

Lecture 04 Image Filtering

Prof. Dr. Davide Scaramuzza <u>sdavide@ifi.uzh.ch</u>

Exercise schedule update

Lab exercise sessions are shown in YELLOW. The online program has been updated too.

Date	Time	Description of the lecture/exercise	Lecturer
15.10.2015	10:15 - 12:00 <mark>14:15 - 15:45</mark>	05 - Point Feature Detectors 1: Harris detector Lab Exercise 2: Harris detector	Scaramuzza Elias Mueggler/Zichao Zhang
22.10.2015	10:15 - 12:00	06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK	Scaramuzza
29.10.2015	10:15 - 12:00 <mark>14:15 - 15:45</mark>	07 - Multiple-view geometry 1: Epipolar geometry and stereo Lab Exercise 3: Stereo vision	Scaramuzza Elias Mueggler/Zichao Zhang
05.11.2015	10:15 - 12:00	08 - Multiple-view geometry 2: Two-view Structure from Motion and RANSAC	Scaramuzza
12.11.2015	10:15 - 12:00 <mark>14:15 - 15:45</mark>	09 - Multiple-view geometry 3: N-view Structure-from-Motion and Bundle Adjustment Exercise 4: 8-point algorithm and RANSAC	Scaramuzza Elias Mueggler/Zichao Zhang
19.11.2015	10:15 - 12:00	10 - Dense 3D Reconstruction (Multi-view Stereo)	Scaramuzza
26.11.2015	10:15 - 12:00 <mark>14:15 - 15:45</mark>	11 - Optical Flow and Tracking (Lucas-Kanade) Exercise 5: Lucas-Kanade tracker	Scaramuzza Elias Mueggler/Zichao Zhang
03.12.2015	10:15 - 12:00 <mark>14:15 - 15:45</mark>	12 - Image Retrieval Exercise 6: Recognition with Bag of Words	Scaramuzza Elias Mueggler/Zichao Zhang

Image filtering

- The word *filter* comes from frequency-domain processing, where "filtering" refers to the process of accepting or rejecting certain frequency components
- We distinguish between low-pass and high-pass filtering
 - A low-pass filter smooths an image (retains low-frequency components)
 - A high-pass filter enhances the contours of an image (high frequency)

Low-pass filtered image

High-pass filtered image

Low-pass filtering Motivation: noise reduction

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise: variations in intensity drawn from a Gaussian normal distribution

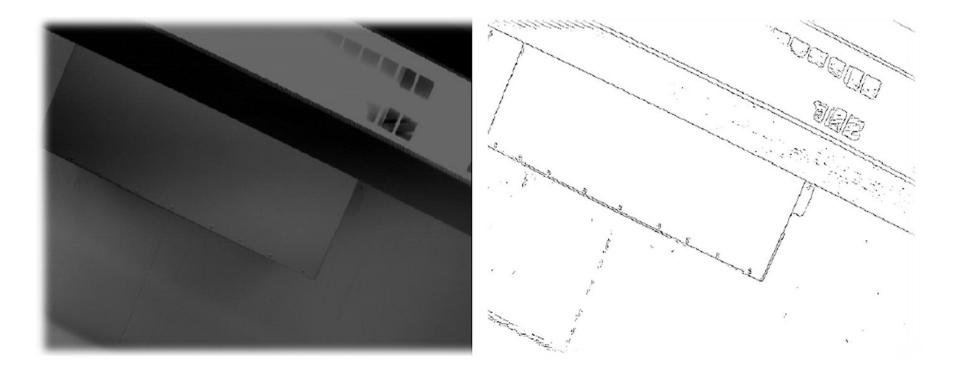
Original

Salt and pepper noise

Impulse noise

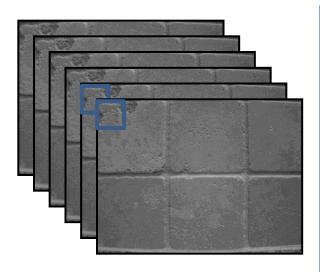
Gaussian noise

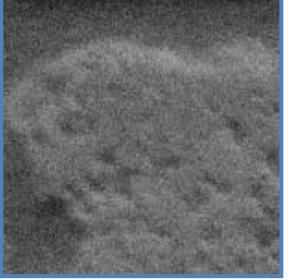
High-pass filtering Motivation: edge detection

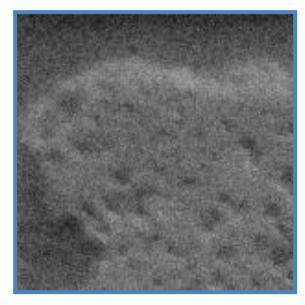


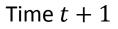
Low-pass filtering

A simple noise reduction algorithm



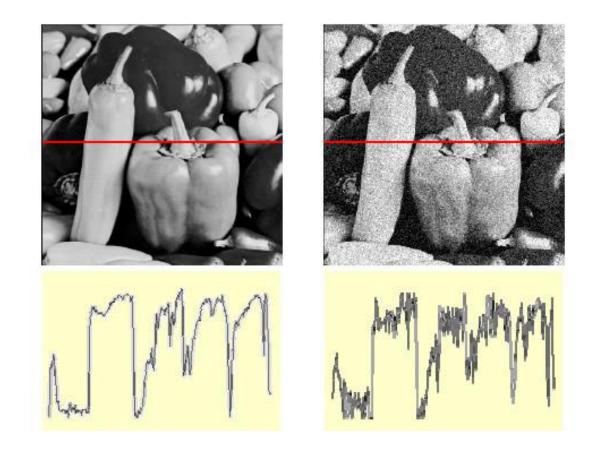






- We can measure **noise** in multiple images of the same static scene.
- How could we reduce the noise?
- What if there is only one image?

Gaussian noise



 $f(x,y) = \overbrace{\widehat{f(x,y)}}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}} \qquad \begin{array}{l} \text{Gaussian i.i.d. ("white") noise:} \\ \eta(x,y) \sim \mathcal{N}(\mu,\sigma) \end{array}$

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

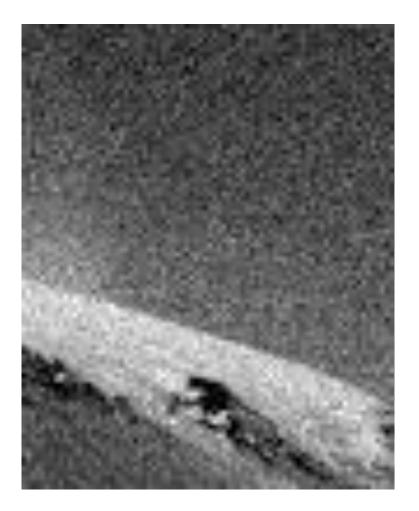
Gaussian noise

Effect of sigma on Gaussian noise. This image shows the noise values added to the raw intensities of an image.

Sigma = 1

Gaussian noise

Effect of sigma on Gaussian noise. This image shows the noise values added to the raw intensities of an image.



Sigma = 16

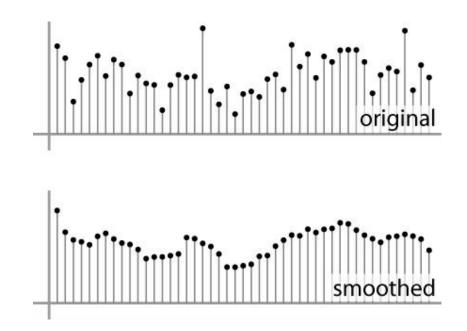
How can we reduce the noise?

Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

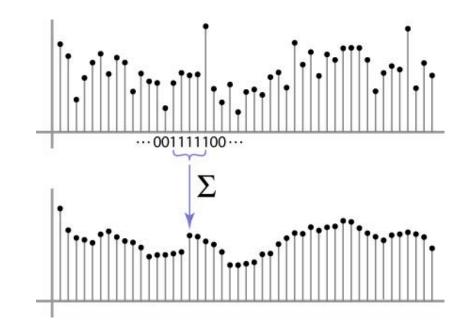
Moving average

- Replaces each pixel with an average of all the values in its neighborhood
- Moving average in 1D:



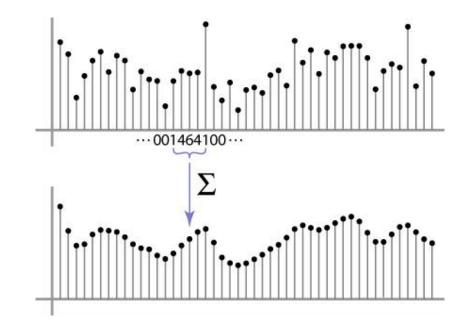
Weighted Moving Average

- Can add weights to our moving average
- Weights [1, 1, 1, 1, 1] / 5



Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16



F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10				

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30		

F[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

 						_		
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Filtering by Correlation

If the averaging window size is 2k+1 x 2k+1:

$$G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]$$

$$Attribute uniform$$
weight to each pixel
$$Loop \text{ over all pixels in neighborhood}$$

$$around \text{ image pixel } F[i, j]$$

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i+u, j+v]$$

Non-uniform weights

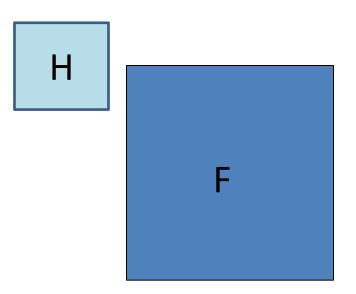
Filtering by Correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called cross-correlation, denoted

Filtering an image: replace each pixel with a linear combination of its neighbors.

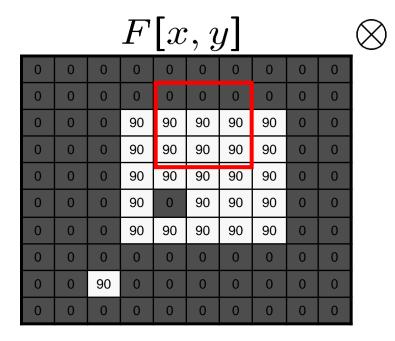
The **filter** *H* is also called "**kernel**" or "**mask**"



 $G = H \otimes F$

Averaging filter

• What values belong in the kernel *H* for the moving average example?



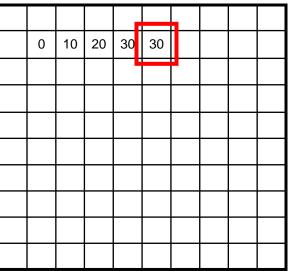
$$\begin{array}{c}
1 \\
1 \\
1 \\
9 \\
1 \\
1 \\
1
\end{array}$$

1

"box filter"

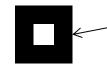
1

H[u, v]

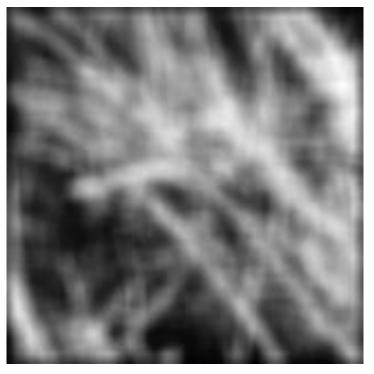


 $G = H \otimes F$

Smoothing by averaging



Box filter: white = high value, black = low value



filtered

original

Gaussian filter

• What if we want the closest pixels to have higher influence on the output?

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F[x, y]

$$\frac{1}{16} \begin{array}{ccc}
 1 & 2 \\
 2 & 4 \\
 1 & 2 \\
 1 & 2
 \end{array}$$

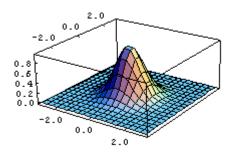
H[u, v]

2

1

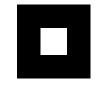
This kernel is an approximation of a Gaussian function:

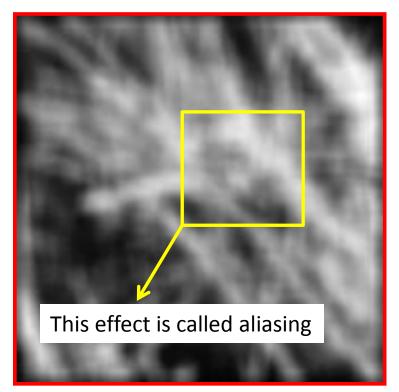
$$h(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{\sigma^2}}$$



Smoothing with a Gaussian

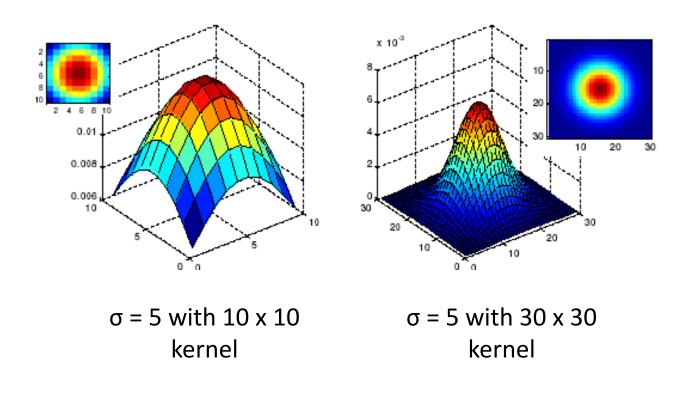
Compare the result with a box filter





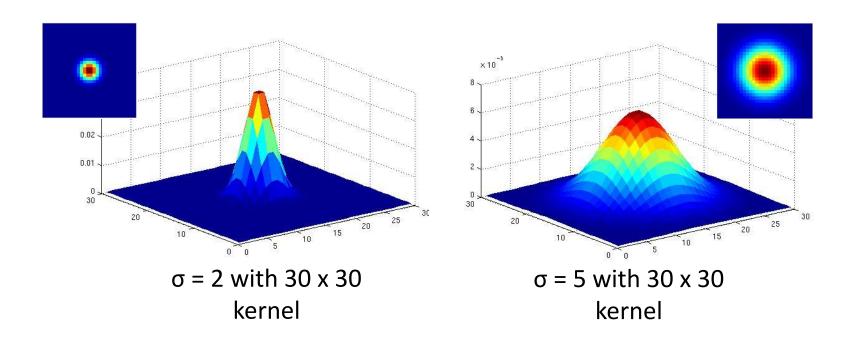
Gaussian filters

- What parameters matter?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels



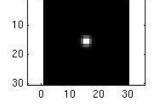
Gaussian filters

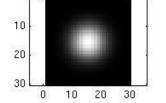
- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

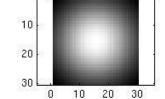


Smoothing with a Gaussian

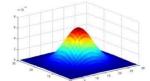
Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.





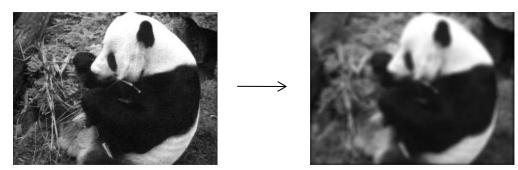


Sample Matlab code



- >> mesh(h);
- >> imagesc(h);

- >> im = imread('panda.jpg');
- >> outim = imfilter(im, h);
- >> imshow(outim);



Boundary issues

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to pad the image borders
 - methods:
 - zero padding (black)
 - wrap around
 - copy edge
 - reflect across edge

Convolution

- Convolution:
 - Flip the filter in both dimensions (bottom to top, right to left)
 - Then apply cross-correlation

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

$$G = H \star F$$

$$\uparrow$$

$$Notation for$$

$$Convolution$$

$$I80 deg turn$$

$$F$$

Convolution vs. correlation

Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

Cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

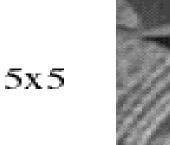
 $G = H \otimes F$

For a Gaussian or box filter, how will the outputs differ?

Summary on filters

- <u>Smoothing</u>
 - Values positive
 - Sum to 1 \rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

Effect of smoothing filters



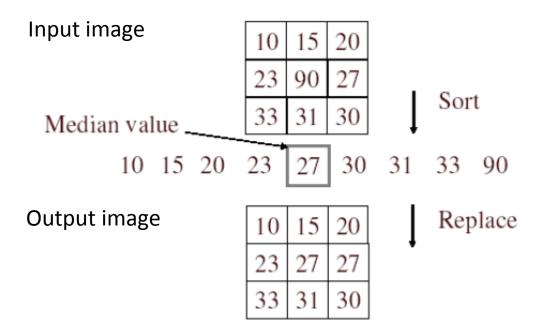
Additive Gaussian noise

Salt and pepper noise

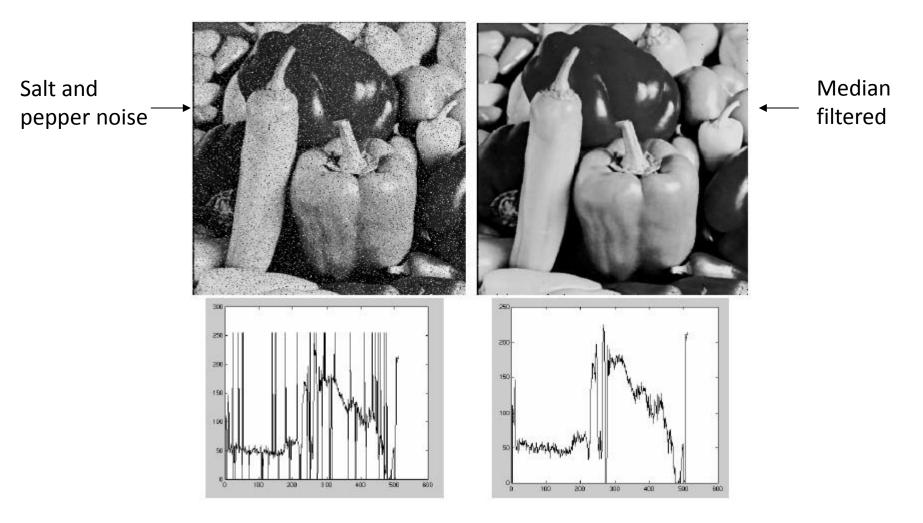
Linear smoothing filters do not alleviate salt and pepper noise!

Median filter

- It is a non linear filter
- Removes spikes: good for impulse, salt & pepper noise



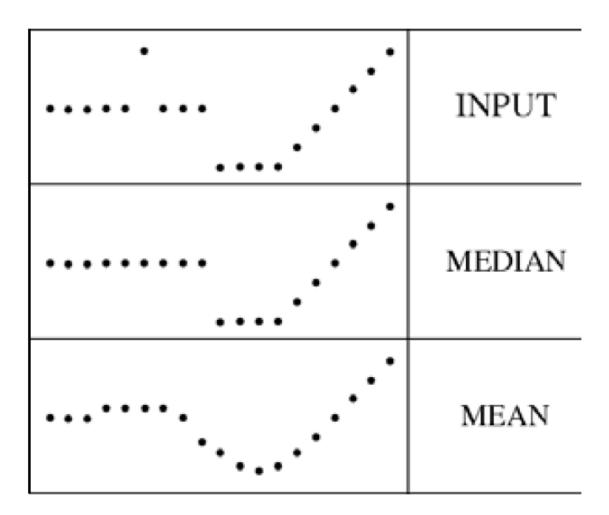
Median filter



Plots of a row of the image

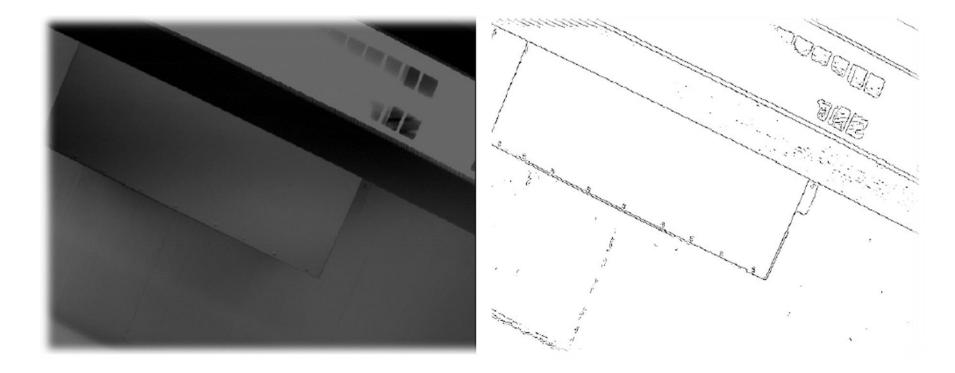
Median filter

• Median filter is edge preserving

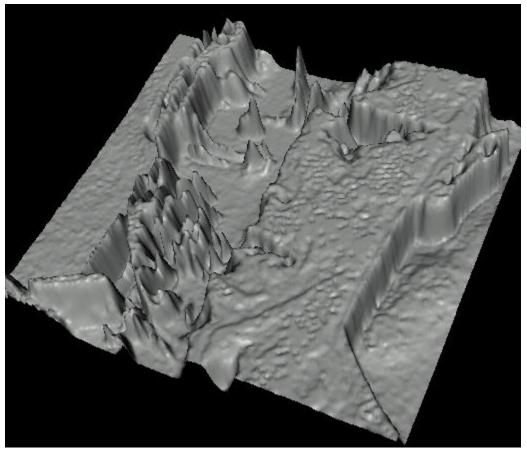


Edge detection

- Ultimate goal of edge detection: an idealized line drawing.
- Edge contours in the image correspond to important scene contours.



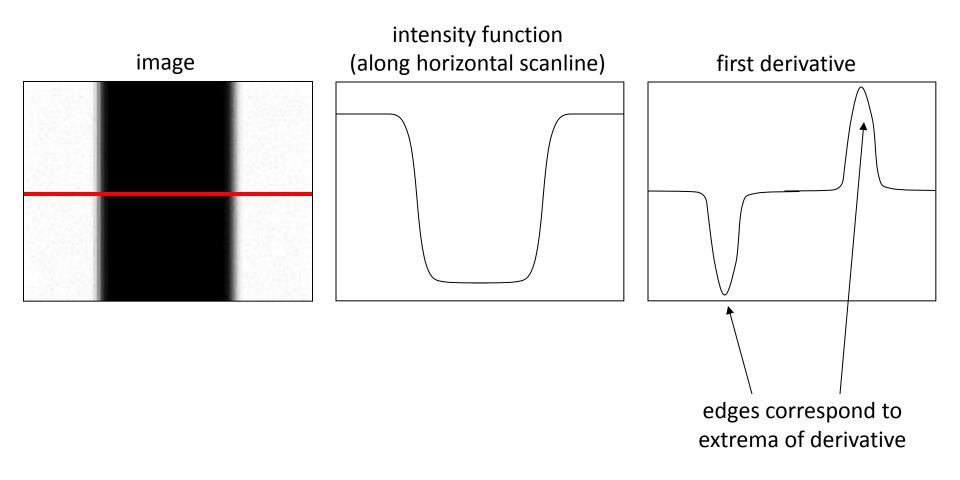
Images as functions f(x, y)



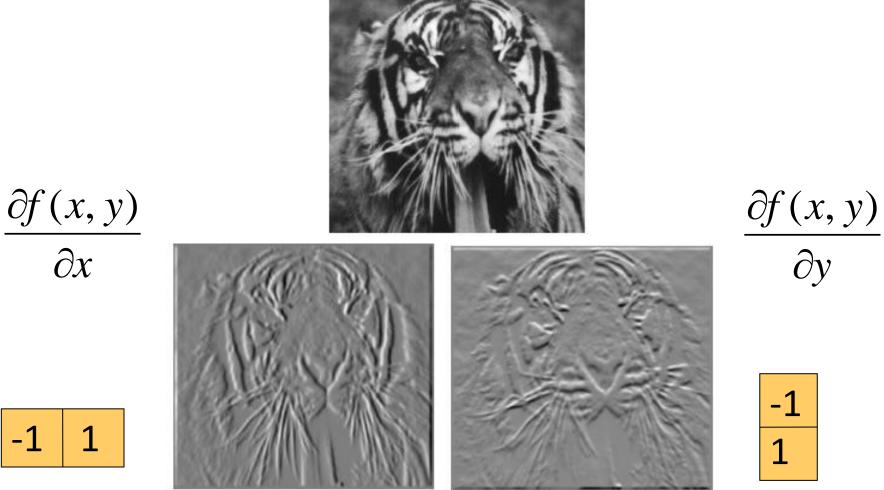
• Edges look like steep cliffs

Derivatives and edges

An edge is a place of rapid change in the image intensity function.



Partial derivatives of an image



Alternative Finite-difference filters

Prewitt filter
$$\mathbf{G}_{\mathbf{x}} = \begin{bmatrix} -1 & 0 & +1 \\ -1 & 0 & +1 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \text{ and } \mathbf{G}_{\mathbf{y}} = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ +1 & +1 & +1 \end{bmatrix} * \mathbf{A}$$

Sobel filter $\mathbf{G}_{x} = \begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} * \mathbf{A} \text{ and } \mathbf{G}_{y} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix} * \mathbf{A}$

Sample Matlab code
>> im = imread('lion.jpg')
>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;

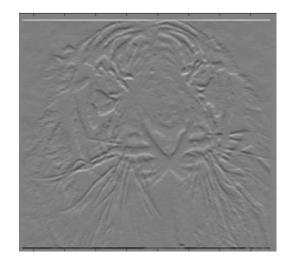


Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of fastest intensity change

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

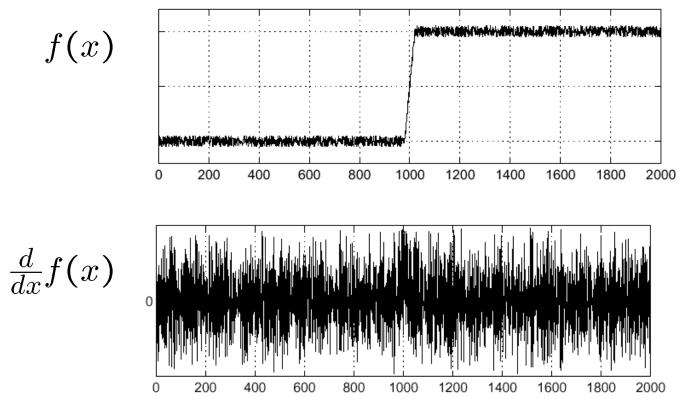
The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Effects of noise

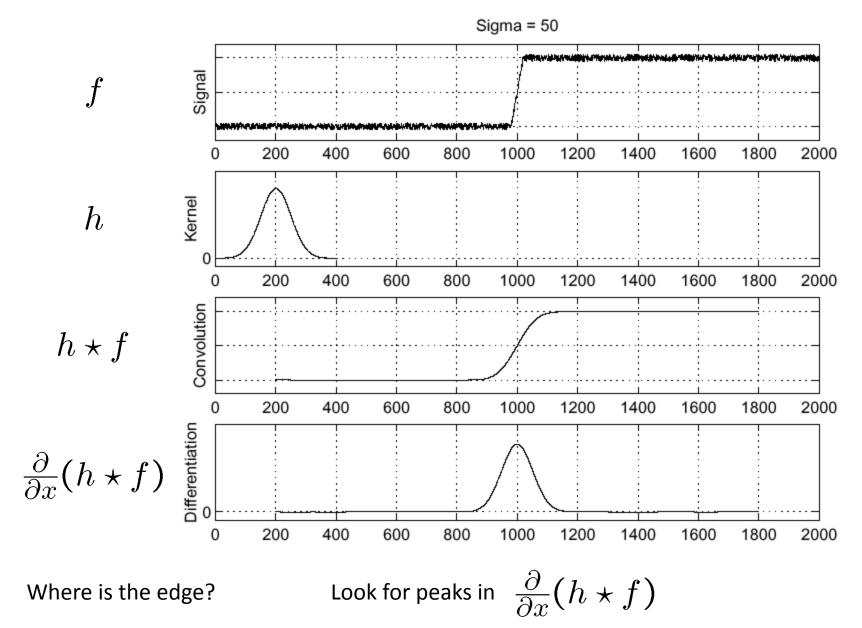
Consider a single row or column of the image

- Plotting intensity as a function of position gives a signal



Where is the edge?

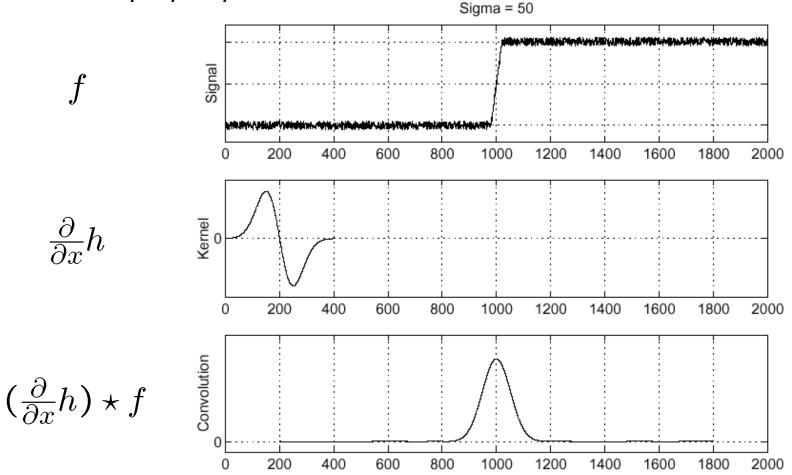
Solution: smooth first



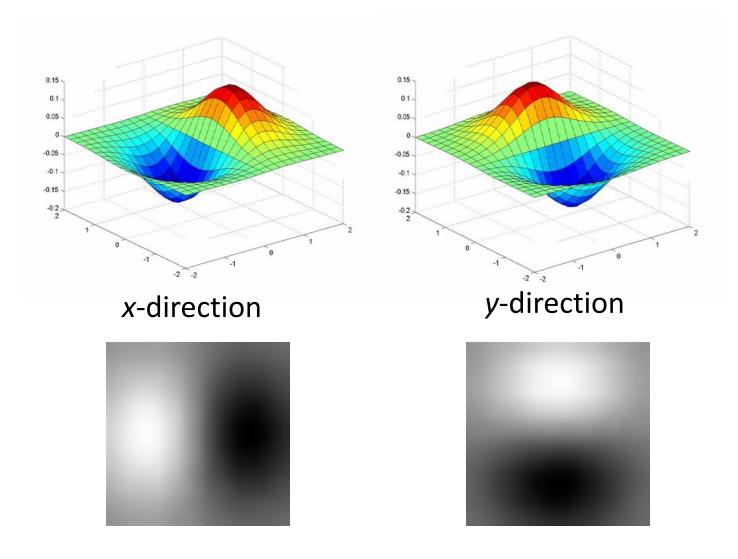
Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

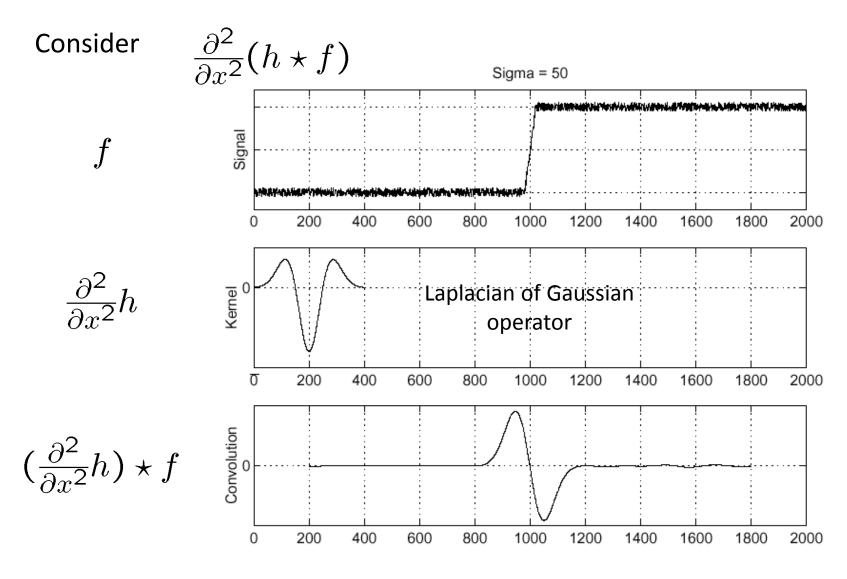
Differentiation property of convolution.



Derivative of Gaussian filters



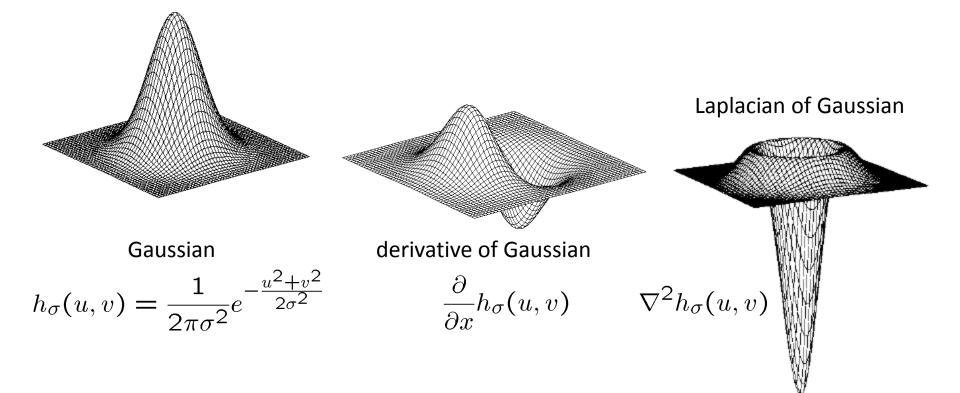
Laplacian of Gaussian



Where is the edge?

Zero-crossings of bottom graph

2D edge detection filters



• ∇^2 is the Laplacian operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

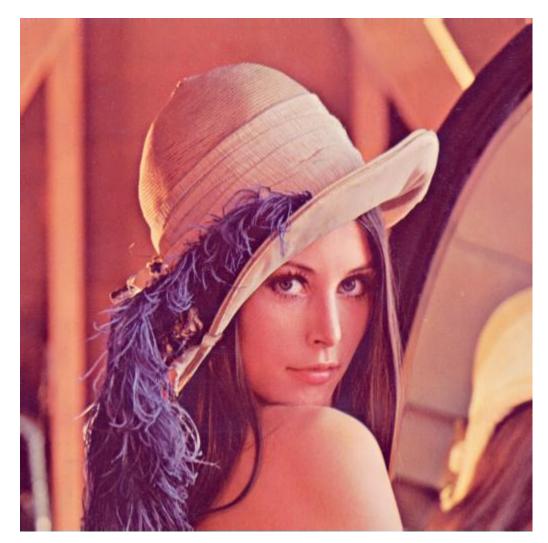
Summary on filters

- <u>Smoothing</u>
 - Values positive
 - Sum to 1 \rightarrow constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter

<u>Derivatives</u>

- Opposite signs used to get high response in regions of high contrast
- Sum to $0 \rightarrow$ no response in constant regions
- High absolute value at points of high contrast

- Compute gradient of smoothed image in both directions
- Discard pixels whose gradient magnitude is below a certain threshold
- Non-maximal suppression: identify local maxima along gradient direction



Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

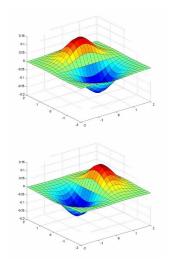
Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

Take a grayscale image. If not grayscale (i.g., RGB), convert it into a grayscale by replacing each pixel by the mean value of its R, G, B components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

Convolve the image with x and y derivatives of Gaussian filter

$$\nabla f = \nabla \big(G_{\sigma} * I \big)$$



$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$
: Edge strength

Threshold it (i.e., set to 0 all pixels who value is below a given threshold)

Thresholding $|\nabla f|$

Take local maximum along gradient direction

Thinning: non-maxima suppression (local-maxima detection) along edge direction

Summary (things to remember)

- Image filtering (definition, motivation, applications)
- Moving average
- Linear filters and formulation: box filter, Gaussian filter, sharpening filter
 - Differences and properties
 - Boundary issues
 - Correlation vs convolution
- Non-linear filters
 - Median filter and its applications
- Edge detection
 - Derivating filters (Prewitt, Sobel)
 - Convolution theorem
 - Laplacian of Gaussian
 - Canny edge detector
- Book chapters 3.2, pages 108-109, 386-387, 4.2.1, 11.3.1