
Estimating
Software Requirements

Seminar on Software Cost Estimation
WS 02/03

Presented by
Yong Xia

xia@ifi.unizh.ch

Requirements Engineering Research Group
Department of Computer Science
University of Zurich, Switzerland

Prof. M. Glinz
Arun Mukhija

Date: January, 14th 2003

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 2

Content

1. Background ..3
1.1 Function Points...3
1.2 Defect-prevention technologies...4
1.3 Types of the software..6
1.4 Positive and Negative Requirements Adjustment Factors..8

2. Requirements Estimates ...9
2.1 Nominal Default Value...9
2.2 Requirements Productivity Rates ..10
2.3 Other attributes ...10

3. Requirements errors ...11
4. Evaluating Combinations of Requirements Factors...12
5. Conclusion ...15
6. References..15

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 3

1. Background

Software requirements are the starting point for every new project, and are a key contributor
to enhancement projects, as well. Software requirements are also very ambiguous, often filled
with bad assumptions and severe errors, and are unusually difficult to pin down in a clear and
comprehensive way.

From a software cost estimating standpoint, the most tricky part of estimating requirements is
the fact that requirements are usually unstable and grow steadily during the software
development cycle in the coding and even the testing phases.

The observed rate at which requirements change after their initial definition runs between 1
percent and more than 3 percent per month during the subsequent analysis, design, and coding
phases. Equally as troublesome, software requirements are the source of about 20 percent of
all software bugs or defects, and are the source of more than 30 percent of really severe and
difficult defects.

A lot of researches talk about how to make software requirements accurate and complete. And
recently many methods, languages, and processes are given to cope with this problem.

Although many works on requirements contain thoughtful analyses of requirements methods
and offer interesting suggestions for improving software requirements gathering and analysis,
the following two topics are seldom mentioned and studied.

1. Quantification of requirements sizes, schedules, effort, and costs
2. Quantification of requirements errors and defect-removal efficiency

The following part of paper gives an initial, maybe still incomplete, solutions on the above
two problems. The results show the quantitative results of requirements sizes, schedules, and
efforts for an average project developed by an average team, as shown in Section 2.
Productivity rates for different types of the software systems and the attributes affecting the
requirements estimates will be also presented in this section. Section 3 gives the quantitative
results of requirements errors. Section 4 shows the results of SPR’ method on evaluating
combinations of requirements factors.

Note that this paper is based on the work of [Jones98]. Only very few ideas come from the
author himself.

First let us review some concepts and methods, which are intensively used in this paper.

1.1 Function Points

The function point metric has proven to be a useful tool for gathering requirements, and also
for exploring the impact and costs of creeping requirements. Recall that the function point
metric is a synthetic metric derived from the following five attributes of software systems:

1. Inputs
2. Outputs
3. Inquiries
4. Logical files
5. Interfaces

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 4

1.2 Defect-prevention technologies

We will introduce some technologies, which prevent the requirements errors and defects, in
this section. These technologies can also reduce the rate at which requirements change, or at
least make changes less disruptive.

1.2.1 Joint application design

Joint application design (JAD) is a method for developing software requirements under which
user representatives and development representatives work together with a facilitator to
produce a joint requirements specification that both sides agree to.

Compared to the older style of adversarial requirements development, JAD can reduce
creeping requirements by almost half. The JAD approach is an excellent choice for large
software contracts that are intended to automate information systems.

In order to work well, JAD sessions require active participation by client representatives, as
well as by the development organization. This means that JAD technology may not be
appropriate for some kinds of projects. For example, for projects such as Microsoft’s
Windows 95, where there are many millions of users, it is not possible to have a small subset
of users act for the entire universe.

The JAD method works best for custom software, where there is a finite number of clients
and the software is being built to satisfy their explicit requirements. It does not work well for
software with hundreds or thousands of users, each of whom may have slightly different
needs.

1.2.2 Quality function deployment (QFD)

Quality Function Deployment (QFD) is a technique originally for exploring the quality needs
of engineered products. Later, it is also applied in software system. Today, QFD is expanding
globally, and many of high-technology clients who build hybrid products, such as switching
systems and embedded software, have found QFD to be a valuable method for exploring and
controlling software quality issues during requirements.

Procedurally, QFD operates in a fashion similar to JAD in that user representatives and design
team representatives work together with a facilitator in focused group meetings. However, the
QFD sessions center on the quality needs of the application rather than on general
requirements.

The QFD method has developed some special graphical design methods for linking quality
criteria to product requirements. One of these methods shows product feature sets linked to
quality criteria. Visually, this method resembles the peaked roof of a house, so QFD drawings
are sometimes termed the house of quality.

1.2.3 Prototype

Since many changes don’t start to occur until clients or users begin to see the screens and
outputs of the application, it is obvious that building early prototypes can move some of these
changes to the front of the development cycle instead of leaving them at the end.

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 5

Prototypes are often effective in reducing creeping requirements, and they can be combined
with other approaches, such as JAD. Prototypes by themselves can reduce creeping
requirements by somewhere between 10 and about 25 percent.

There are three common forms of software prototypes:
• Disposable prototypes
• Evolutionary prototypes
• Time-box prototypes

Of these three, the disposable and time-box methods have the most favorable results. The
problem with evolutionary prototypes that grow to become full projects is that during the
prototyping stage, too many short cuts and too much carelessness is usually present. This
means that evolutionary prototypes seldom grow to become stable, well-structured
applications that are easy to maintain.

1.2.4 Use cases

The technique termed use case originated as a method for dealing with the requirements of
object-oriented applications, but has subsequently expanded and is moving toward becoming
a formal approach for dealing with software requirements.

The use case technique deals with the patterns of usage that typical clients are likely to have
and, hence, concentrates on clusters of related requirements for specific usage sequences. The
advantage of the use case approach is that it keeps the requirements process at a practical
level and minimizes the tendency to add “blue sky” features that are not likely to have many
users.

1.2.5 Change-control boards

Change-control boards are not exactly a technology, but rather a group of managers, client
representatives, and technical personnel who meet and decide which changes should be
accepted or rejected.

Change-control boards are often encountered in the military software systems domain. Such
boards are most often encountered for large systems in excess of 10,000 function points in
size. Change-control boards are at least twice as common among military software procedures
as they are among civilian software producers. Within the civilian domain, change-control
boards are more common for systems, commercial, and outsourced software projects.

In general, change-control boards occur within large organizations and are utilized primarily
for major systems. The members of a change-control board usually represent multiple
stakeholders and include client representatives, project representatives, and sometimes
quality-assurance representatives. For hybrid projects that include hardware, microcode, and
software components, the change-control board for software is linked to similar change-
control boards for the hardware portions.

The change-control board concept has been very successful whenever it has been deployed,
and tends to have long-range value across multiple releases of evolving systems. Change-
control boards are now a standard best practices for the construction of large and complex
applications, such as telephone switching systems, operating systems, defense systems, and
the like.

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 6

1.3 Types of the software

Different types of software have different statistical results on requirements sizes,
requirements costs, requirements errors, defect-removal efficiency, etc. Therefore, it is
reasonable that we first make a short introduction on the different types of software in the
view of estimating software requirement, and how requirements of these types of software are
gathered, analyzed, and produced.

1.3.1 End-User Software

End-User Software is the application, which is being developed for the personal use of the
developer.

Except for a few notes on possible alternatives, the requirements for end-user software exist
primarily in the mind of the developer. Changes in end-user requirements usually have no
serous implications.

1.3.2 Management Information System (MIS)

MIS projects usually derive software requirements directly from users or the users’ authorized
representatives.

For MIS projects the most effective methods for gathering requirements include JAD,
prototypes, and requirements reviews.

The older method of gathering MIS requirements consisted of drafting a basic set of
requirements more or less unilaterally by the client organization, and them presenting them to
the software development organization. This method leads to a high rate of requirements
creep, and also to adversarial feelings between the clients and the developers.

The requirements approach with the RAD methodology leads to a form of evolutionary
prototyping without much in the way of written requirements. While the RAD approach is
acceptable for small or simple applications, the results are usually satisfactory neither for
large applications above 1000 function points, nor for critical applications with stringent
security, safety, performance, or reliability criteria.

MIS requirements can begin by exploring either the functions that the software is intended to
perform or the data that is intended to be utilized. On the whole, beginning the requirements
by exploring data and defining the outputs appears to give the best results.

There are several commercial software systems, such as SAP R/3, Oracle, IBM, or Computer
Associates products, which provide packages for setting up MIS. However, it is still desirable
to match package capabilities against fundamental needs and requirements of MIS.

1.3.3 Outsourced Projects

Outsourced projects in the MIS domain are similar in style and content to normal MIS
projects with two important exceptions:

1. Outsource vendors often apply a cost per function point rate to the initial requirements
in order to give the clients a good idea of the costs of the project. Some modern

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 7

outsource contracts also include a sliding cost scale, so that the costs of implementing
creeping requirements will be higher than the costs of the initial set of requirements.

2. Outsource vendor that serve many clients within the same industry often have
substantial volumes of reusable materials and even entire packages available that
might be utilized with minor or major customization. For certain industries, such as
banking, insurance, telecommunications, and health care, almost every company uses
software with the same generic feature sets, so reusable requirements are possible.

1.3.4 System Software

Here systems software is defined as software that controls a physical device, such as a
computer, switching system, or aircraft controls.

Because of the close and intricate relationship between the hardware and software, many
requirements changes in the systems software domain are due to changes in the associated
hardware.

Requirements gathering in the systems software domain seldom comes directly from the users
themselves. Instead the software requirements usually come in from hardware engineers
and/or the marketing organization that is in direct contact with the users, although for custom
software applications users may be direct participants in requirements sessions.

Requirements, and also specification methods, in the system software domain are closely
linked to hardware requirements, and the approaches for the software and hardware domains
overlap. Special representation methods, such as Petri nets or state-transition diagrams, are
sometimes used in the context of systems software requirements, and even hardware
representation methods, such as the Verilog design language, may be applied to software
requirements.

Because quality is a key criterion for systems software, approaches that can deal with quality
issues during the requirements phase are common practices for systems software.

The close linkage between hardware and software requirements makes quality function
deployment (QFD), which is similar to JAD in structure but has the emphasis on the quality
and reliability of the application, effective in the systems software domain.

The usual starting point for the analysis of systems software requirements is determining the
functions and features that are needed by the system.

1.3.5 Commercial Software

Gathering requirements for commercial software has some unique aspects. For some kinds of
commercial software products there may be hundreds, thousands, or even millions of possible
users. There may also be many competitors whose software has features that might also have
to be imitated.

These two factors imply that commercial software requirements seldom come directly from
one or two actual clients. Instead, commercial software requirements may arrive from any or
all of the following channels:

1. From the minds of creative development personnel
2. From customer surveys

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 8

3. From marketing and sales personnel
4. From sophisticated customer support personnel
5. From user associations, focus groups, and online product forums
6. From analyzing the feature sets of competitive packages and imitating the more useful

competitive features
Because the six channels are more or less independent, the requirements for commercial
software packages tend to be highly volatile.

1.3.6 Military Software

Military software requirements are usually the most precise and exacting of any class of
software. The military form of requirements tends toward large, even cumbersome,
requirements specifications that are about three times larger than civilian norms. Although
these military requirements documents are large and sometimes ambiguous, the specificity
and completeness of military software requirements makes it easier to derive function point
totals than for any other kind of software application.

On the whole, military software requirements have somewhat more positive attributes than
negative for major systems that affect national defense or weapons. For smaller and less
serious projects, the military requirements methods are something of an overkill.

1.4 Positive and Negative Requirements Adjustment Factors

For estimating software requirements, schedules, effort, costs, and quality, both positive and
negative factors must be considered.

1.4.1 Positive requirements factors

Among the positive factors that can benefit software requirements production by perhaps 10
percent for assignment scopes, production rates, and defect potentials may be found in the
following:

• High client experience levels
• High staff experience levels
• Joint application design (JAD)
• Prototyping
• Quality function deployment (QFD)
• Use cases
• Requirements inspections
• Reusable requirements (patterns or frameworks)
• Requirements derived from similar projects
• Requirements derived from competitive projects
• Effective requirements representation methods

1.4.2 Negative requirements factors

Among the negative factors that can slow down or degrade the software requirements
production by perhaps 5 percent, or that can raise defect potentials, may be found in the
following:

• Inexperienced clients
• Inexperienced development team
• Novel applications with many new features

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 9

• Requirements creep of more than 3 percent per month
• Ineffective or casual requirements-gathering process
• Failure to prototype any part of the application
• Failure to review or inspect the requirements
• No reusable requirements

2. Requirements Estimates

In this section, we show how to derive the requirements sizes, schedules, effort, and costs
from our statistical tables.

2.1 Nominal Default Value

From a software cost estimating viewpoint, the nominal or default values for producing
software requirements specification are shown in Table 1.

Table 1. Nominal Default Values for Requirements Estimates

Activity sequence Initial activity of software projects
Performed by Client representatives and development representatives
Predecessor activities None
Overlap None
Concurrent activities Prototyping
Successor activities Analysis, specification, and design
Initial requirements size 0.25 U.S. text pages per function point
Graphics volumes 0.01 illustrations per function point
Reuse 10% from prior or similar projects
Assignment scope 500 function points per technical staff member
Production rate 175 function points per staff month
Production rate 0.75 work hours per function point
Schedule months Function points raised to the 0.15 power
Rate of creep or change 2.0% per month
Defect potential 1.0 requirements defects per function point
Defect removal 75% via requirements inspections
Delivered defects 0.25 requirements defects per function point
High-severity defects 30% of delivered requirements defects
Bad fix probability 10% of requirements fixes may yield new errors

Let us see how to use this table by an example:

For a 1500-function point systems software project, the nominal or average requirements
would be about 375 pages in size and would be produced by a team of three technical
personnel (working with about the same number of client personnel). The effort would
amount to about 9 staff months. The schedule would be about 3 calendar months.

More ominously, there would be about 1500 potential defects in the requirements themselves.
About 30 percent of the requirements errors or bugs would be very serious, which would
amount to about 450 high-severity requirements errors—more than any other source of
serious error.

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 10

Since many companies are careless about attempting to remove errors or defects in software
requirements, defect-removal efficiency levels against requirements are lower than for other
sources of error and average only about 75 percent.

A nominal defect-removal efficiency of only 75 percent means that when the project is
deployed there will still be about 375 requirements defects and about 112 high-severity
defects still latent. Indeed, latent requirements defects comprise the most troublesome form of
after-deployment defects in software systems, because they are highly resistant to defect-
removal methods.

This is an estimation of the average companies. Among the more sophisticated software
companies, in which the significance of requirements and requirements errors is recognized
and the defect-prevention technologies are applied in the project, the value in that table will
be different. For example, the combination of JAD sessions plus prototyping can reduce the
rate of creeping requirements from 2 percent per month down to perhaps 0.5 percent per
month. The details will be further discussed in the next sections.

2.2 Requirements Productivity Rates

Although the default or nominal values for requirements estimates provide a useful starting
place, the range of variance around each of the default values can be more than 3 to 1. Other
factors, such as whether the requirements are being created for a military or a civilian project,
also exert an impact.

Table 2 illustrates some of the ranges in requirements productivity rates associated with
various sizes and kinds of software projects.

Table 2. Ranges in Requirements Productivity Rates by Class of Software
(Each staff works about 128 hours a month)

Software class
Requirements productivity,

FP/staff month
Requirements productivity,

staff hours/FP
End user 1000 0.128
Commercial 200 0.640
Small MIS 175 0.750
Large MIS 75 1.710
Outsource 90 1.422
Systems 75 1.710
Military 35 3.657

2.3 Other attributes

Table 1 just shows the nominal default values for requirements estimates with some initial
default assumptions. Software requirements also have a number of attributes associated with
them which have impact on the estimation, including but not limited to the following. These
attributes greatly influence the requirements estimates.

• Performed by. Clients, marketing staff, sales staff, engineering staff, systems
analysts, programmers, quality-assurance staff, and software project mangers are the
normal participants in requirements.

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 11

• Formal methodologies. Numerous requirements methods exists, including rapid
application development (RAD), OO design, quality function deployment (QFD), joint
application design (JAD), finite-state machines, etc. Since these methods affect both
the error density and the productivity of requirements, it is useful to record which
method is utilized, if any.

• Requirements tools. Software requirements automation plays an important role on
software requirements estimation. For example, the Bachman Analyst Workbench and
the Texas Instruments Information Engineering Facility (IEF) provide automatic
derivation of function point metrics from software requirements.

• Defect prevention methods. Defect prevention methods, such as Prototype, QFD,
JAD, etc. are effective in preventing requirements defects.

Different attributes result in different requirements estimates.

3. Requirements errors

Software requirements errors comprise about 20 percent of the total errors found in software
applications, but comprise more than 30 percent of the intractable, difficult errors.

The following table shows the current U.S. averages for software defect origins, which are
expressed in terms of defects per function point.

Table 3. Requirements Defects and Other Categories

Requirements changes cause similarly bad consequences as requirements errors. In a lot of
research works, they are even considered as a type of requirements errors.

In the context of exploring creeping requirements, the initial use of function point metrics is
to size the application at the point where the requirements are first considered to be firm. At
the end of the development cycle, the final function point total for the application will also be
counted.

For example, suppose the initial function point count for a project is 100 function points, and
at delivery the count has grown to 125. This provides a direct measurement of the volume of
creep in the requirements.

From analysis of the evolution of requirements during the development cycle of software
applications, it is possible to show the approximate rates of monthly change. The changes in
Table 4 are shown from the point at which the requirements are initially defined through the
design and development phases of the software projects.

Defect origins
Total defects

per FP
High-severity defects

per FP
Requirements 1.00 0.30
Design 1.25 0.50
Code 1.75 0.25
Documentation 0.60 0.10
Bad fixes 0.40 0.15
Total 5.00 1.30

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 12

In table 4 the changes are expressed as a percentage change to the function point total of the
original requirements specification. Table 4 is derived from the use of function point metrics,
and the data is based on differences in function point totals between: (1) the initial estimated
function point total at the completion of software requirements, and (2) the final measured
function point total at the deployment of the software to customers.

Table 4. Monthly Growth Rate of Software Creeping Requirements

Software type Monthly rate of requirements change, %
Contract or outsource software 1.0
Information systems software 1.5
System software 2.0
Military software 2.0
Commercial software 3.5

Note that the real margin of error might be higher (this way of statistics ignores of the
requirements modifications–replacement of original requirements by new requirement, in
which function points are unchanged), but even so it is still useful to be able to measure the
rate of change at all.

It is interesting that although the rate of change for contract software is actually less for many
other kinds of applications, the changes are much more likely to lead to disputes or litigation.

Since the requirements for more than 90 percent of all software projects change during
development, creeping user requirements is numerically the most common problem of the
software industry. A number of technologies are being developed that can either reduce the
rate at which requirements change or, at least, make the changes less disruptive (Some
research is also carried out in our research group RERG).

4. Evaluating Combinations of Requirements Factors

After Jones and his colleagues at Software Productivity Research (SPR) studied the
combinations of requirements adjustment factors, SPR developed a useful method for
showing how a number of separate topics interact.

SPR’s method is to show the 16 permutations that result from changing 4 different factors that
affect software requirements:

1. The use of, or failure to use prototypes
2. The use of, or failure to use joint application design (JAD)
3. The use of, or failure to use formal requirements inspections
4. The presence or absence of experienced staff familiar with the application type

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 13

Table 5. Sixteen Permutations of Software Requirements Technologies
(Data expressed in defects per function point; best-case options appear in boldface type)

Defect
potential
per FP

Defect-removal
Efficiency, %

Residual
defects
per FP

Rate of creep,
% monthly

No prototypes
No use of JAD
No inspections
Inexperienced staff

2.00 60 0.80 4.0

No prototypes
No use of JAD
No inspections
Experienced staff

2.00 65 0.70 3.5

Prototypes used
No use of JAD
No inspections
Inexperienced staff

1.50 70 0.45 1.5

No prototypes
No use of JAD
Inspections used
Inexperienced staff

2.00 80 0.40 3.0

No prototypes
JAD used
No inspections
Inexperienced staff

1.50 75 0.38 1.0

Prototypes used
No use of JAD
No inspections
Experienced staff

1.50 77 0.35 0.9

No prototypes
No use of JAD
Inspections used
Experienced staff

2.00 84 0.32 1.0

No prototypes
JAD used
No inspections
Experienced staff

1.50 80 0.30 0.9

Prototypes used
JAD used
No inspections
Inexperienced staff

1.00 77 0.23 0.6

Prototypes used
No use of JAD
Inspections used
Inexperienced staff

1.50 86 0.21 0.6

No prototypes
JAD used
Inspections used
Inexperienced staff

1.50 86 0.21 0.5

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 14

Defect
potential
per FP

Defect-removal
Efficiency, %

Residual
defects
per FP

Rate of creep,
% monthly

No prototypes
JAD used
Inspections used
Experienced staff

1.35 88 0.16 0.5

Prototypes used
JAD used
No inspections
Experienced staff

1.00 87 0.13 0.3

Prototypes used
No use of JAD
Inspections used
Experienced staff

1.50 94 0.09 0.3

Prototypes used
JAD used
Inspections used
Inexperienced staff

1.00 94 0.06 0.2

Prototypes used
JAD used
Inspections used
Experienced staff

0.70 97 0.02 0.1

In this table, SPR assumes fairly complex applications of at least 1,000 function points or
125,000 C statements in size. For smaller projects, requirements defects and rates of change
would be less, of course. For really large systems in excess of 10, 000 function points or
1,125,000 C statements, requirements errors would be larger and removal efficiency would be
lower.

The table shows polar extreme conditions; that is, each factor is illustrated in binary form and
can switch between best-case and worst-case extemes.

Note that the function point (FP) values used in the table assume the IFPUG Version 4
counting rules.

As can be inferred from the 16 permutations, software requirements outcomes cover a very
broad range of possibilities. The combination of effective requirements-gathering
technologies coupled with effective defect-removal technologies and a capable team lead to a
very different outcome from casual requirements methods utilized by inexperienced staff.

The best-in-class technologies for dealing with requirements are highly proactive, and include
the following components:

• Formal requirements gathering, such as JAD
• Augmentation of written requirements with prototypes
• Use of requirements-automation tools
• Use of reusable requirements from similar or competitive projects

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 15

5. Conclusion

If the initial requirements for a software project are done well, the project has a fair chance to
succeed regardless of size. If the requirements are done poorly and are filled with errors and
uncontrolled changes, the project has a distressingly large chance of being canceled or
running out of control.

6. References

[Jones98] Jones, C. (1998), Estimating Software Costs, Chapter 17, New York:
McGraw-Hill

[Jones02] Jones, C. (2002) : “Software Cost Estimation in 2002”, Utah: Software
Technology Support Center, Hill Air Force Base,
http://www.stsc.hill.af.mil/crosstalk/2002/06/jones.pdf

Seminar on Software Cost Estimation

Yong Xia, January, 14th 2003 16

