On the inevitable intertwining of Systems and Software Requirements

Alistair Sutcliffe
Department of Computation,
UMIST.

The above title as many will recognise is a paraphrase of the Swartout and Balzer (1983) paper
that argued cogently that specifications and designs are inevitably linked by a process of
developing a shared understanding between users and developers about what is required and what
is technically possible. I shall argue that this message needs to be heeded in RE today, and the
intertwining becomes even more pertinent when we scale up our ambition up to address systems
requirements engineering in the INCOSE sense. Some take the position that system requirements
are merely a logical extension of software requirements- see Anthony Hall’s position paper. I beg
to disagree, furthermore I shall argue that careful thought about system requirements should cause
us to change our conception of software requirements.

1. Systems Engineering Perspective

Systems engineers in the INCOSE community don’t tend to think in terms of requirements as
neat lists that can be managed in DOORS or Requisite Pro. Instead requirements are expressed in
models. This view is also held by Requirements Engineers who see Requirements Specification
as one expression of what is required of the to-be-designed artefact. The processes of
requirements acquisition, analysis and modelling are similar in INCOSE and RE; however, when
in comes to validation opinions diverge. Systems engineers talk about validation in terms of
testing a specification with a necessary and sufficient set of scenarios rather than verification or
proof. The problem in systems is one of complexity and scale. A frequently espoused view by
systems engineers is that one can not specify systems in infinite detail, and even if you could by a
top down decomposition, there are emergent properties which manifest themselves at higher
levels that can not be detected from lower level models. Hence a scenario-based approach is
necessary. | am not sure emergent properties exist as many would hold; however, they do
illustrate the problem of interaction between components in complex systems and how
predictable such interactions might be.

2. Requirements Analysis problems

The concept that requirements can ever be correct was questioned year ago by Manny Lehman.
The moving world problem is disturbing for the formal view of requirements as ‘ a machine
whose specification is S to satisfy requirements R when placed in a world described by domain
properties D, the sequent D, S R must hold.” For this statement to be useful we have to address
the closed and moving world problems:

* The moving world problem states that users can only effectively agree requirements by a
process of reification in design, hence the inevitable intertwining of specification and design.
The moving world problem is compounded by change in the system environment so that
requirements at t0 are not longer sufficient when implemented at t1.

* The closed world problem states that to create a specification to satisfy requirements
assumes we can model the domain as a closed world and know all the variables that might
influence the requirements.

We can only assert that the relationship holds if we know that the world described by the domain
properties is finite and predictable. When we scale our endeavor from small software related
control problems to large socio technical systems the fragility of our assumptions become clear.

First we can not know the complete set of domain properties in the world because some of those
properties will relate to people, whose behaviour is probabilistic in nature. Secondly many
optative requirements are owned by human stakeholders who are fallible and inconsistent human
beings. Once we are outside the realm of small scale embedded systems the relationship
inevitably becomes probabilistic in nature. Furthermore when we scale up to deal with large
components as addressed by systems engineers, then the world in which the machine S must
satisfy requirements R become increasingly complex and uncertain.

System requirements in complex socio technical system involved people. We are creating
requirements for people who are the consumers of the eventual products of RE (i.e. designs). In
Michael Jackson’s lexicon these are optative requirements. However in systems engineering,
people are embedded in the designed machine as part of a socio-techncial system solution, hence
they are phenomena that we must account for in requirements models. The problem with people
is that they exhibit all sorts of messy, unpredictable behaviour that the formal modellers wish to
sweep under the carpet. Unfortunately to do so is to abrogate our responsibility as engineers.

So maybe we can deal with complexity by divide and conquer? Alas no, just consider the
problem of specifying requirements for a navy destroyer for the later half of the 21* century. The
complexity and uncertainty starts at the strategic level of defining the ship’s mission of ship.
Unfortunately, politics and changes in the world mean that the mission is at best an informed
guess. At the tactical level the ship has to perform various operations. Some of the domain
properties at this level may be known, the weather for instance is subject to the laws of physics
and we can anticipate the effect of global warming so specify more stormy seas. However, the
ship as a system is competing in an evolutionary race with other designers who are improving
their ships to make them stealthier, faster, etc. Where do we pitch our guess about the
requirements here? Ask a domain expert of course, but the answer will naturally be a guess.
Below the tactical level there are the operational level of ship subsystems (propulsion, navigation
etc) involving human operators, hardware and software. Defining requirements at this level
encounters more complexity. Human operators are error prone, even with the rigours of military
training. While requirements might be specified as defenses to prevent human errors, the problem
is how to anticipate the space of possible mistakes in the first place. Can anyone anticipate all the
future states such a system will encounter?

The systems engineering problem is therefore considerably more complex than software
engineering, although both fall along a continuum of complexity and determinism. The state
space of toy software engineering problems (e.g. cruise control) is tractable in terms of formal
reasoning. Larger-scale software engineering problems that have regular behaviour and are
governed ultimately by the laws of physics (e.g. telecommunications switches) are also amenable
to formal reasoning. Once humans enter the picture we are dealing with probabilistic phenomena.
The problem is no longer finitely bound because no model of the user (in a cognitive sense) is
ever included in a requirements engineering specification, although there have been attempts to
create such formal models see Duke and Barnard’s treatment of the ICS cognitive model in
Modal action logic.

3. An Approach to Systems Requirements Engineering

In complex systems the problem space becomes vastly inflated with combinations of variables
that may possibly affect human behaviour. Furthermore design of the machine’s interface form
one of set of those variables, so we are faced with circular problem of specifying requirements for
human behaviour that may then be changed by the design. Anticipating unsafe human actions of
course has been the goal of safety critical systems design, where approaches are still heuristic
rather than formal in nature (e.g. Levenson 1995). Research is necessary to create better methods
for understanding the problem space of complex systems. Scenario based methods for
requirements analysis with critical incident analysis (Sutcliffe 1997, 1999) and obstacle driven
approaches (Potts et al 1994) are promising directions to follow.

The customers of complex systems (e.g. UK MoD, US DoD) have been embarrassed many times
when large complex systems have failed to deliver even basic required functionality within the
expected budget and timescale. One response has been to shift the ‘burden of proof” for validating
requirements onto the equipment supplier, while at the same time being less specific about the
initial requirements. Some requirements are given in performance criteria, e.g. the ship will have
a speed of 33 knots in normal sea states; however, many requirements are stated in the form of
operational and tactical scenarios, e.g. the ship will be able to land 150 fully equipped troops on a
coast without harbour facilities.

In the EPSRC SIMP (System Integration for Major Projects) we are grappling with the systems
requirements problem of how to elicit or create a necessary and sufficient set of scenarios that are
used to both indicate missing requirements from a system design and validate the system has the
appropriate capability to deal with scenario events. Finding the appropriate set of scenarios is a
rerun of the program test data generation problem, unfortunately at the systems engineering level
the set of variables and events that may form potential inputs is vast. Systems requirements
evolve both top town and bottom up as new designs inform higher level strategic/tactical
capabilities while the customer’s brief at the strategic level has to be expanded into more detail by
lower level operational scenarios and designs. We have adopt heuristic approach to bound the
search space by employing several techniques, ranging from analysing histories of critical
incidents with similar systems, to probabilistic modelling using BBNs (Bayesian Belief Nets) to
identify critical parameters for task and system performance and carry out sensitivity analyses on
the impact of environmental variables on performance. The process is systematic but still relies
on human knowledge for critical insights and problem solving. A key question is how much
knowledge can be embedded in BBN nets for diagnostic assessment of system requirements.

4. Conclusions

I believe requirements in systems engineering are not different from requirements in interactive
systems. RE and systems engineering both need to adopt a probabilistic approach to dealing with
phenomena in the world which are non-deterministic. Since people are involved in most systems
we can only design to improve effectiveness and dependability but we can not honestly guarantee
that specifications will meet requirements that can not be formally documented One answer may
be to create families of templates (or problem frames) at differing levels of abstraction. Those
dealing with people will have to be probabilistic. I do not deny the role of formal requirements
specification, this should be encouraged for deterministic components embedded in complex
socio technical systems. RE and system engineering have both adopted scenario based
approaches but research needs to address how these approaches can be made more effective so
customer can have more confidence that a system will meet their requirements and behave as
dependably as can be expected within the constraints of human knowledge of the problem, time,
and development budget.

