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Lecture 04
Image Filtering
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Exercise schedule update

Lab exercise sessions are shown in YELLOW.
The online program has been updated too.

29.10.2015

10:15-12:00
14:15 - 15:45

10:15-12:00

10:15-12:00

14:15 - 15:45

10:15 - 12:00

10:15-12:00

14:15 - 15:45

10:15-12:00

10:15-12:00
14:15 - 15:45

10:15-12:00
14:15 - 15:45

05 - Point Feature Detectors 1: Harris detector
Lab Exercise 2: Harris detector

06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK

07 - Multiple-view geometry 1: Epipolar geometry and stereo

Lab Exercise 3: Stereo vision

08 - Multiple-view geometry 2: Two-view Structure from Motion and RANSAC

09 - Multiple-view geometry 3: N-view Structure-from-Motion and Bundle Adjustment
Exercise 4: 8-point algorithm and RANSAC

10 - Dense 3D Reconstruction (Multi-view Stereo)

11 - Optical Flow and Tracking (Lucas-Kanade)
Exercise 5: Lucas-Kanade tracker

12 - Image Retrieval
Exercise 6: Recognition with Bag of Words
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Image filtering

* The word filter comes from frequency-domain processing, where “filtering” refers to the
process of accepting or rejecting certain frequency components

* We distinguish between low-pass and high-pass filtering
— A low-pass filter smooths an image (retains low-frequency components)
— A high-pass filter enhances the contours of an image (high frequency)

Low-pass filtered image High-pass filtered image




Low-pass filtering
Motivation: noise reduction

e Salt and pepper noise: random
occurrences of black and white
pixels

* Impulse noise: random
occurrences of white pixels

e @Gaussian noise: variations in
intensity drawn from a Gaussian
normal distribution

Impulse noise Gaussian noise

Source: S. Seitz



High-pass filtering

edge detection

Motivation




Low-pass filtering



A simple noise reduction algorithm

Timet Timet+1

 We can measure noise in multiple images of the same static scene.
* How could we reduce the noise?
 What if there is only one image?



Gaussian noise
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Ide_al Image Noise process Gaussian i.i.d. (“white") noise:
f@y)= f(=zy) + n(z,y) n(z,y) ~ N(u, o)
>> noise = randn(size(im)) .*sigma;

>> output = im + noise;



Gaussian noise

Effect of sigma on Gaussian noise. This image shows the noise values added to the
raw intensities of an image.

Sigma = 1




Gaussian noise

Effect of sigma on Gaussian noise. This image shows the noise values added to the
raw intensities of an image.

Sigma = 16

How can we reduce the noise?




Moving average

e Replaces each pixel with an average of all the values in its neighborhood
e Assumptions:

— Expect pixels to be like their neighbors

— Expect noise processes to be independent from pixel to pixel



Moving average

e Replaces each pixel with an average of all the values in its neighborhood
e Moving average in 1D:




Weighted Moving Average

* (Can add weights to our moving average
 Weights [1,1,1,1,1] /5




Weighted Moving Average

iform weights [1, 4, 6, 4, 1] / 16

1001464100+




Moving Average In 2D

Flz, y] Glz, y.




Moving Average In 2D

Flz, y] Glz, y.




Moving Average In 2D

Flz, y]

Glz,y.
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Moving Average In 2D

Flz, y]

10




Moving Average In 2D

Flz, y]

10




Moving Average In 2D

Flz, y] Glz, y




Filtering by Correlation

If the averaging window size is 2k+1 x 2k+1:

. 1

k
Z Fli 4+ u,j + v]
—kv=—k

\ J
\ Y J Y

Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F|i, j]

Now generalize to allow different weights depending on neighboring pixel’s
relative position:

Eoook
Gli,jl= > > Hlu,v]Fli+u,j+ ]

u=—kov=-%k\ Y )

Non-uniform weights




Filtering by Correlation
k k
Gli,jl= > >, Hlu,v]F[i+u,j+ v]
u=—kov=-—%k
This is called cross-correlation, denoted G — H ® F

Filtering an image: replace each pixel with a
linear combination of its neighbors.

The filter H is also called “kernel” or
“mask”




Averaging filter

 What values belong in the kernel H for the moving average example?

Flx, y] ®  Hlu,v]
. 111
— 11211
9 (]
111

“box filter”

G=HQXF

Glz, y]

20

2

30




Smoothing by averaging

Box filter:
white = high value, black = low value

original filtered



Gaussian filter

What if we want the closest pixels to have higher influence on the output?

This kernel is an
approximation of a
Gaussian function:

1121 1 _ul4e?
1 T3 h(u,v) = € o2
1~ To
16

1121

Flx,y]




Smoothing with a Gaussian




Compare the result with a box filter




Gaussian filters

 What parameters matter?
* Size of kernel or mask

— Note, Gaussian function has infinite support, but discrete filters use finite
kernels

o=5with 10 x 10 o =5 with 30 x30
kernel kernel



Gaussian filters

 What parameters matter here?
e Variance of Gaussian: determines extent of smoothing

o =2 with 30 x 30 o =5 with 30 x 30
kernel kernel




Smoothing with a Gaussian

Parameter o is the “scale” / “width” / “spread” of the Gaussian kernel, and controls
the amount of smoothing.

0 10 20 30 0 10 20 30 0 10 20 30



Sample Matlab code

>> hsize = 10;
>> sigma = 5;
>> h = fspecial (‘gaussian’ hsize, sigma);

>> mesh (h) ;

>> imagesc (h) ; n

>> im = imread(‘panda.jpg’);
>> outim = imfilter (im, h);
>> imshow (outim) ;

outim



Boundary issues

 What about near the edge?

— the filter window falls off the edge of the image
— need to pad the image borders
— methods:

» zero padding (black)

* wrap around

e copy edge

* reflect across edge




Convolution

 Convolution:

— Flip the filter in both dimensions (bottom to top, right to left)
— Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=-—k
H
G =HxF
Notation for
. 180 deg turn
convolution

operator




Convolution vs. correlation

Convolution
k k
u=—kv=—=%k
G =HxF

Cross-correlation

Eook
Gli,jl= > > Hluv]Fli+u,j+ ]

u=—kv=-—%k
G=HF

For a Gaussian or box filter, how will the outputs differ?



Summary on filters

e Smoothing

— Values positive

— Sum to 1 = constant regions same as input
— Amount of smoothing proportional to mask size

— Remove “high-frequency” components; “low-pass” filter



Effect of smoothing filters

SXNS

Additive Gaussian noise Salt and pepper noise

Linear smoothing filters do not alleviate salt and pepper noise!



Median filter

e |tis anon linear filter

e Removes spikes: good for impulse, salt & pepper noise

Input image 10

15120
23190127
1~ Sort
Median value 3313130 l

10 15 20 23 |27|30 31 33 90

Output image 10115120 I Replace
232727
333130




Median filter

Salt and

pepper noise
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Plots of a row of the image

Median
filtered



Median filter

 Median filter is edge preserving

INPUT

& 3 8% 8 B 8 8

MEDIAN

MEAN




Edge detection

* Ultimate goal of edge detection: an idealized line drawing.
* Edge contours in the image correspond to important scene contours.




Images as functions f(x, y)

* Edges look like steep cliffs



Derivatives and edges

An edge is a place of rapid change in the image intensity function.

intensity function
image (along horizontal scanline) first derivative

\ |

edges correspond to
extrema of derivative



Partial derivatives of an image

. N




Alternative Finite-difference filters

Prewitt filter G, =|-1 0 +1|*A and G,=[0 0 0 %A
-1 0 +1 +1 +1 +1
-1 0 +1] -1 -2 -1
Sobel filter G,=|-2 0 42|*A and G,=|0 0 0 |=xA
-1 0 +1 +1 +2 +1

Sample Matlab code

>> im = imread(‘lion.jpg’)

>> My = fspecial (‘'sobel’);

>> outim = imfilter (double (im), My) ;
>> 1magesc (outim) ;

>> colormap gray;




Image gradient

The gradient of an image:

V= [y

The gradient points in the direction of fastest intensity change

_ [0
V= |5%0] I I
_ of
Vi =05
The gradient direction (orientation of edge normal) is given by:
— -1 (9f ﬁ)
6 = tan ( 9y =

The edge strength is given by the gradient magnitude

VAl = D% + (33

V=4




Effects of noise

Consider a single row or column of the image
— Plotting intensity as a function of position gives a signal

f(@)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

L f(z)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?



Solution: smooth first

Sigma = 50

-
Signal

-~
Kernel

600 800 1000 1200 1400 1600 1800 2000

hx f

Convolution
[
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Ge(h* f)

Differentiation

o] | i j j j i i e

0 200 400 600 800 1000 1200 1400 1600 1800 2000

. : 0
Where is the edge? Look for peaks in %(h * f)



Derivative theorem of convolution

Ge(hx ) = (Fh) = f

Differentiation property of convolution.

Kernel

Convolution

Signal

Sigma = 50
|
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Derivative of Gaussian filters

x-direction y-direction




Laplacian of Gaussian

Consider axQ(h*f)

(X h)*f

Where is the edge?

sigma = 50

] ] ] ] ] ] ] ] ]
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Zero-crossings of bottom graph



2D edge detection filters
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Summary on filters

e Smoothing

— Values positive

— Sum to 1 = constant regions same as input
— Amount of smoothing proportional to mask size
— Remove “high-frequency” components; “low-pass” filter

e Derivatives

— Opposite signs used to get high response in regions of high contrast
— Sum to 0 = no response in constant regions

— High absolute value at points of high contrast



The Canny edge-detection algorithm (1986)

 Compute gradient of smoothed image in both directions
* Discard pixels whose gradient magnitude is below a certain threshold

* Non-maximal suppression: identify local maxima along gradient
direction



The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)



https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)



https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna

The Canny edge-detection algorithm (1986)

IV £l = \/(%)2+ (35 : Edge strength

Convolve the image
with x and y derivatives
of Gaussian filter

Vi =V(G, *1)




The Canny edge-detection algorithm (1986)

Thresholding |Vf|

Threshold it (i.e., set to
0 all pixels who value is

below a given
threshold)



The Canny edge-detection algorithm (1986)

Take local maximum
along gradient direction

Thinning: non-maxima suppression (local-maxima detection) along edge
direction



Summary (things to remember)

* Image filtering (definition, motivation, applications)
* Moving average
* Linear filters and formulation: box filter, Gaussian filter, sharpening filter
— Differences and properties
— Boundary issues
— Correlation vs convolution
* Non-linear filters
— Median filter and its applications
* Edge detection
— Derivating filters (Prewitt, Sobel)
— Convolution theorem
— Laplacian of Gaussian

— Canny edge detector
* Book chapters 3.2, pages 108-109, 386-387,4.2.1,11.3.1



