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Bridge the Gap Between Informal and Formal Methods

Object-Oriented “Blueprints” Formal Representations

Informal specifications,
• graphical models,
• easy for humans to
  formulate, 
•may be inconsistent and
  incomplete.
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Objective:
• formal specifications
• executable code
• that can be verified
  for correctness
  and completeness

Benefits:
•Automated Analysis

•Consistency, completeness
•Rapid Prototyping
•Behavior Simulation

• Design Transformations
•Test Case generation
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General RE Issues

l Modeling for RE should support:

� Decomposition

� Domain-specific/independent abstractions

� Tool support, including traceability mechanisms

l Analysis for RE must support:

� Tool support

� Ability to check for inconsistencies (local and global)

� Validation capabilities (e.g., simulation)
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Objectives of Integration Project

l Overarching goals:
� Broaden base of developers who can use rigorous software

engineering techniques

� Provide palatable path to more rigorous SE techniques

� Leverage existing expertise and technology

l Enable use of intuitive diagrammatic notations (UML)

l Provide path from UML to existing formal languages
� Existing user base

� Support Tools

l  Enable automated analyses of model
� Simulation

� Model checking
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Current Results

l General Framework for Formalizing UML diagrams

l Provide precise semantics for diagrams and their

integration

l Establish consistency of mapping rules

l Allow choice of formalization language
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Background: UML

l “General-purpose” visual modeling language
� de facto Standard

l (At least) nine different diagrams

l Diagrams described by metamodels:
� A graphical model that describes syntax of model

l Therefore, nine different metamodels
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UML Metamodel

l Metamodel defines UML syntax using

class diagram notation.

l Semantics not defined by metamodel

l Note: Any language or diagram syntax can

be defined with a metamodel
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Metamodel mapping
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Tool Support

MINERVA Hydra
Analysis

Tool*
HIL

Analysis results

Diagram
reports

Analysis 
reports

Spec*UML
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Analyses Supported

l Structural
� well-formedness

� within and between diagrams

� Tool support:

� MINERVA and Hydra

l Behavioral
� simulation

� model checking

� Tool support:

� existing analysis tools (SPIN)
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Visualization Support
l Within the original UML diagrams:

� Highlights structural anomalies and inconsistencies

� Quick and easier detection of errors

l Trace data visualization
� Obtained from simulations or counterexamples

� Animate existing state diagrams.

� Explore how to automatically generate
� collaboration and sequence diagrams from trace data

� augment the playback of state diagram execution.
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Discussion

l How do we incorporate more information
obtained from other RE tasks/approaches:
� Elicitation process

� What’s the bridge between Natural Language and
graphical models for RE purposes?

� Should we identify/develop “requirements patterns” for
a given domain?

� How can problem frames help with abstraction and
decomposition?


