Problem Frames

a short talk

ISRE01 Workshop 25 April 2001 Imperial College Michael Jackson jacksonma@acm.org

Software Development Problems

- Developing the software part of the solution to a problem
- The machine and the problem world

- · Interfaces of shared phenomena
- · The problem world is physical domains human, lexical, causal
- Requirements are remote from the machine-world interface
- · Some problem domains are remote from the machine-world interface

Classifying Software Development Problems

- Different problems have different characteristics, raise different concerns
 - eg: avionics, telephone switching, banking, compiling, word-processing
- We need problem classification
 - · A structure for learning, recording, applying lessons of experience
- But realistic problems are heterogeneous

- · Editing the regime is one kind of problem, controlling the lights is another
- So we need (a) to classify subproblems, and
 - (b) to decompose and compose problems as structures of subproblems

Some Elementary Problem Frames

Required Behaviour Frame

Information Display Frame

Simple Enquiry Frame

Simple Workpieces Frame

Problem Frames

- A problem frame has:
 - · A problem diagram with generalised names for domains and phenomena
 - A FRAME CONCERN
 - Constructing the argument necessary to show that the problem is solved
 - Making the descriptions necessary to support the argument
 - Typical PARTICULAR CONCERNS
 - eg: in a Behaviour problem, we must rely on causal properties of the Controlled Domain to satisfy the requirement. What if the Controlled Domain does not exhibit these properties reliably?
- A problem must fit a frame exactly
 - Number and configuration of problem domains
 - Control properties at interfaces
- There are defined variants of elementary frames
 - eg: Simple Behaviour with Operator
 - eg: Described Behaviour

Decomposing a Realistic Problem

- A realistic problem is decomposed as a superposition of simple subproblems
 - Each subproblem must fit a known problem frame

A Simple Workpieces problem

A Described Behaviour problem

- · A realistic problem is decomposed as a superposition of simple subproblems
 - · Each subproblem must fit a known problem frame
 - Each subproblem is a projection of the whole problem
- The subproblems are treated in isolation
 - Their composition to give the whole problem is an additional task

Subproblem Composition

- The Problem Frames approach departs from a traditional trade-off
 - · Traditionally: uniform composition, complex subproblems
 - eg: all composition is procedure call, or message passing, or CSP, or ...
 - But each subproblem must be solved in the composition context
 - Essentialy, the composition concern is distributed among the subproblems
 - · With frames: heterogeneous composition, simple subproblems
 - The Workpieces subproblem is solved in isolation
 - The Described Behaviour subproblem is solved in isolation
 - The composition concernis addressed when the subproblems are known
- Lights Control example
 - · Composition concern has (at least) these two aspects
 - · Mutual exclusion, because Lights Regime domain is assumed static for the Controller
 - Scheduling, because not all pairs of valid Regimes can be concatenated
 - eg: <Stop, $\overset{\rightarrow}{Go}$, Stop, $\overset{\leftarrow}{Go}$ > $^{<}$ Stop, $\overset{\leftarrow}{Go}$, Stop, $\overset{\leftarrow}{Go}$ is OK but <Stop, $\overset{\rightarrow}{Go}$, Stop, $\overset{\leftarrow}{Go}$ > $^{<}$ < $\overset{\leftarrow}{Go}$, Stop, $\overset{\leftarrow}{Go}$, Stop is not OK

Principles of the Problem Frame Approach

- Focus on the problem world
 - · The traditional focus on the machine has been very harmful
- Focus on phenomena, not abstractions
 - The approach is inappropriate for purely mathematical problems
- Guided decomposition
 - · It's no use decomposing an unfamiliar problem into unfamiliar subproblems
- · Frames provide a structure for recording and exploiting lessons of experience
 - Experience with problems fitting particular frames
 - Experience with compositions of particular pairs, triples, etc of frames
- Separating concerns: subproblem vs composition
 - Composition is a separate concern
 - Composition while subproblems are not yet understood is premature