
Lecture 04
Image Filtering

Prof. Dr. Davide Scaramuzza

sdavide@ifi.uzh.ch

mailto:sdavide@ifi.uzh.ch

Exercise schedule update

Date Time Description of the lecture/exercise Lecturer

15.10.2015 10:15 - 12:00

14:15 – 15:45

05 - Point Feature Detectors 1: Harris detector

Lab Exercise 2: Harris detector

Scaramuzza

Elias Mueggler/Zichao

Zhang

22.10.2015 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK
Scaramuzza

29.10.2015 10:15 - 12:00

14:15 – 15:45

07 - Multiple-view geometry 1: Epipolar geometry and stereo

Lab Exercise 3: Stereo vision
Scaramuzza

Elias Mueggler/Zichao

Zhang

05.11.2015 10:15 - 12:00 08 - Multiple-view geometry 2: Two-view Structure from Motion and RANSAC
Scaramuzza

12.11.2015 10:15 - 12:00

14:15 – 15:45

09 - Multiple-view geometry 3: N-view Structure-from-Motion and Bundle Adjustment

Exercise 4: 8-point algorithm and RANSAC
Scaramuzza

Elias Mueggler/Zichao

Zhang

19.11.2015 10:15 - 12:00 10 - Dense 3D Reconstruction (Multi-view Stereo)
Scaramuzza

26.11.2015 10:15 - 12:00

14:15 – 15:45

11 - Optical Flow and Tracking (Lucas-Kanade)

Exercise 5: Lucas-Kanade tracker

Scaramuzza

Elias Mueggler/Zichao

Zhang

03.12.2015 10:15 - 12:00

14:15 – 15:45

12 - Image Retrieval

Exercise 6: Recognition with Bag of Words

Scaramuzza

Elias Mueggler/Zichao

Zhang

Lab exercise sessions are shown in YELLOW.
The online program has been updated too.

Image filtering

• The word filter comes from frequency-domain processing, where “filtering” refers to the
process of accepting or rejecting certain frequency components

• We distinguish between low-pass and high-pass filtering

– A low-pass filter smooths an image (retains low-frequency components)

– A high-pass filter enhances the contours of an image (high frequency)

Low-pass filtered image High-pass filtered image

Low-pass filtering
Motivation: noise reduction

• Salt and pepper noise: random
occurrences of black and white
pixels

• Impulse noise: random
occurrences of white pixels

• Gaussian noise: variations in
intensity drawn from a Gaussian
normal distribution

Source: S. Seitz

High-pass filtering
Motivation: edge detection

Low-pass filtering

A simple noise reduction algorithm

• We can measure noise in multiple images of the same static scene.

• How could we reduce the noise?

• What if there is only one image?

Time 𝑡 Time 𝑡 + 1

>> noise = randn(size(im)).*sigma;

>> output = im + noise;

Gaussian noise

Sigma = 1

Effect of sigma on Gaussian noise. This image shows the noise values added to the
raw intensities of an image.

Gaussian noise

Sigma = 16

Effect of sigma on Gaussian noise. This image shows the noise values added to the
raw intensities of an image.

Gaussian noise

How can we reduce the noise?

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Assumptions:

– Expect pixels to be like their neighbors

– Expect noise processes to be independent from pixel to pixel

Moving average

• Replaces each pixel with an average of all the values in its neighborhood

• Moving average in 1D:

Weighted Moving Average

• Can add weights to our moving average

• Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

• Non-uniform weights [1, 4, 6, 4, 1] / 16

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Moving Average In 2D

Filtering by Correlation
If the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood
around image pixel 𝐹[𝑖, 𝑗]

Attribute uniform
weight to each pixel

Now generalize to allow different weights depending on neighboring pixel’s
relative position:

Non-uniform weights

Filtering an image: replace each pixel with a
linear combination of its neighbors.

The filter 𝑯 is also called “kernel” or
“mask”

This is called cross-correlation, denoted

F

H

Filtering by Correlation

• What values belong in the kernel H for the moving average example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1 1

1 1 1

1 1 1

“box filter”

?

=

Averaging filter

Box filter:
white = high value, black = low value

original filtered

Smoothing by averaging

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want the closest pixels to have higher influence on the output?

This kernel is an
approximation of a
Gaussian function:

Gaussian filter

Smoothing with a Gaussian

Compare the result with a box filter

This effect is called aliasing

• What parameters matter?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters use finite
kernels

σ = 5 with 10 x 10
kernel

σ = 5 with 30 x 30
kernel

Gaussian filters

• What parameters matter here?

• Variance of Gaussian: determines extent of smoothing

σ = 2 with 30 x 30
kernel

σ = 5 with 30 x 30
kernel

Gaussian filters

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls
the amount of smoothing.

Smoothing with a Gaussian

>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> im = imread(‘panda.jpg’);

>> outim = imfilter(im, h);

>> imshow(outim);

outim

Sample Matlab code

Boundary issues
• What about near the edge?

– the filter window falls off the edge of the image

– need to pad the image borders

– methods:

• zero padding (black)

• wrap around

• copy edge

• reflect across edge

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for
convolution
operator

Convolution

F

H

180 deg turn

Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?

Convolution vs. correlation

Summary on filters
• Smoothing

– Values positive

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

Additive Gaussian noise Salt and pepper noise

Effect of smoothing filters

Linear smoothing filters do not alleviate salt and pepper noise!

Median filter
• It is a non linear filter

• Removes spikes: good for impulse, salt & pepper noise

Input image

Output image

Salt and
pepper noise

Median
filtered

Plots of a row of the image

Median filter

Median filter
• Median filter is edge preserving

Edge detection

• Ultimate goal of edge detection: an idealized line drawing.

• Edge contours in the image correspond to important scene contours.

Images as functions 𝑓(𝑥, 𝑦)

• Edges look like steep cliffs

image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative

An edge is a place of rapid change in the image intensity function.

Derivatives and edges

-1
1 -1 1

x

yxf



),(

y

yxf



),(

Partial derivatives of an image

Alternative Finite-difference filters

Sample Matlab code

>> im = imread(‘lion.jpg’)

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My);

>> imagesc(outim);

>> colormap gray;

Prewitt filter

Sobel filter

Image gradient
The gradient of an image:

The gradient points in the direction of fastest intensity change

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Effects of noise
Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?

Where is the edge?

Solution: smooth first

Look for peaks in

Derivative theorem of convolution

Differentiation property of convolution.

Derivative of Gaussian filters

x-direction y-direction

Laplacian of Gaussian
Consider

Laplacian of Gaussian
operator

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Summary on filters
• Smoothing

– Values positive

– Sum to 1  constant regions same as input

– Amount of smoothing proportional to mask size

– Remove “high-frequency” components; “low-pass” filter

• Derivatives
– Opposite signs used to get high response in regions of high contrast

– Sum to 0  no response in constant regions

– High absolute value at points of high contrast

The Canny edge-detection algorithm (1986)

• Compute gradient of smoothed image in both directions

• Discard pixels whose gradient magnitude is below a certain threshold

• Non-maximal suppression: identify local maxima along gradient
direction

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna

Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)

The Canny edge-detection algorithm (1986)

Take a grayscale image.
If not grayscale (i.g.,
RGB), convert it into a
grayscale by replacing
each pixel by the mean
value of its R, G, B
components.

https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna

 IGf  

The Canny edge-detection algorithm (1986)

: Edge strength

Convolve the image
with 𝑥 and 𝑦 derivatives
of Gaussian filter

Thresholding f

The Canny edge-detection algorithm (1986)

Threshold it (i.e., set to
0 all pixels who value is
below a given
threshold)

Thinning: non-maxima suppression (local-maxima detection) along edge

direction

The Canny edge-detection algorithm (1986)

Take local maximum
along gradient direction

Summary (things to remember)

• Image filtering (definition, motivation, applications)

• Moving average

• Linear filters and formulation: box filter, Gaussian filter, sharpening filter

– Differences and properties

– Boundary issues

– Correlation vs convolution

• Non-linear filters

– Median filter and its applications

• Edge detection

– Derivating filters (Prewitt, Sobel)

– Convolution theorem

– Laplacian of Gaussian

– Canny edge detector
• Book chapters 3.2, pages 108-109, 386-387, 4.2.1, 11.3.1

