

Lecture 03 Image Formation 2

Prof. Dr. Davide Scaramuzza <u>sdavide@ifi.uzh.ch</u>

Today afternoon

Room 2.A.01 from 14:15 to 16:00

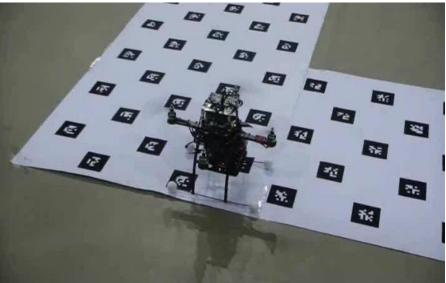
- Matlab introduction
- ➢ Filtering

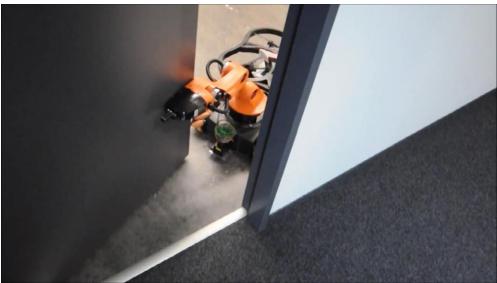
Mini Project List

- > Deadlines:
 - Discuss and come to an agreement with the teaching assistants before December 1, 2015.
 - Hand in your project (code, description, short documentation) by December 19, 2015.

Goal of today's lecure

• Study the algorithms behind robot-position control and augmented reality





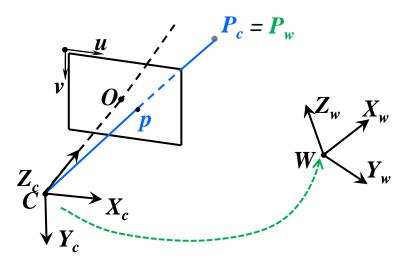
Outline of this lecture

- Camera calibration
 - From 3D objects
 - From planar grids
- Non conventional camera models

Camera calibration

- Calibration is the process to determine the intrinsic and extrinsic parameters of the camera model
- A method proposed in 1987 by Tsai consists of measuring the 3D position of n ≥ 6 control points on a three-dimensional calibration target and the 2D coordinates of their projection in the image. This problem is also called "Resection", or "Perspective from n Points", or "Camera pose from 3D-to-2D correspondences", and is one of the most widely used algorithms in Computer Vision and Robotics
- Solution: The intrinsic and extrinsic parameters are computed directly from the perspective projection equation; let's see how!

3D position of control points is assigned in a reference frame specified by the user



Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \implies$$

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

 $\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u}r_{11} + u_{0}r_{31} & \alpha_{u}r_{12} + u_{0}r_{32} & \alpha_{u}r_{13} + u_{0}r_{33} & \alpha_{u}t_{1} + u_{0}t_{3} \\ \alpha_{v}r_{21} + v_{0}r_{31} & \alpha_{v}r_{22} + v_{0}r_{32} & \alpha_{v}r_{23} + v_{0}r_{33} & \alpha_{v}t_{2} + v_{0}t_{3} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \implies$$

$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_{u} & 0 & u_{0} \\ 0 & \alpha_{v} & v_{0} \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{1} \\ r_{21} & r_{22} & r_{23} & t_{2} \\ r_{31} & r_{32} & r_{33} & t_{3} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \cdot \begin{bmatrix} X_{w} \\ Y_{w} \\ Z_{w} \\ 1 \end{bmatrix}$$

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Z_w \\ 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = M \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix}$$

where m_i^T is the i-*th* row of M

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} m_1^T \\ m_2^T \\ m_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ Z_w \\ 1 \end{bmatrix} \rightarrow P$$

Conversion back from homogeneous coordinates to pixel coordinates leads to:

$$u = \frac{\widetilde{u}}{\widetilde{w}} = \frac{m_1^T \cdot P}{m_3^T \cdot P} \implies v = \frac{\widetilde{v}}{\widetilde{w}} = \frac{m_2^T \cdot P}{m_3^T \cdot P} \implies$$

$$(m_1^T - u_i m_3^T) \cdot P_i = 0$$

$$(m_2^T - v_i m_3^T) \cdot P_i = 0$$

By re-arranging the terms, we obtain

$$\begin{pmatrix} m_1^T - u_i m_3^T \end{pmatrix} \cdot P_i = 0 \\ (m_2^T - v_i m_3^T) \cdot P_i = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

For *n* points, we can stack all these equations into a big matrix:

$$\begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \cdots & \cdots & \cdots \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

By re-arranging the terms, we obtain

$$\begin{pmatrix} m_1^T - u_i m_3^T \end{pmatrix} \cdot P_i = 0 \\ (m_2^T - v_i m_3^T) \cdot P_i = 0 \end{pmatrix} \Rightarrow \begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

For *n* points, we can stack all these equations into a big matrix:

$$\begin{pmatrix} X_{w}^{1} & Y_{w}^{1} & Z_{w}^{1} & 1 & 0 & 0 & 0 & -u_{1}X_{w}^{1} & -u_{1}Y_{w}^{1} & -u_{1}Z_{w}^{1} & -u_{1} \\ 0 & 0 & 0 & 0 & X_{w}^{1} & Y_{w}^{1} & Z_{w}^{1} & 1 & -v_{1}X_{w}^{1} & -v_{1}Y_{w}^{1} & -v_{1}Z_{w}^{1} & -v_{1} \\ & & & & & & & & & & & & & & & & \\ x_{w}^{n} & Y_{w}^{n} & Z_{w}^{n} & 1 & 0 & 0 & 0 & -u_{n}X_{w}^{n} & -u_{n}Y_{w}^{n} & -u_{n}Z_{w}^{n} & -u_{n} \\ 0 & 0 & 0 & 0 & X_{w}^{n} & Y_{w}^{n} & Z_{w}^{n} & 1 & -v_{n}X_{w}^{n} & -v_{n}Y_{w}^{n} & -v_{n}Z_{w}^{n} & -v_{n} \\ y_{m}^{n} & y_{m}^{n} & y_{m}^{n} & z_{w}^{n} & 1 & -v_{n}X_{w}^{n} & -v_{n}Y_{w}^{n} & -v_{n}Z_{w}^{n} & -v_{n} \\ Q \text{ (this matrix is known)} \\ \end{pmatrix} \xrightarrow{\mathsf{M}} \mathsf{M} \text{ (this matrix is unknown)}$$

$\mathbf{Q} \cdot \mathbf{M} = \mathbf{0}$

Minimal solution

- *Q* has 11 Degrees of Freedom (in fact, *Q* is valid up to a scale factor, thus, 12-1 = 11)
- Each 3D-to-2D point correspondence provides 2 independent equations
- Thus, $5 + \frac{1}{2}$ point correspondences are needed (in practice **6 point** correspondences!)

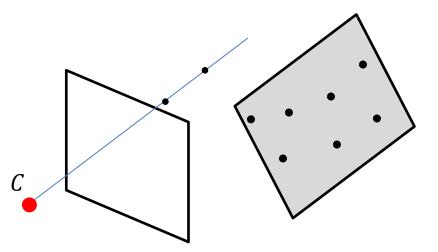
Over-determined solution

- $n \ge 6$ points
- A solution is to minimize ||QM|| subject to the constraint $||M||^2 = 1$. It can be solved through Singular Value Decomposition (SVD). The solution is the eigenvector corresponding to the smallest eigenvalue of the matrix Q^TQ (because it is the unit vector x that minimizes x^TQ^TQx).

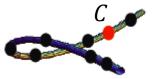
 $\mathbf{Q} \cdot \mathbf{M} = \mathbf{0}$

Degenerate configurations

1. Points lying on a **plane** and/or along a single **line** passing through the **projection center**



2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3)



 Once we have the M matrix, we can recover the intrinsic and extrinsic parameters by remembering that

```
\mathbf{M} = \mathbf{K}(\mathbf{R} \mid \mathbf{T})
\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_1 \\ m_{21} & m_{22} & m_{23} & m_2 \\ m_{31} & m_{32} & m_{33} & m_3 \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}
```

• Once we have the M matrix, we can recover the intrinsic and extrinsic parameters by remembering that

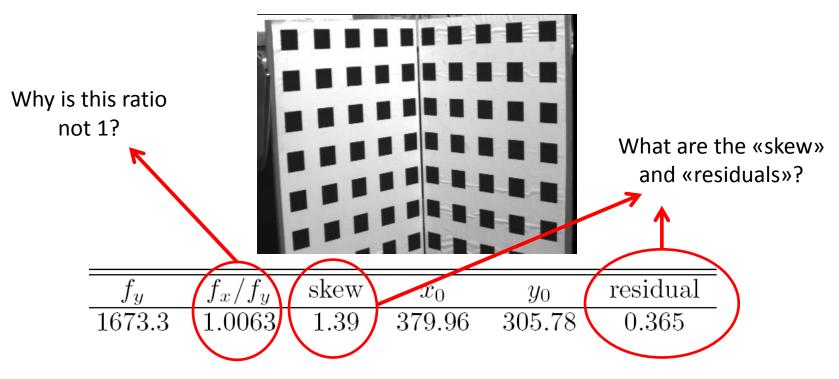
 $\mathbf{M} = \mathbf{K}(\mathbf{R} \mid \mathbf{T})$

 $\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{1} \\ m_{21} & m_{22} & m_{23} & m_{2} \\ m_{31} & m_{32} & m_{33} & m_{3} \end{bmatrix} = \begin{bmatrix} \alpha r_{11} + u_0 r_{31} & \alpha r_{12} + u_0 r_{32} & \alpha r_{13} + u_0 r_{33} & \alpha t_1 + u_0 t_3 \\ \alpha r_{21} + v_0 r_{31} & \alpha r_{22} + v_0 r_{32} & \alpha r_{23} + v_0 r_{33} & \alpha t_2 + v_0 t_3 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix}$

- However, notice that we are not enforcing the constraint that R is orthonormal, i.e., $R \cdot R^T = I$
- To do this, we can use the so-called QR factorization of *M*, which decomposes *M* into a *R* (orthonormal), T, and an upper triangular matrix (i.e., *K*)

Tsai's (1987) Calibration example

- 1. Edge detection
- 2. Straight line fitting to the detected edges
- 3. Intersecting the lines to obtain the images corners (corner accuracy <0.1 pixels!)
- 4. Use >6 points

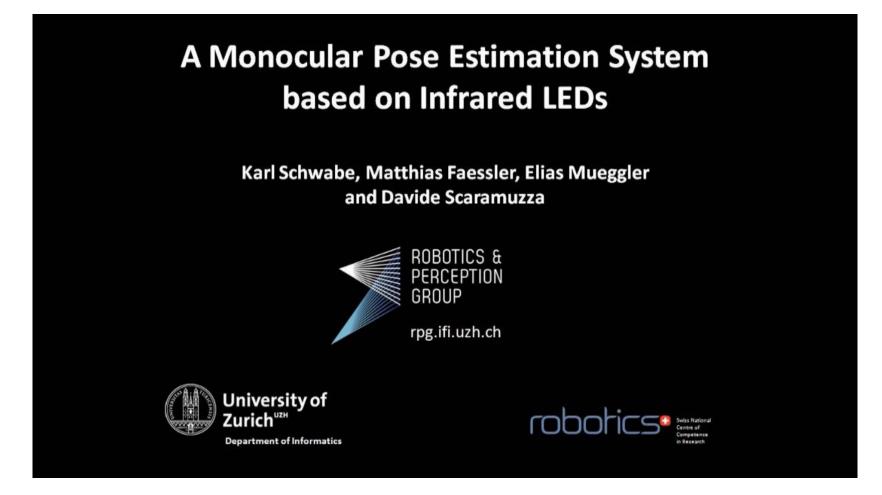


Tsai's (1987) Calibration example

- The original Tsai calibration (1987) used to consider two different focal lengths α_u , α_v (which means that the pixels are not squared) and a skew factor ($K_{12} \neq 0$, which means the pixes are parallelograms instead of rectangles). This relaxation was used to account for possible misalignments between CCD and lens
- Most of today's camera are well manufactured, thus, we can assume $\frac{\alpha_u}{\alpha_n} = 1$ and $K_{12} = 0$
- What is the residual? The residual is the *average* "reprojection error". The reprojection error is computed as the distance (in pixels) between the observed pixel point and the camera-reprojected 3D point. The reprojection error gives as a quantitative measure of the accuracy of the calibration (ideally it should be zero).

f_y	f_x/f_y	skew	x_0	y_0	residual
1673.3	1.0063	1.39	379.96	305.78	0.365

DLT algorithm applied to mutual robot localization

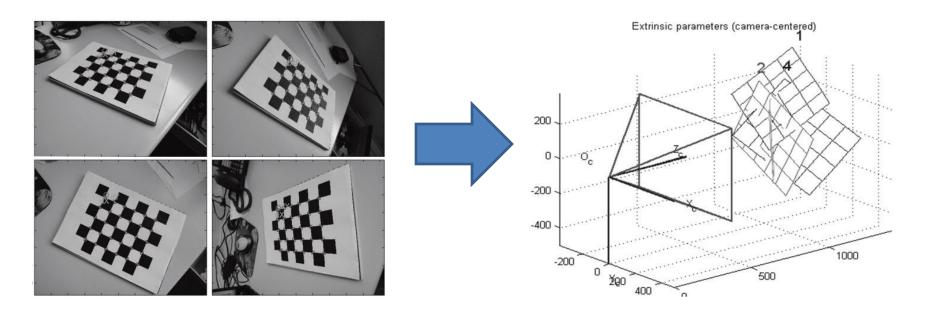


In this case, the camera has been pre-calibrated (i.e., K is known). Can you think of how the DLT algorithm could be modified so that only R and T need to determined and not K?

Outline of this lecture

- Camera calibration
 - From 3D objects
 - From planar grids
- Non conventional camera models

- Tsai calibration is based on DLT algorithm, which requires points not to lie on the same plane
- An alternative method (today's standar camera calibration method) consists of using a planar grid (e.g., a chessboard) and a few images of this shown at different orientations
- This method was invented by Zhang (1999)



- Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)
- Since the points lie on a plane, we have $Z_w = 0$

$$\widetilde{p} = \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \lambda \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = K \begin{bmatrix} R \mid T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 0 \\ 1 \end{bmatrix} \implies$$
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

- Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we neglect the radial distortion)
- Since the points lie on a plane, we have $Z_w = 0$

$$\begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = H \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$
This matrix is called Homography
$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

where h_i^T is the i-*th* row of *H*

$$\Rightarrow \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} \cdot \begin{bmatrix} X_w \\ Y_w \\ 1 \end{bmatrix}$$

Conversion back from homogeneous coordinates to pixel coordinates leads to:

$$u = \frac{\widetilde{u}}{\widetilde{w}} = \frac{h_1^T \cdot P}{h_3^T \cdot P} \implies v = \frac{\widetilde{v}}{\widetilde{w}} = \frac{h_2^T \cdot P}{h_3^T \cdot P} \implies$$

$$(h_1^T - u_i h_3^T) \cdot P_i = 0$$
$$(h_2^T - v_i h_3^T) \cdot P_i = 0$$

where P = $(X_w, Y_w, 1)^T$

By re-arranging the terms, we obtain

For *n* points, we can stack all these equations into a big matrix:

$$\begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}P_{1}^{T} \\ \cdots & \cdots \\ P_{n}^{T} & 0^{T} & -u_{n}P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}P_{n}^{T} \end{pmatrix} \begin{pmatrix} h_{1} \\ h_{2} \\ h_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \implies \mathbf{Q} \cdot \mathbf{H} = \mathbf{0}$$

Q (this matrix is **known**) H (this matrix is **unknown**)

$\mathbf{Q} \cdot \mathbf{H} = \mathbf{0}$

Minimal solution

- $Q_{(n \times 9)}$ has 8 Degrees of Freedom (in fact, Q is valid up to a scale factor, thus, 9-1 = 8)
- Each point correspondence provides 2 independent equations
- Thus, a minimum of 4 non-collinear points is required

Over-determined solution

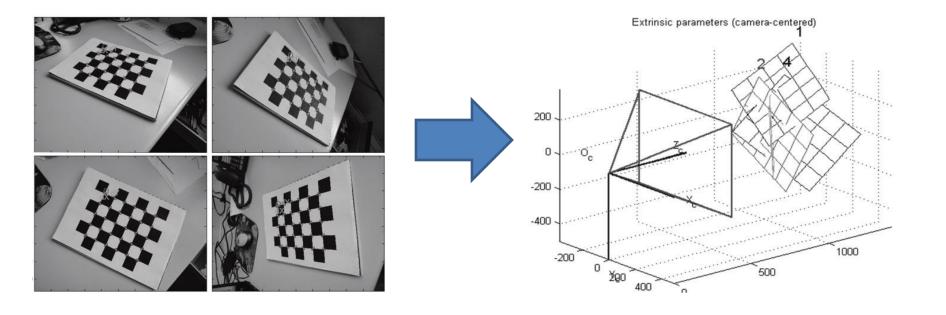
- *n* > 4 points
- It can be solved through Singular Value Decomposition (SVD)

Solving for K, R and T

• H can be decomposed by recalling that

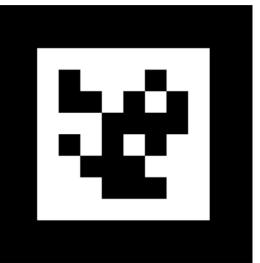
$$\begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} = \begin{bmatrix} \alpha_u & 0 & u_0 \\ 0 & \alpha_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & t_1 \\ r_{21} & r_{22} & t_2 \\ r_{31} & r_{32} & t_3 \end{bmatrix}$$

 Demo of Camera Calibration Toolbox for Matlab (world's standard toolbox for calibrating perspective cameras): http://www.vision.caltech.edu/bouguetj/calib_doc/



Application of calibration from planar grids

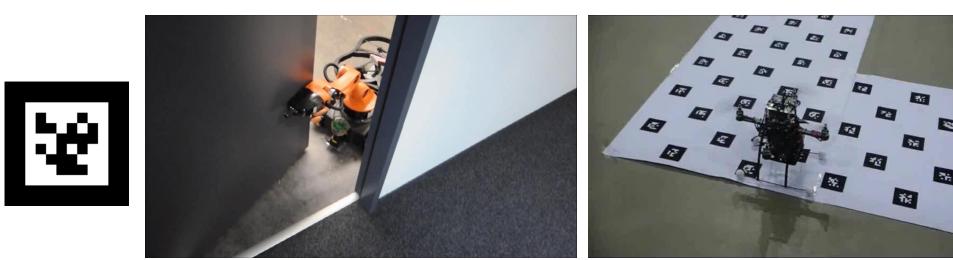
- Today, there thousands of application of this algorithm:
 - Augemented reality



AR Tags: <u>http://april.eecs.umich.edu/wiki/index.php/April_Tags</u>

Application of calibration from planar grids

- Today, there are thousands of application of this algorithm:
 - Augemented reality
 - Robotics (beacon-based localization)
- Do we need to know the metric size of the tag?
 - For Augmented Reality?
 - For Robotics?



RPG (us) 2013

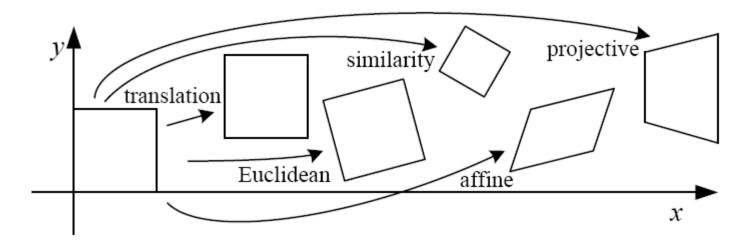
ETH, Pollefeys group, 2010

AR Tags: <u>http://april.eecs.umich.edu/wiki/index.php/April_Tags</u>

Concepts to remember

- Camera calibration
 - DLT algorithm
 - Calibration from planar grids
- Readings:
 - Chapter 2.1 of Szeliski book (freely downloadable from http://szeliski.org/Book/
 - Chapters 4.1-4.3 of Autonomous Mobile Robots book

Transformations – 2D



Name	Matrix	# D.O.F.	Preserves:	Icon	
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3}$	2	orientation $+ \cdots$		
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{2 imes 3}$	3	lengths $+ \cdots$	\Diamond	
similarity	$\left[\left. s R \right t ight. ight]_{2 imes 3}$	4	angles + This tra	This transformation is called	
affine	$\left[egin{array}{c} A \end{array} ight]_{2 imes 3}$	6	parallelis m + · · ·	Homo	graphy
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines		

Outline of this lecture

- Camera calibration
 - From 3D objects
 - From planar grids
- Non conventional camera models

Omnidirectional Cameras

Rome, St. Peter's square

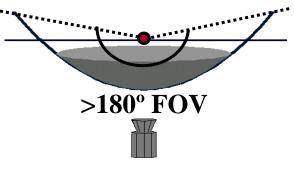
Overview on Omnidirectional Cameras

Omnidirectional sensors come in many varieties, but by definition must have a wide field-of-view.

~180° FOV

Wide FOV dioptric cameras (e.g. fisheye)

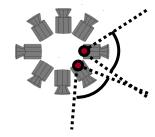
Dioptric



Catadioptric cameras (e.g. cameras and mirror systems)

Catadioptric

~360° FOV



Polydioptric cameras (e.g. multiple overlapping cameras)

Polydioptric

Catadioptric Cameras

Dioptric Cameras (fisheye)

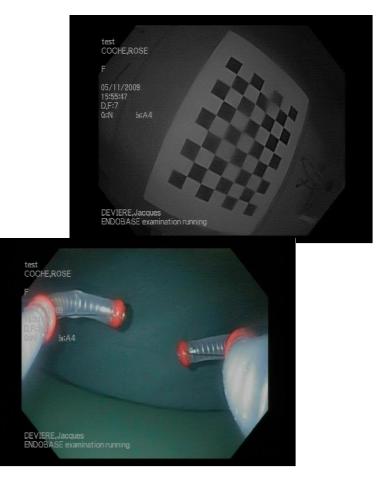
FC-ED 0.2x MADE IN J

Nikon Coolpix FC-E9 Lens 360°×183° Canon EOS-1 Sigma Lens 360°×180°

• Daimler, Bosch: for car driving assistance systems

- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation

- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)



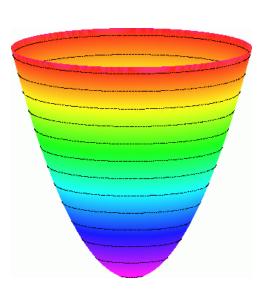
(Courtesy of Endo Tools Therapeutics, Brussels)

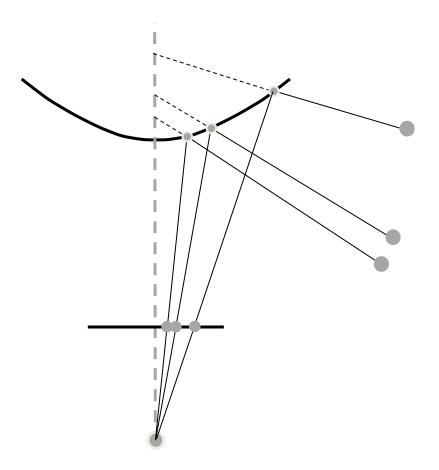
- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)
- RoboCup domain

- Daimler, Bosch: for car driving assistance systems
- Meteorology: for sky observation
- Endoscopic Imagery: distortion removal (for the surgeon)
- RoboCup domain
- Google Street View

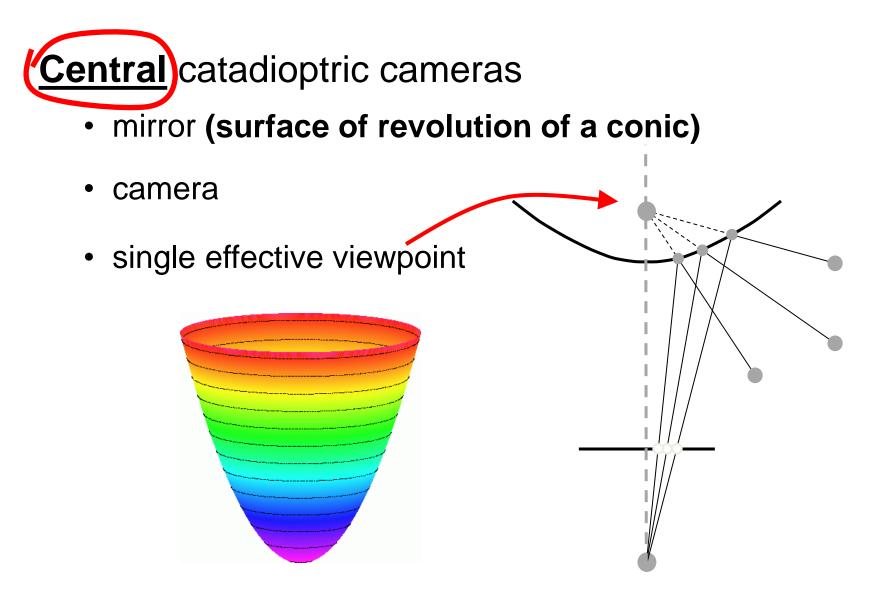
Catadioptric cameras

- mirror
- perspective camera



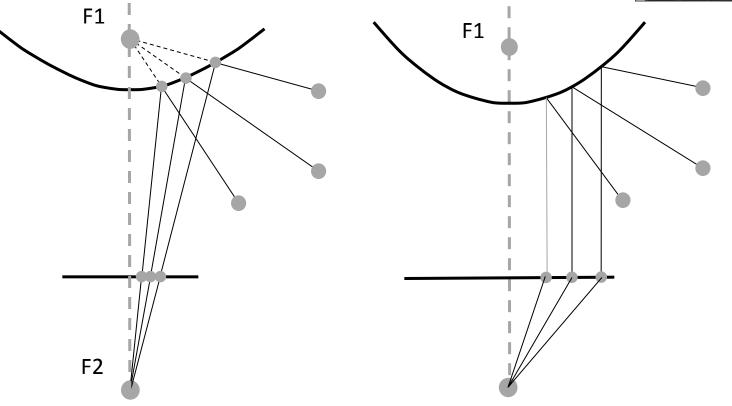


Catadioptric cameras



Catadioptric cameras

- hyperbola + perspective camera
- parabola + orthographic lens

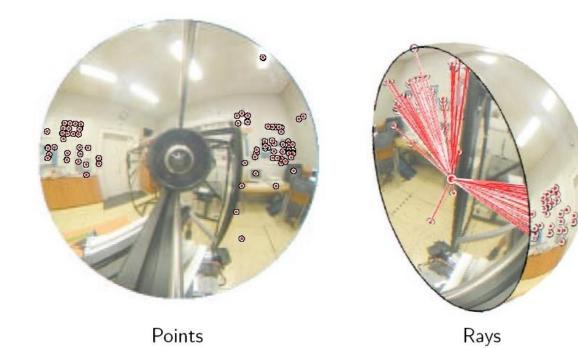


Why is it important that the camera be central (i.e., have a single effective viewpoint)?

• We can unwrap parts or all omnidirectional image into a perspective one

Why is it important that the camera be central (i.e., have a single effective viewpoint)?

- We can unwrap parts or all omnidirectional image into a perspective one
- We can transform image points normalized vectors in the unit sphere
- We can apply standard algorithms valid for perspective geometry.



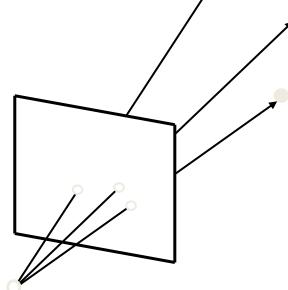
Omnidirectional camera calibration toolbox for Matlab (Scaramuzza, 2006)

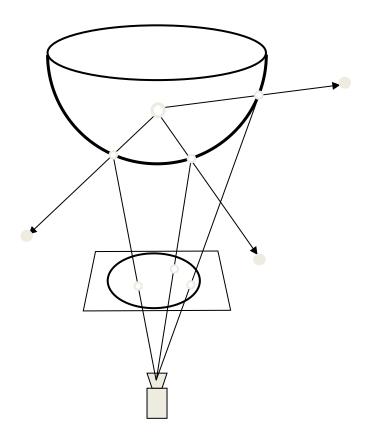
- World's standard toolbox for calibrating omnidirectional cameras (used at NASA, Daimler, IDS, Volkswagen, Audi, VW, Volvo, ...)
- Main applications are in robotics, endoscopy, video-surveillance, sky observation, automotive (Audi, VW, Volvo, ...)

https://sites.google.com/site/scarabotix/ocamcalib-toolbox

Omnidirection			
Image names	Read images	Extract grid corners	Calibration
Show Extrinsic	Reproject on images	Analyse error	Recomp. corners
Add/Suppress images	Save	Load	Exit
Comp. Extrinsic	Undistort image	Export calib data	Show calib results

Equivalence between Perspective and Omnidirectional model

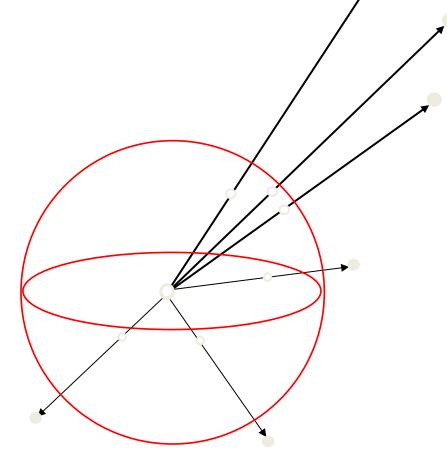




Equivalence between Perspective and Omnidirectional model

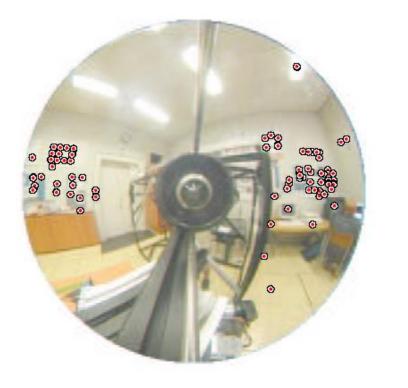


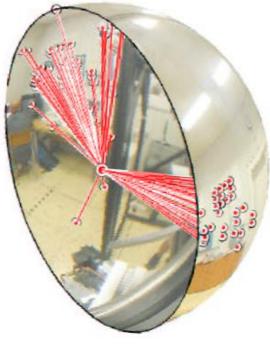
Equivalence between Perspective and Omnidirectional model:



Representation of image points on the unit sphere

Always possible after the camera has been calibrated!





Rays

Summary (things to remember)

- Calibration from planar grid (algorithm)
- Homography
- Orthographic projection
- Omnidirectional cameras
 - Central and non central projection
 - Dioptric
 - Catadioptric (working principle of conic mirrors)
 - Model principle
- Unified (spherical) model for perspective and omnidirectional cameras