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Today afternoon 

 Room 2.A.01 from 14:15 to 16:00 

Matlab introduction 

 Filtering 



Mini Project List 

 Deadlines:  
 Discuss and come to an agreement with the teaching assistants before 

December 1, 2015.  

 Hand in your project (code, description, short documentation) by December 
19, 2015.  



Goal of today’s lecure 
• Study the algorithms behind robot-position control and augmented reality 



Outline of this lecture 

• Camera calibration 

– From 3D objects  

– From planar grids 

• Non conventional camera models 



Camera calibration 
• Calibration is the process to determine the intrinsic and extrinsic parameters of the camera 

model 

• A method proposed in 1987 by Tsai consists of measuring the 3D position of 𝑛 ≥ 6 control 
points on a three-dimensional calibration target and the 2D coordinates of their projection in 
the image. This problem is also called “Resection”, or “Perspective from 𝒏 Points”, or 
“Camera pose from 3D-to-2D correspondences”, and is one of the most widely used 
algorithms in Computer Vision and Robotics 

• Solution: The intrinsic and extrinsic parameters are computed directly from the perspective 
projection equation; let’s see how! 
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3D position of control points is assigned 
in a reference frame specified by the user 



Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 
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Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 
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Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 

 

 

 

 

 

 

 

 

 

 

 

 

where           is the i-th row of M 
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Camera calibration: Direct Linear Transform (DLT) 
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By re-arranging the terms, we obtain 
 
 
 
 
For 𝑛 points, we can stack all these equations into a big matrix: 
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Camera calibration: Direct Linear Transform (DLT) 
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By re-arranging the terms, we obtain 
 
 
 
 
For 𝑛 points, we can stack all these equations into a big matrix: 

Camera calibration: Direct Linear Transform (DLT) 
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Minimal solution 

• 𝑄 has 11 Degrees of Freedom (in fact, 𝑄 is valid up to a scale factor, thus, 12-1 = 11) 

• Each 3D-to-2D point correspondence provides 2 independent equations 

• Thus, 5+
1

2
  point correspondences are needed (in practice 6 point correspondences!) 

 

Over-determined solution 

• n ≥ 6 points 

• A solution is to minimize | 𝑄𝑀 | subject to the constraint | 𝑀 |2 = 1.  
It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄  (because it is the 
unit vector 𝑥 that minimizes 𝑥𝑇𝑄𝑇𝑄𝑥).  

 

Camera calibration: Direct Linear Transform (DLT) 
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Degenerate configurations 

 

1. Points lying on a plane and/or along a single line passing through the projection center 
 
 
 
 
 
 
 
 
 

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3) 

Camera calibration: Direct Linear Transform (DLT) 
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that  

Camera calibration: Direct Linear Transform (DLT) 
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that  

 

 

 

 

 

 

 

• However, notice that we are not enforcing the constraint that 𝑅 is 
orthonormal, i.e., 𝑅 ∙ 𝑅𝑇= 𝐼 

 

• To do this, we can use the so-called QR factorization of 𝑀, which 
decomposes 𝑀 into a 𝑅 (orthonormal), T, and an upper triangular matrix 
(i.e., 𝐾) 

Camera calibration: Direct Linear Transform (DLT) 
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Tsai’s (1987) Calibration example 
1. Edge detection 

2. Straight line fitting to the detected edges 

3. Intersecting the lines to obtain the images corners (corner accuracy <0.1 pixels!) 

4. Use >6 points 

What are the «skew» 
and «residuals»? 

Why is this ratio  
not 1? 



Tsai’s (1987) Calibration example 
• The original Tsai calibration (1987) used to consider two different focal lengths 𝛼𝑢, 𝛼𝑣 

(which means that the pixels are not squared) and a skew factor (𝐾12 ≠ 0, which means 
the pixes are parallelograms instead of rectangles). This relaxation was used  to account for 
possible misalignments between CCD and lens 

• Most of today’s camera are well manufactured, thus, we can assume  
𝛼𝑢

𝛼𝑣
= 1 and 𝐾12 = 0 

• What is the residual? The residual is the average “reprojection error”. The reprojection 
error is computed as the distance (in pixels) between the observed pixel point and the 
camera-reprojected 3D point. The reprojection error gives as a quantitative measure of the 
accuracy of the calibration (ideally it should be zero). 



DLT algorithm applied to mutual robot localization 

In this case, the camera has been pre-calibrated (i.e., K is known). Can you 
think of how the DLT algorithm could be modified so that only R and T need 
to determined and not K? 



Outline of this lecture 

• Camera calibration 

– From 3D objects  

– From planar grids 

• Non conventional camera models 



Camera calibration from planar grids: homographies 

• Tsai calibration is based on DLT algorithm, which requires points not to lie 
on the same plane 

• An alternative method (today’s standar camera calibration method) consists 
of using a planar grid (e.g., a chessboard) and a few images of this shown at 
different orientations 

• This method was invented by Zhang (1999) 



• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion) 

• Since the points lie on a plane, we have 𝑍𝑤 = 0 
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Camera calibration from planar grids: homographies 
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• Our goal is to compute K, R, and T, that satisfy the perspective projection equation 
(we neglect the radial distortion) 

• Since the points lie on a plane, we have 𝑍𝑤 = 0 
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Camera calibration from planar grids: homographies 

This matrix is called  
Homography 
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Conversion back from homogeneous coordinates to pixel coordinates leads to: 
 
 
 
 
 
 
 
 
 
where P = (𝑋𝑤, 𝑌𝑤, 1)𝑇 
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By re-arranging the terms, we obtain 
 
 
 
 
For 𝑛 points, we can stack all these equations into a big matrix: 
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0HQ 

H (this matrix is unknown) Q (this matrix is known)                               














































0

0

0

0
 

3

2

1

1

1

h

h

h

PvP

PuP
T

i

T

i

T

T

i

TT

i

00

00
  

321

321






TT

ii

TT

i

T

TT

ii

TT

i

hPvhPh

hPuhhP



Minimal solution 

• 𝑄(𝑛×9) has 8 Degrees of Freedom (in fact, 𝑄 is valid up to a scale factor, thus, 9-1 = 8) 

• Each point correspondence provides 2 independent equations 

• Thus, a minimum of 4 non-collinear points is required 

 

Over-determined solution 

• n > 4 points 

• It can be solved through Singular Value Decomposition (SVD) 
 
 

Solving for K, R and T 
• H can be decomposed by recalling that  

 

0HQ 

Camera calibration from planar grids: homographies 





















































33231

22221

11211

0

0

333231

232221

131211

100

0

0

trr

trr

trr

v

u

hhh

hhh

hhh

v

u







Camera calibration from planar grids: homographies 

• Demo of Camera Calibration Toolbox for Matlab (world’s standard toolbox for 

calibrating perspective cameras): 
http://www.vision.caltech.edu/bouguetj/calib_doc/ 

 

 

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


Application of calibration from planar grids 
• Today, there thousands of application of this algorithm: 

– Augemented reality 

AR Tags: http://april.eecs.umich.edu/wiki/index.php/April_Tags 

http://april.eecs.umich.edu/wiki/index.php/April_Tags


Application of calibration from planar grids 

AR Tags: http://april.eecs.umich.edu/wiki/index.php/April_Tags 

ETH, Pollefeys group, 2010 RPG (us) 2013 

• Today, there are thousands of application of this algorithm: 

– Augemented reality 

– Robotics (beacon-based localization) 

• Do we need to know the metric size of the tag?  
– For Augmented Reality? 

– For Robotics? 

 

http://april.eecs.umich.edu/wiki/index.php/April_Tags


Concepts to remember 
• Camera calibration 

– DLT algorithm  

– Calibration from planar grids 

• Readings:  

– Chapter 2.1 of Szeliski book (freely downloadable from http://szeliski.org/Book/ 

– Chapters 4.1-4.3 of Autonomous Mobile Robots book 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/


Transformations – 2D  

This transformation is called  
Homography 



Outline of this lecture 

• Camera calibration 

– From 3D objects  

– From planar grids 

• Non conventional camera models 



Omnidirectional Cameras 

Rome, St. Peter’s square 



Overview on Omnidirectional Cameras 

Dioptric Catadioptric Polydioptric 

~180º FOV 

Wide FOV dioptric  

cameras (e.g. fisheye) 

>180º FOV 

Catadioptric cameras (e.g.  

cameras and mirror systems) 

~360º FOV 

Polydioptric cameras (e.g.  

multiple overlapping cameras) 

Omnidirectional sensors come in many varieties, but by definition must have 
a wide field-of-view. 



Catadioptric Cameras 



Nikon Coolpix 

FC-E9 Lens 

360º×183º 

Canon EOS-1 

Sigma Lens 

360º×180º 

Dioptric Cameras (fisheye) 



Applications 
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(Courtesy of Daimler) 
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systems 
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• Meteorology: for sky observation 
 

• Endoscopic Imagery: distortion removal (for 
the surgeon) 
 
 

(Courtesy of Endo Tools Therapeutics, Brussels) 
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Applications 
 
• Daimler, Bosch: for car driving assistance 

systems 
 

• Meteorology: for sky observation 
 
• Endoscopic Imagery: distortion removal (for 

the surgeon) 
 

• RoboCup domain 
 
• Google Street View 

 



•  mirror 

•  perspective camera 

Catadioptric cameras 



Camera Models 

Central catadioptric cameras 

•  mirror 

•  camera 

•  single effective viewpoint 

(surface of revolution of a conic) 

Catadioptric cameras 



•  hyperbola + perspective camera 

•  parabola + orthographic lens 

Types of central catadioptric cameras 

F1 

F2 

F1 

Catadioptric cameras 



46 

Why is it important that the camera be central (i.e., 
have a single effective viewpoint)? 

• We can unwrap parts or all omnidirectional image into a perspective one 

http://www.cis.upenn.edu/~kostas/omnigrasp.html


Why is it important that the camera be central (i.e., 
have a single effective viewpoint)? 

47 

• We can unwrap parts or all omnidirectional image into a perspective one 
 

• We can transform image points normalized vectors in the unit sphere 
 

• We can apply standard algorithms valid for perspective geometry. 



Omnidirectional camera calibration toolbox for 
Matlab (Scaramuzza, 2006) 

https://sites.google.com/site/scarabotix/ocamcalib-toolbox 

• World’s standard toolbox for calibrating omnidirectional cameras (used at NASA, 
Daimler, IDS, Volkswagen, Audi, VW, Volvo, …) 
 

• Main applications are in robotics, endoscopy, video-surveillance, sky observation, 
automotive (Audi, VW, Volvo, …) 

https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox


Equivalence between Perspective and Omnidirectional 
model 



Equivalence between Perspective and Omnidirectional 
model 



Equivalence between Perspective and Omnidirectional model: 
the Spherical Model 



Representation of image points on the unit sphere 
Always possible after the camera has been calibrated! 



Summary (things to remember) 

• Calibration from planar grid (algorithm) 

• Homography 

• Orthographic projection 

• Omnidirectional cameras 
– Central and non central projection  

– Dioptric 

– Catadioptric (working principle of conic mirrors) 

– Model principle 

• Unified (spherical) model for perspective and 
omnidirectional cameras 

 


