
1

Integrating Informal and
Formal Approaches to RE

Betty H.C. Cheng

Software Engineering and Network Systems Lab

Department of Computer Science and Engineering

Michigan State University

www.cse.msu.edu/~chengb

2

Bridge the Gap Between Informal and Formal Methods

Object-Oriented “Blueprints” Formal Representations

Informal specifications,
• graphical models,
• easy for humans to
 formulate,
•may be inconsistent and
 incomplete.

A
p

p
ly F

o
rm

alizatio
n

 F
ram

ew
o

rk

Objective:
• formal specifications
• executable code
• that can be verified
 for correctness
 and completeness

Benefits:
•Automated Analysis

•Consistency, completeness
•Rapid Prototyping
•Behavior Simulation

• Design Transformations
•Test Case generation

3

General RE Issues

l Modeling for RE should support:

� Decomposition

� Domain-specific/independent abstractions

� Tool support, including traceability mechanisms

l Analysis for RE must support:

� Tool support

� Ability to check for inconsistencies (local and global)

� Validation capabilities (e.g., simulation)

4

Objectives of Integration Project

l Overarching goals:
� Broaden base of developers who can use rigorous software

engineering techniques

� Provide palatable path to more rigorous SE techniques

� Leverage existing expertise and technology

l Enable use of intuitive diagrammatic notations (UML)

l Provide path from UML to existing formal languages
� Existing user base

� Support Tools

l Enable automated analyses of model
� Simulation

� Model checking

5

Current Results

l General Framework for Formalizing UML diagrams

l Provide precise semantics for diagrams and their

integration

l Establish consistency of mapping rules

l Allow choice of formalization language

6

Background: UML

l “General-purpose” visual modeling language
� de facto Standard

l (At least) nine different diagrams

l Diagrams described by metamodels:
� A graphical model that describes syntax of model

l Therefore, nine different metamodels

7

UML Metamodel

l Metamodel defines UML syntax using

class diagram notation.

l Semantics not defined by metamodel

l Note: Any language or diagram syntax can

be defined with a metamodel

11

Metamodel mapping

UML
metamodel

UML
metamodel

Formal language
metamodel

Formal language
metamodel

UML
diagram

UML
diagram

Describes
 instance

Formal description
of system

Formal description
of system

Describes
 instance

Homomorphism

Mapping Rules

Produces
mapping

17

Tool Support

MINERVA Hydra
Analysis

Tool*
HIL

Analysis results

Diagram
reports

Analysis
reports

Spec*UML

20

Analyses Supported

l Structural
� well-formedness

� within and between diagrams

� Tool support:

� MINERVA and Hydra

l Behavioral
� simulation

� model checking

� Tool support:

� existing analysis tools (SPIN)

22

Visualization Support
l Within the original UML diagrams:

� Highlights structural anomalies and inconsistencies

� Quick and easier detection of errors

l Trace data visualization
� Obtained from simulations or counterexamples

� Animate existing state diagrams.

� Explore how to automatically generate
� collaboration and sequence diagrams from trace data

� augment the playback of state diagram execution.

36

Discussion

l How do we incorporate more information
obtained from other RE tasks/approaches:
� Elicitation process

� What’s the bridge between Natural Language and
graphical models for RE purposes?

� Should we identify/develop “requirements patterns” for
a given domain?

� How can problem frames help with abstraction and
decomposition?

