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Today’s Class 

• Summary of the last lecture 

• Perspective camera model 

• Lens distortion 

• Camera calibration 

• List of mini-projects 



Summary of the last lecture 



The camera 

Sony Cybershot WX1 



Pinhole camera model 

• Pinhole model: 
– Captures beam of rays – all rays through a single point 
– The point is called Center of Projection or Optical Center 
– The image is formed on the Image Plane 

 

• We will use the pinhole camera model to describe how the image is 
formed 



Why use a lens? 

• The ideal pinhole:   
 

only one ray of light reaches each point on the film 
                        image can be very dim 
 

• Making the pinhole bigger (i.e. aperture)… 
 
 
 
 
 
 
 
 

•  A lens can focus multiple rays coming from the same point 



film object Lens 

Image formation using a converging lens 

• A lens focuses light onto the film 

• Rays passing through the optical center are not deviated 



“In focus” 

• There is a specific distance from the lens, at which world points are “in focus” in the 
image 

• Other points project to a “blur circle” in the image 

Lens 
object 

f

Optical Axis Focal Point 

“Circle of Confusion” 
or 

“Blur Circle” 

film 



The Pin-hole approximation 

• What happens if 𝑧 ≫ 𝑓 ? 

 

 

 

 

 

 

 

• We need to adjust the image plane such that objects at infinity are in 
focus 
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The Pin-hole approximation 

• What happens if 𝑧 ≫ 𝑓 ? 

 

 

 

 

 

 

 

• We need to adjust the image plane such that objects at infinity are in 
focus 
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The Pin-hole approximation 

• What happens if 𝑧 ≫ 𝑓 ? 

 

 

 

 

 

 

 

• We need to adjust the image plane such that objects at infinity are in 
focus 

 

• The dependence of the apparent size of an object on its depth (i.e. 
distance from the camera) is known as perspective 
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Perspective Projection 
• For convenience, the image plane is usually represented in front of C 

such that the image preserves the same orientation (i.e. not flipped) 

• A camera does not measure distances but angles! 

C = optical center = center of the lens 

Image plane (CCD) 
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Projective Geometry 

What is lost? 

• Length 

• Angles 

Perpendicular? 

Parallel? 



Projective Geometry 

What is preserved? 

• Straight lines are still straight 



Vanishing points and lines 

  

Vanishing 
 point 

Vanishing 
 line 

Vanishing 
 point 

 Vertical vanishing 
 point 

(at infinity) 

Slide from Efros, Photo from Criminisi 

 Parallel lines in the world intersect in the image at a 
“vanishing point” 



Vanishing points and lines 

  

o 
Vanishing Point o 

Vanishing Point 

Vanishing Line 

 Parallel planes in the world intersect in the image at a 
“vanishing line” 



Focus and depth of field 

• Depth of field (DOF) is the distance between the nearest and farthest objects in a scene that 
appear acceptably sharp in an image. 

Depth of field 



Focus and depth of field 
• How does the aperture affect the depth of field? 

• A smaller aperture increases the range in which the object is 
approximately in focus 

http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f32.jpg
http://en.wikipedia.org/wiki/Image:Jonquil_flowers_at_f5.jpg


• As f gets smaller, image 
becomes more wide angle  

– more world points project 
onto the finite image plane 

• As f gets larger, image 
becomes more narrow 
angle 

– smaller part of the world 
projects onto the finite 
image plane 

Field of view depends on focal length 



Field of view 

Smaller FOV = larger Focal Length 



Vignetting 

• Tendency of the brightness of the image to fall off towards the edge 
of the image 
 

• Why and how can we remove it? 



Vignetting 

• “natural”: the light that reaches the patch on the image sensor is reduced 
by an amount that depends on angle α 

 

 

 

 

 

 

• “mechanical”: occlusion of rays near the periphery of the lens elements in 
a compound lens 



Chromatic aberration 
What causes it? 



Chromatic aberration 

• Because the index of refraction for glass varies slightly as a function of wavelength, light 
of different colors focuses at slightly different distances (and hence also with slightly 
different magnification factors) 
 

• In order to reduce chromatic aberration, most photographic lenses today are compound 
lenses made of different glass elements (with different coatings). 



Digital cameras 

• Film  sensor array 

• Often an array of charge coupled 
devices 

• Each CCD/CMOS is light sensitive 
diode that converts photons (light 
energy) to electrons 

 

 

 

 

 

camera CCD or CMOS array 

optics frame 
grabber 

computer 





An example camera datasheet 



im[176][201] has value 164  im[194][203] has value 37 

width 
500 j=1 

500 
height 

i=1 Pixel Intensity : [0,255] (8 bits) 

Digital images 



Color sensing in digital cameras 

Bayer grid • The Bayer pattern (Bayer 1976) 
places green filters over half of the 
sensors (in a  checkerboard 
pattern), and red and blue filters 
over the remaining ones.  

• This is because the luminance signal 
is mostly determined by green 
values and the visual system is 
much more sensitive to high 
frequency detail in luminance than 
in chrominance. 



Color sensing in digital cameras 

Estimate missing 
components from 
neighboring values 
(demosaicing) 

Bayer grid 

A newer chip design by Foveon 
(http://www.foveon.com) stacks 
the red, green, and blue sensors 
beneath each other, but it has not 
yet gained widespread adoption. 

http://www.foveon.com/
http://www.foveon.com/


R G B 

Color images:  

RGB color space 

… but there are 
also many other 
color spaces… (e.g., 
YUV) 



Outline of this lecture 

• Perspective camera model 

• Lens distortion 

• Camera calibration 

– DLT algorithm 



Perspective and art 
• Use of correct perspective projection indicated in 1st century B.C. 

frescoes 

• Skill resurfaces in Renaissance: artists develop systematic methods 
to determine perspective projection (around 1480-1515) 

Durer, 1525 Raphael 



Perspective Camera 

 For convenience, the image plane is usually represented in front of C such that the 
image preserves the same orientation (i.e. not flipped) 

 

 Note: a camera does not measure distances but angles!  
 a camera is a “bearing sensor” 

C = optical center = center of the lens 

Image plane (CCD) 
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Find pixel coordinates (u,v) of point Pc 
in the camera frame: 

1. Convert Pc to image-plane 

coordinates (x,y) 

2. Convert Pc to (discretised) pixel 

coordinates (u,v) 

0. Convert world point Pw to 

camera point Pc 
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Find pixel coordinates (u,v) of point Pw 
in the world frame: 

[R|T] 

W 

Zw 

Yw 

Xw 

Pw 

From World to Pixel coordinates 



Perspective Projection (1) 

 

 The Camera point Pc=( Xc , 0 , Zc )
T  projects to p=(x, y)  onto the image plane  

 

 From similar triangles: 

 

 Similarly, in the general case: 
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Perspective Projection (2) 

 To convert p from the local image plane coords (x,y) to the pixel coords (u,v), we need to 
account for: 

 the pixel coords of the camera optical center 

 Scale factors            for the pixel-size in both dimensions 
 

So: 
 

 

 

 

 Use Homogeneous Coordinates for linear mapping from 3D to 2D, by introducing an extra 
element (scale): 
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 So: 
 
 
 
 
Expressed in matrix form and homogenerous 
coordinates: 
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K is called “Calibration matrix” or “Matrix of Intrinsic Parameters” 
 
Sometimes, it is common to assume a skew factor (𝐾12 ≠ 0) to account for possible misalignments between CCD and lens. 
However, the camera manufacturing process today is so good that we can safely assume 𝐾12 = 0 and 𝛼𝑢= 𝛼𝑣. 

Perspective Projection (3) 



Exercise 

• Determine the Intrinsic Parameter Matrix (K) for a digital camera with image size 
640 × 480 pixels and horizontal field of view equal to 90° 

• Assume the principal point in the center of the image and squared pixels  

• What is the vertical field of view? 



Exercise 1 

• Determine the Intrinsic Parameter Matrix (K) for a digital camera with image size 
640 × 480 pixels and horizontal field of view equal to 90° 

• Assume the principal point in the center of the image and squared pixels  

 

 

 

 

 

 

 

 

 

• What is the vertical field of view? 

 

 

 

 

 

 

 

 

 

𝑓 =
640

2 tan
𝜃
2

= 320 𝒑𝒊𝒙𝒆𝒍𝒔 



















100

2403200

3200320

K

𝜃 = 2 tan−1
𝐻

2𝑓
= 2 tan−1

480

2 ∙ 320
= 73.74° 



Exercise 2 

• Prove that world’s parallel lines intersect at a vanishing point in the camera image 
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Slide from Efros, Photo from Criminisi 



Exercise 2 

• Prove that world’s parallel lines intersect at a vanishing point in the camera image 

• Let’s consider the perspective projection equation in standard coordinates: 

 

 

 

 

 

• Let’s parameterize a 3D line with: 

 

 

 

 

• Now substitute this into the camera perspective projection equation and compute 
the limit for 𝑘 → ∞ 

• What is the intuitive interpretation of this? 
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Perspective Projection (4) 
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Outline of this lecture 

• Perspective camera model 

• Lens distortion 

• Camera calibration 

– DLT algorithm 



Radial Distortion 

Pincushion Barrel distortion No distortion 



Radial Distortion 

• The standard model of radial distortion is a transformation from the ideal coordinates 
(𝑢, 𝑣)  (i.e., undistorted) to the real observable coordinates (distorted) (𝑢𝑑 , 𝑣𝑑) 
 

• The amount of distortion of the coordinates of the observed image is a nonlinear function 
of their radial distance . For most lenses, a simple quadratic model of distortion produces 
good results 
 
 
 
 

     where 



• To recap, a 3D world point 𝑃 = 𝑋𝑤 , 𝑌𝑤, 𝑍𝑤  projects into the image point 
𝑝 = 𝑢, 𝑣   

 

 

           where 

 

 

       and λ is the depth (λ = 𝑍𝐶) of the scene point 

 

• If we want to take into account the radial distortion, then the distorted 
coordinates 𝑢𝑑 , 𝑣𝑑  (in pixels) can be obtained as 

 

 

 

       where 
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Outline of this lecture 

• Perspective camera model 

• Lens distortion 

• Camera calibration 

– DLT algorithm 



Camera calibration 
• Calibration is the process to determine the intrinsic and extrinsic parameters of the camera 

model 

• A method proposed in 1987 by Tsai consists of measuring the 3D position of 𝑛 ≥ 6 control 
points on a three-dimensional calibration target and the 2D coordinates of their projection in 
the image. This problem is also called “Resection”, or “Perspective from 𝒏 Points”, or 
“Camera pose from 3D-to-2D correspondences”, and is one of the most widely used 
algorithms in Computer Vision and Robotics 

• Solution: The intrinsic and extrinsic parameters are computed directly from the perspective 
projection equation; let’s see how! 
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3D position of control points is assigned 
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Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 
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Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 

  























































     

1

  

1~

~

~

~

w

w

w

Z

Y

X

TRKv

u

w

v

u

p 











































































1
100

0

0

~

~

~

   

3333231

2232221

1131211

0

0

w

w

w

v

u

Z

Y

X

trrr

trrr

trrr

v

u

w

v

u





























































1

~

~

~

   

34333231

24232221

14131211

w

w

w

Z

Y

X

mmmm

mmmm

mmmm

w

v

u



Camera calibration: Direct Linear Transform (DLT) 

Our goal is to compute K, R, and T, that satisfy the perspective projection equation (we 
neglect the radial distortion) 
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Camera calibration: Direct Linear Transform (DLT) 
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By re-arranging the terms, we obtain 
 
 
 
 
For 𝑛 points, we can stack all these equations into a big matrix: 
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By re-arranging the terms, we obtain 
 
 
 
 
For 𝑛 points, we can stack all these equations into a big matrix: 

Camera calibration: Direct Linear Transform (DLT) 
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Minimal solution 

• 𝑄 has 11 Degrees of Freedom (in fact, 𝑄 is valid up to a scale factor, thus, 12-1 = 11) 

• Each 3D-to-2D point correspondence provides 2 independent equations 

• Thus, 5+
1

2
  point correspondences are needed (in practice 6 point correspondences!) 

 

Over-determined solution 

• n ≥ 6 points 

• A solution is to minimize | 𝑄𝑀 | subject to the constraint | 𝑀 |2 = 1.  
It can be solved through Singular Value Decomposition (SVD). The solution is the 
eigenvector corresponding to the smallest eigenvalue of the matrix 𝑄𝑇𝑄  (because it is the 
unit vector 𝑥 that minimizes 𝑥𝑇𝑄𝑇𝑄𝑥).  

 

Camera calibration: Direct Linear Transform (DLT) 
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Degenerate configurations 

 

1. Points lying on a plane and/or along a single line passing through the projection center 
 
 
 
 
 
 
 
 
 

2. Camera and points on a twisted cubic (i.e., smooth curve in 3D space of degree 3) 

Camera calibration: Direct Linear Transform (DLT) 
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that  

Camera calibration: Direct Linear Transform (DLT) 
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• Once we have the M matrix, we can recover the intrinsic and extrinsic 
parameters by remembering that  

 

 

 

 

 

 

 

• However, notice that we are not enforcing the constraint that 𝑅 is 
orthonormal, i.e., 𝑅 ∙ 𝑅𝑇= 𝐼 

 

• To do this, we can use the so-called QR factorization of 𝑀, which 
decomposes 𝑀 into a 𝑅 (orthonormal), T, and an upper triangular matrix 
(i.e., 𝐾) 

Camera calibration: Direct Linear Transform (DLT) 
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Tsai’s (1987) Calibration example 
1. Edge detection 

2. Straight line fitting to the detected edges 

3. Intersecting the lines to obtain the images corners (corner accuracy <0.1 pixels!) 

4. Use >6 points 

What are the «skew» 
and «residuals»? 

Why is this ratio  
not 1? 



Tsai’s (1987) Calibration example 
• The original Tsai calibration (1987) used to consider two different focal lengths 𝛼𝑢, 𝛼𝑣 

(which means that the pixels are not squared) and a skew factor (𝐾12 ≠ 0, which means 
the pixes are parallelograms instead of rectangles). This relaxation was used  to account for 
possible misalignments between CCD and lens 

• Most of today’s camera are well manufactured, thus, we can assume  
𝛼𝑢

𝛼𝑣
= 1 and 𝐾12 = 0 

• What is the residual? The residual is the average “reprojection error”. The reprojection 
error is computed as the distance (in pixels) between the observed pixel point and the 
camera-reprojected 3D point. The reprojection error gives as a quantitative measure of the 
accuracy of the calibration (ideally it should be zero). 



DLT algorithm applied to mutual robot localization 

In this case, the camera has been pre-calibrated (i.e., K is known). Can you 
think of how the DLT algorithm could be modified so that only R and T need 
to determined and not K? 



Summary (things to remember) 
• Perspective Projection Equation 

• Intrinsic and extrinsic parameters (K, R, t) 

• Homogeneous coordinates 

• Normalized image coordinates 

• Image formation equations (including radial distortion) 

• Camera calibration 

– DLT algorithm (for non planar scenes) 

• Readings for today:  

– Chapter 2.1 of Szeliski book (freely downloadable from http://szeliski.org/Book/ 

– Chapters 4.1-4.3 of Autonomous Mobile Robots book 

 

http://szeliski.org/Book/
http://szeliski.org/Book/
http://szeliski.org/Book/


Next time 
• Camera calibration  

– from planar grids 

• Non conventional camera models 

• Filtering and Edge Detection 

• Readings for next lecture: 3.2, page 108-109, 4.2.1 

Low-pass filtered image High-pass filtered image 



Mini Project List 

 It is not mandatory; you can either choose a mini project or to 
present a paper 

 We propose a list of projects but you can also propose your own 
idea 

 The project can be done in Matlab,  Open CV (C/C++ or Python) 

 

 Please contact Zichao Zhang <zhangzichao17 at gmail dot com> and 
Elias Mueggler <mueggler at ifi dot uzh dot ch> if you have 
questions about the proposed projects or want to propose an own 
idea. 



Mini Project List: 
http://rpg.ifi.uzh.ch/docs/teaching/Mini_Projects.pdf  

 Count fruits on a tree - In agriculture monitoring and automated agriculture, detecting and counting fruits 
(e.g., oranges) is an important building block. The goal is to detect and count a specific fruit on a tree that 
could be recognized by color, shape, etc. 

 Detect and identify playing cards - In this project, you detect and identify playing cards from images. This 
involves detecting basic shapes and template matching. The output of this program could serve as input to a 
robot that plays poker. 

 Read barcodes - The goal of this project is to find barcodes in images (e.g., on products) and identify the 
number they represent. This involves image filter, detection of specific shapes (bars), and interpretation of 
these bars. 

 Stitch panorama images - The goal of this project is to create panoramic images from a set of overlapping 
photographs. This involves finding correspondences between the images and warping them accordingly. 

 Identify the state of a game - In this project, the goal is to identify the state of a game (e.g., Rubik's Cube, 
Nine Men's Morris (German: Mühle), or Four Wins). This involves detecting the play field and its elements 
by shape, color, etc. Such a program could provide the input to a robot that plays games with humans. 

 Estimate the height of a building - In this project, you are required to estimate the height of the building by 
counting the number of stories. The height of each story is assumed to be known. This involves image 
filtering and interpretation. 

 Optical Character Recognition (OCR) - OCR is an essential module for digitalizing documents and office 
automation. The goal of this project is to identify individual characters in an image. This involves image 
filtering, segmentation and template matching. 

 Visual Odometry (VO) - VO is the process of estimating a camera's motion from the images only. The goal of 
this project is to implement a visual odometry pipeline. This involves finding image correspondences and 
motion estimation based on two-view geometry. 

http://rpg.ifi.uzh.ch/docs/teaching/Mini_Projects.pdf
http://rpg.ifi.uzh.ch/docs/teaching/Mini_Projects.pdf

