

• gives small values for ambiguous matches 

 

 

 



SURF 

• Speeded Up Robust Features 

• Based on ideas similar to SIFT 

• Approximated computation for 
detection and descriptor 

• Results comparable with SIFT, plus: 

– Faster computation 

– Generally shorter descriptors 

[Bay et al., ECCV 2006] 

Bay, Tuytelaars, Van Gool, " Speeded Up Robust Features ", ECCV 2006 



FAST detector [Rosten et al., ECCV’05]  

• FAST: Features from Accelerated Segment Test  
• Studies intensity of pixels on circle around candidate pixel C  
• C is a FAST corner if a set of N contiguous pixels on circle are:  

• all brighter than intensity_of(C)+theshold, or  
• all darker than intensity_of(C)+theshold  

• Typical FAST mask: test for 9 contiguous pixels in a 16-pixel circle  
• Very fast detector -  in the order of 100 Mega-pixel/second  
 

Rosten, Drummond, Fusing points and lines for high performance tracking, IEEE International Conference on 
Computer Vision, 2005 



BRIEF descriptor [Calonder et. al, ECCV 2010]  

Pattern for intensity pair samples – 
generated randomly  

• Binary Robust Independent Elementary 
Features  

• Goal: high speed (in description and matching)  
 

• Binary descriptor formation:  
• Smooth image  
• for each detected keypoint (e.g. FAST),  
• sample 256 intensity pairs p=(𝑝1, 𝑝2) within 

a squared patch around the keypoint  
• for each pair p  

• if 𝑝1 < 𝑝2 then set bit p of descriptor 
to 1  

• else set bit p of descriptor to 0  
 

• The pattern is generated randomly only once; 
then, the same pattern is used for all patches 
 

• Not scale/rotation invariant  
• Allows very fast Hamming Distance matching: 

count the number of bits that are different in 
the descriptors matched  

Calonder, Lepetit, Strecha, Fua, BRIEF: Binary Robust Independent Elementary Features, ECCV’10] 



• Oriented FAST and Rotated BRIEF 

• Alterative to SIFT or SURF, 
designed for fast computation 

• Keypoint detector based on FAST 

• BRIEF descriptors are steered 
according to keypoint orientation 
(to provide rotation invariance) 

• Good Binary features are learned 
by minimizing the correlation on 
a set of training patches.   

ORB descriptor [Rublee et al., ICCV 2011] 



BRISK descriptor [Leutenegger, Chli, Siegwart, ICCV 2011] 

• Binary Robust Invariant Scalable Keypoints  
• Detect corners in scale-space using FAST  
• Rotation and scale invariant  

• Binary, formed by pairwise intensity 
comparisons (like BRIEF)  

• Pattern defines intensity comparisons in 
the keypoint neighborhood  

• Red circles: size of the smoothing kernel 
applied  

• Blue circles: smoothed pixel value used  
• Compare short- and long-distance pairs 

for orientation assignment & descriptor 
formation  

• Detection and descriptor speed:  ~10 
times faster than SURF 

• Slower than BRIEF, but scale- and 
rotation- invariant  
 



Summary (things to remember) 
• Point feature detection 

– Properties and invariance to transformations 

• Challenges: rotation, scale, view-point, and illumination changes 

– Extraction 

• Harris and Shi-Tomasi 

– Rotation invariance 

– Scale invariance: Harris Laplacian 

– Descriptor 

• Intensity patches 

– How to make them invariant to transformations: rotation, scale, illumination, and 
view-point (affine) 

• Better solution: Histogram of oriented gradients: SIFT descriptor 

– Matching 

• SSD, SAD, ZNCC, ratio 1st /2nd closest descriptor 

– Depending on the task, you may want to trade repeatability and robustness for speed: 
approximated solutions, combinations of efficient detectors and descriptors. 

• Fast corner detector: FAST;  

• Keypoint descriptors faster than SIFT: SURF, BRIEF, ORB, BRISK 

• Autonomous Mobile Robot book chapter 4.5 

• Szeliski book chapters 4.3.2 and 4.1 


