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Exercise schedule update 

Date Time Description of the lecture/exercise Lecturer 

15.10.2015 10:15 - 12:00 

14:15 – 15:45 

05 - Point Feature Detectors 1: Harris detector 

Lab Exercise 2: Harris detector 

Scaramuzza 

Elias Mueggler/Zichao 

Zhang 

22.10.2015 10:15 - 12:00 06 - Point Feature Detectors 2: SIFT, BRIEF, BRISK 
Scaramuzza 

29.10.2015 10:15 - 12:00 

14:15 – 15:45 

07 - Multiple-view geometry 1: Epipolar geometry and stereo 

Lab Exercise 3: Stereo vision 
Scaramuzza 

Elias Mueggler/Zichao 

Zhang 

05.11.2015 10:15 - 12:00 08 - Multiple-view geometry 2: Two-view Structure from Motion and RANSAC 
Scaramuzza 

12.11.2015 10:15 - 12:00 

14:15 – 15:45 

09 - Multiple-view geometry 3: N-view Structure-from-Motion and Bundle Adjustment 

Exercise 4: 8-point algorithm and RANSAC 
Scaramuzza 

Elias Mueggler/Zichao 

Zhang 

19.11.2015 10:15 - 12:00 10 - Dense 3D Reconstruction (Multi-view Stereo) 
Scaramuzza 

26.11.2015 10:15 - 12:00 

14:15 – 15:45 

11 - Optical Flow and Tracking  (Lucas-Kanade) 

Exercise 5: Lucas-Kanade tracker 

Scaramuzza 

Elias Mueggler/Zichao 

Zhang 

03.12.2015 10:15 - 12:00 

14:15 – 15:45 

12 - Image Retrieval 

Exercise 6: Recognition with Bag of Words 

Scaramuzza 

Elias Mueggler/Zichao 

Zhang 

 

Lab exercise sessions are shown in YELLOW.  
The online program has been updated too. 



Image filtering 

• The word filter comes from frequency-domain processing, where “filtering” refers to the 
process of accepting or rejecting certain frequency components 

• We distinguish between low-pass and high-pass filtering 

– A low-pass filter smooths an image (retains low-frequency components) 

– A high-pass filter enhances the contours of an image (high frequency) 

Low-pass filtered image High-pass filtered image 



Low-pass filtering 
Motivation: noise reduction 

• Salt and pepper noise: random 
occurrences of   black and white 
pixels 

• Impulse noise: random 
occurrences of white pixels 

• Gaussian noise: variations in 
intensity drawn from a Gaussian 
normal distribution 

Source: S. Seitz 



High-pass filtering 
Motivation: edge detection 



Low-pass filtering 



A simple noise reduction algorithm 

• We can measure noise in multiple images of the same static scene. 

• How could we reduce the noise? 

• What if there is only one image? 

Time 𝑡 Time 𝑡 + 1 



>> noise = randn(size(im)).*sigma; 

 

>> output = im + noise; 

Gaussian noise 



Sigma = 1 

Effect of sigma on Gaussian noise. This image shows the noise values added to the 
raw intensities of an image. 

Gaussian noise 



Sigma = 16 

Effect of sigma on Gaussian noise. This image shows the noise values added to the 
raw intensities of an image. 

Gaussian noise 

How can we reduce the noise? 



Moving average 

• Replaces each pixel with an average of all the values in its neighborhood 

• Assumptions:  

– Expect pixels to be like their neighbors 

– Expect noise processes to be independent from pixel to pixel 

 



Moving average 

• Replaces each pixel with an average of all the values in its neighborhood 

• Moving average in 1D: 



Weighted Moving Average 

• Can add weights to our moving average 

• Weights  [1, 1, 1, 1, 1]  / 5  



Weighted Moving Average 

• Non-uniform weights [1, 4, 6, 4, 1] / 16 



Moving Average In 2D 
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Moving Average In 2D 
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Moving Average In 2D 
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Moving Average In 2D 
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Moving Average In 2D 
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Moving Average In 2D 



Filtering by Correlation 
If the averaging window size is 2k+1 x 2k+1: 

Loop over all pixels in neighborhood  
around image pixel 𝐹[𝑖, 𝑗] 

Attribute uniform  
weight to each pixel 

Now generalize to allow different weights depending on  neighboring pixel’s 
relative position: 

Non-uniform weights 



Filtering an image: replace each pixel with a 
linear combination of its neighbors. 
 
The filter 𝑯  is also called “kernel” or 
“mask” 

This is called cross-correlation, denoted  

F 

H 

Filtering by Correlation 



• What values belong in the kernel H for the moving average example? 
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Averaging filter 



Box filter:  
white = high value, black = low value 

original filtered 

Smoothing by averaging 
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• What if we want the closest pixels to have higher influence on the output? 

This kernel is an 
approximation of a 
Gaussian function: 

Gaussian filter 



Smoothing with a Gaussian 



Compare the result with a box filter 

This effect is called aliasing 



• What parameters matter? 

• Size of kernel or mask 

– Note, Gaussian function has infinite support, but discrete filters use finite 
kernels 

 

σ = 5 with 10 x 10 
kernel 

σ = 5 with 30 x 30 
kernel 

Gaussian filters 



• What parameters matter here? 

• Variance of Gaussian: determines extent of smoothing 

 

σ = 2 with 30 x 30 
kernel 

σ = 5 with 30 x 30 
kernel 

Gaussian filters 



… 

Parameter σ is the “scale” / “width” / “spread” of the Gaussian kernel, and controls 
the amount of smoothing. 

Smoothing with a Gaussian 



>> hsize = 10; 

>> sigma = 5; 

>> h = fspecial(‘gaussian’ hsize, sigma); 

 

 

>> mesh(h); 

 

>> imagesc(h); 

 

>> im = imread(‘panda.jpg’); 

>> outim = imfilter(im, h); 

>> imshow(outim); 

outim 

Sample Matlab code 



Boundary issues 
• What about near the edge? 

– the filter window falls off the edge of the image 

– need to pad the image borders 

– methods: 

• zero padding (black) 

• wrap around 

• copy edge 

• reflect across edge 



• Convolution:  
– Flip the filter in both dimensions (bottom to top, right to left) 

– Then apply cross-correlation 

Notation for 
convolution 
operator 

Convolution 

F 

H 

180 deg turn 



Convolution 

Cross-correlation 

For a Gaussian or box filter, how will the outputs differ? 

Convolution vs. correlation 



Summary on filters 
• Smoothing 

– Values positive  

– Sum to 1  constant regions same as input 

– Amount of smoothing proportional to mask size 

– Remove “high-frequency” components; “low-pass” filter 

 

 

 



Additive Gaussian noise Salt and pepper noise 

Effect of smoothing filters 

Linear smoothing filters do not alleviate salt and pepper noise! 



Median filter 
• It is a non linear filter 

• Removes spikes: good for impulse, salt & pepper noise 

 

Input image 

Output image 



Salt and 
pepper noise 

Median 
filtered 

Plots of a row of the image 

Median filter 



Median filter 
• Median filter is edge preserving 



Edge detection 

• Ultimate goal of edge detection: an idealized line drawing.  

• Edge contours in the image correspond to important scene contours.  



Images as functions 𝑓(𝑥, 𝑦) 

• Edges look like steep cliffs 



image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

An edge is a place of rapid change in the image intensity function. 

Derivatives and edges 
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Partial derivatives of an image 



Alternative Finite-difference filters 

Sample Matlab code 

>> im = imread(‘lion.jpg’) 

>> My = fspecial(‘sobel’); 

>> outim = imfilter(double(im), My);  

>> imagesc(outim); 

>> colormap gray; 

Prewitt filter 
 
 
 
Sobel filter 



Image gradient 
The gradient of an image:  

 

 

The gradient points in the direction of fastest intensity change 

The gradient direction (orientation of edge normal) is given by: 

 

 

The edge strength is given by the gradient magnitude 



Effects of noise 
Consider a single row or column of the image 

– Plotting intensity as a function of position gives a signal 

Where is the edge? 



Where is the edge?   

Solution:  smooth first 

Look for peaks in  



Derivative theorem of convolution 

Differentiation property of convolution. 



Derivative of Gaussian filters 

x-direction y-direction 



Laplacian of Gaussian 
Consider   

Laplacian of Gaussian 
operator 

Where is the edge?   Zero-crossings of bottom graph 



2D edge detection filters 

•       is the Laplacian operator: 

Laplacian of Gaussian 

Gaussian derivative of Gaussian 



Summary on filters 
• Smoothing 

– Values positive  

– Sum to 1  constant regions same as input 

– Amount of smoothing proportional to mask size 

– Remove “high-frequency” components; “low-pass” filter 
 

• Derivatives 
– Opposite signs used to get high response in regions of high contrast 

– Sum to 0  no response in constant regions 

– High absolute value at points of high contrast 
 

 

 

 

 



The Canny edge-detection algorithm (1986) 

• Compute gradient of smoothed image in both directions 

• Discard pixels whose gradient magnitude is below a certain threshold 

• Non-maximal suppression: identify local maxima along gradient 
direction 



Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)  

The Canny edge-detection algorithm (1986) 

Take a grayscale image. 
If not grayscale (i.g., 
RGB), convert it into a 
grayscale by replacing 
each pixel by the mean 
value of its R, G, B 
components. 

https://en.wikipedia.org/wiki/Lenna
https://en.wikipedia.org/wiki/Lenna


Original image (Lenna image: https://en.wikipedia.org/wiki/Lenna)  

The Canny edge-detection algorithm (1986) 

Take a grayscale image. 
If not grayscale (i.g., 
RGB), convert it into a 
grayscale by replacing 
each pixel by the mean 
value of its R, G, B 
components. 
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The Canny edge-detection algorithm (1986) 

: Edge strength 

Convolve the image 
with 𝑥 and 𝑦 derivatives 
of Gaussian filter 



Thresholding f

The Canny edge-detection algorithm (1986) 

Threshold it (i.e., set to 
0 all pixels who value is 
below a given 
threshold) 



Thinning: non-maxima suppression (local-maxima detection) along edge 

direction 

The Canny edge-detection algorithm (1986) 

Take local maximum 
along gradient direction 



Summary (things to remember) 

• Image filtering (definition, motivation, applications) 

• Moving average 

• Linear filters  and formulation: box filter, Gaussian filter, sharpening filter 

– Differences and properties 

– Boundary issues 

– Correlation vs convolution 

• Non-linear filters 

– Median filter and its applications 

• Edge detection 

– Derivating filters (Prewitt, Sobel) 

– Convolution theorem 

– Laplacian of Gaussian 

– Canny edge detector 
• Book chapters 3.2, pages 108-109, 386-387, 4.2.1, 11.3.1 


