
Universität Zürich
Institut für Informatik

Martin Glinz

Software-Qualität – Ausgewählte Kapitel

Kapitel 8

Qualitätsanforderungen

© 2008 Martin Glinz. Alle Rechte vorbehalten. Speicherung und Wiedergabe sind für den persönlichen, nicht kommerziellen Gebrauch gestattet, wobei bei auszugsweiser Verwendung Quelle und
Copyright zu nennen sind. Die Verwendung für Unterrichtszwecke oder für kommerziellen Gebrauch ist nur mit vorheriger schriftlicher Genehmigung des Autors gestattet.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 2

Qualitätsanforderungen

Qualitätsanforderung – Eine Anforderung, welche sich auf die Attribute
eines Systems bezieht, d.h. Leistungsanforderungen und spezifische
Qualitäten.

Das Thema wird anhand von Publikationen im Sonderheft “Quality
Requirements” von IEEE Software (Vol. 25, Nr. 2, März/April 2008)
diskutiert:

Artikel von Martin Glinz (pp. 34-41) und nachstehende Folien

Artikel von Björn Regnell, Richard Berntsson Svensson und Thomas
Olsson (pp. 42-47)

Point-Counterpoint-Debatte von Tom Gilb und Alistair Cockburn (pp.
64-68)

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 3

Literatur

A. Cockburn (2008). Subjective Quality Counts in Software Development. Point-
counterpoint statement, IEEE Software 25, 2. 65-67.

T. Gilb (2008). Metrics Say Quality Better than Words. Point-counterpoint
statement, IEEE Software 25, 2. 64, 66-67.
M. Glinz (2008). A Risk-Based, Value-Oriented Approach to Quality Requirements.
IEEE Software 25, 2. 34-41.

B. Regnell, R. Berntsson Svensson, T. Olsson (2008). Supporting Roadmapping of
Quality Requirements. IEEE Software 25, 2. 42-47.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 4

Anhang: Vortragsfolien zu Glinz (2008)

Universität Zürich
Institut für Informatik

A Risk-Based, Value-Oriented Approach
to Quality Requirements
A New Look at an Old Problem

Martin Glinz
www.ifi.uzh.ch/rerg

© 2008 Martin Glinz. All rights reserved. Making digital or hard copies of all or part of this work for educational, non-commercial use is permitted. Using this material for any commercial purposes
and/or teaching is not permitted without prior, written consent of the author. Note that some images may be copyrighted by third parties and may be restricted in use and re-distribution.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 6

Software Quality

Quality – The degree to which a set of inherent
characteristics fulfils requirements (ISO 9000:2000)

Software Quality – The degree to which software meets its
requirements

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 7

Classifying requirements

Project
requirement

Process
requirement

System
requirement

Functional
requirement

Attribute Constraint

Performance
requirement

Specific quality
requirement

Functionality
and
behavior:
Functions
Data
Stimuli
Reactions
Behavior

Time and
space bounds:
Timing
Speed
Volume
Throughput

“-ilities”:
Reliability
Usability
Security
Availability
Portability
Maintainability
...

Physical
Legal
Cultural
Environmental
Design&Im-
plementation
Interface
...

Quality
requirements

Requirement

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 8

Focus of this talk: Quality requirements

Quality requirement – Those requirements that pertain to a
system s attributes such as performance attributes or specific
qualities.

Examples:

“The system shall be user friendly.”

“The time interval between two consecutive scans of the
temperature sensor shall be below two seconds.”

“The probability of successful, unauthorized intrusion into
the database shall be smaller than 10–6.”

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 9

The problem: qualitatively stated requirements

“We need a secure system”

Ambiguous

Difficult to verify

Potential problems:

1. System delivers less than stakeholders expect

2. System delivers more than stakeholders need

3. Developers and customers disagree whether the system
meets the requirements

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 10

The eleventh commandment

Thou shalt quantify.

Unambiguous • Verifiable • Low risk

If it s not measurable, make it measurable:

Define / agree upon indirect measures for the desired
property

Demonstrate empirically that these indirect measurements
are highly correlated with the quality we actually want to
measure

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 11

There s a price tag

Defining metrics costs

Demonstrating validity of metrics costs

Example:

Quantifying “The system shall be user-friendly”
according to ISO-IEC 9126 usability characteristics

Elicitation: Elicit values for 28 subcharacteristics
Verification: Compute values for 28 metrics

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 12

Operationalization

Expressing quality requirements as functional properties

An alternative way of making quality requirements
verifiable and unambiguous

Solution-oriented

Connection to original quality requirements frequently lost

Not considered here

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 13

Requirements are a means, not an end

Requirements shall deliver value

Value of a requirement:
The benefit of reducing development risk
(i.e. the risk of not meeting the stakeholders desires
and needs)
minus the cost of specifying the requirement

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 14

A new look: risk-based, value-oriented

Classic thinking:
Only a quantified quality requirement is a good quality
requirement.

New approach:
A quality requirement should be represented such that it
delivers optimum value.

Broader perspective
Does not dismiss full quantification
Choosing representation based on assessment of risk

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 15

Assessing risk

Assess the criticality
of the requirement

Consider other factors
(next slide)

Use requirements
triage techniques

 minor major critical

Im
pa

ct

Deserves
high effort

Deserves
little effort

lo
w

m

ed
iu

m

 h

ig
h

Importance of stakeholder

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 16

Assessing risk: other factors

Quantification effort

Validity of obtained measurements

Distinctiveness

Shared understanding

Reference systems

Length of feedback-cycle

Kind of customer-supplier relationship

Certification required

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 17

The range of adequate representations

Situation Representation Verification

1. Implicit shared understanding Omission Implicit

2. Need to state general direction Qualitative Inspection
Customer trusts supplier

3. Sufficient shared understanding By example Inspection,
to generalize from examples (Measurement)

4. High risk of not meeting stake- Quantitative Measurement
holders desires and needs in full

5. Somewhere between 2 and 4 Qualitative with Inspection, partial
partial quantification measurement

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 18

A case study: Jane s volunteer driver service

An organization of volunteers who drive elderly or disabled
people

 When a person needs transportation, he calls the number
of the volunteer drivers service.

Two dispatchers, Jane and Peter, alternate in servicing
incoming calls, making schedules, and calling volunteer
drivers, giving them driving orders.

They use a spreadsheet to create schedules.

Jane, with help from Peter and his wife, founded the
service three years ago. Jane and Peter are friends and
know each other s work habits and preferences pretty well.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 19

Jane s volunteer driver service – 2

Today, the service has grown to 20 volunteers and is still
growing.

The board has decided they need a computer system to
support the ordering and dispatching processes.

In his professional life, Peter is the owner and chief
engineer of a 10-person software company.

He has decided to contribute by building an open source,
free system by his company.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 20

Stakeholder analysis

Critical:
Dispatcher

Major:
Service user
Volunteer driver
System operator

Minor:
Developer
Executive board member
Person calling the service for somebody else
Any other stakeholder

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 21

“Very simple and easy to use”

“Some weeks in advance”

Some samples and how to treat them

Lucy (a 76-year-old service user): “It would be great if I could make
reservations over the Internet some weeks in advance and also view a
list of my current reservations—I am a bit forgetful, you know. However, it
must be very simple and easy to use.”

Major stakeholder, low impact, easy to quantify Quantify.

Major stakeholder, low to medium impact, Hard to quantify Don t
quantify. Reduce risk with user interface prototyping and let selected
service users inspect the fulfillment of this requirement by working with
the prototype.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 22

“Immediate confirmation in most cases”

“Same service level as provided by calling today”

Some samples and how to treat them – 2

John (a deaf service user): “As I can t make calls myself, I need a Web-
based reservation option. It should have the same service level as
provided by calling today, in particular immediate confirmation in most
cases.”

Major stakeholder, low to medium impact, reference system available,
hard to quantify Don t quantify. Instead, use current system as a
reference system; maybe elaborate some examples that illustrate the
current service level. Let selected service users inspect the fulfillment of
this requirement by working with the prototype.

Major stakeholder, low to medium impact, easy to quantify Quantify.
For example, quantify “immediate” as “in less than 30 seconds” and
“most cases” as “in at least 90% of all cases.”

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 23

Critical stakeholder, medium impact, shared understanding between
stakeholder and system architect, hard to quantify Don t state explicitly
as a requirement.

“As simple to use as our current spreadsheet”

Some samples and how to treat them – 3

Jane (dispatcher): “My biggest concern is that the system must support
the growing number of service requests but remain as simple to use as
our current spreadsheet.”

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 24

“Need less time to service an incoming request than today”

Some samples and how to treat them – 4

Peter (the dispatcher and head of the development team): “I primarily
want the system to help me work faster— that is, on average, I ll need
less time to service an incoming request than today.”

Critical stakeholder, high impact, distinctive, easy to quantify Quantify

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 25

Further reading

IEEE Software
Vol 25, No 2
March/April 2008
pp. 34-41

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 26

Conclusion

A new look at an old problem: getting optimum value from
your effort to specify software quality

Traditional quantification of every quality requirement does
not always deliver optimum value

This value-based, risk-oriented approach
extends the classic approach
helps treat quality requirements adequately over a wide
range of project situations
helps advance software quality

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 27

References and further reading

A. Davis (2005). Just Enough Requirements Management. Dorset House.

N.E. Fenton and S.L. Pfleeger (1998). Software Metrics: A Rigorous and Practical
Approach, 2nd ed. PWS Publishing.

T. Gilb (1988). Principles of Software Engineering Management. Addison-Wesley.

T. Gilb (2005). Competitive Engineering: A Handbook for Systems Engineering,
Requirements Engineering, and Software Engineering Using Planguage. Butterworth-
Heinemann.

M. Glinz (2007). On Non-Functional Requirements. Proceedings of the 15th IEEE
International Requirements Engineering Conference, Delhi, India. 21-26.

M. Glinz (2008). A Risk-Based, Value-Oriented Approach to Quality Requirements. IEEE
Software 25, 2. 34-41.
M. Glinz, R. Wieringa (2007). Stakeholders in Requirements Engineering. IEEE Software
24, 2. 18-20.
IEEE (1990). Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-
1990.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications. IEEE
Standard 830-1998.

Software-Qualität – Ausgewählte Kapitel Kapitel 8 © 2008 Martin Glinz 28

References and further reading – 2

ISO/IEC 9126-1:2001. Software Engineering—Product Quality—Part 1: Quality Model.
International Organization for Standardization.

ISO/IEC TR 9126-2:2003. Software Engineering—Product Quality—Part 2: External Metrics.
International Organization for Standardization.

ISO/IEC TR 9126-3:2003. Software Engineering—Product Quality—Part 3: Internal Metrics.
International Organization for Standardization.

ISO/IEC TR 9126-4:2004. Software Engineering—Product Quality—Part 4: Quality in Use
Metrics. International Organization for Standardization.
ISO/IEC 25020:2007. Software Engineering—Software Product Quality Requirements and
Evaluation (Square)—Measurement Reference Model and Guide. International Organization
for Standardization.

ISO/IEC 25030:2007. Software Engineering—Software Product Quality Requirements and
Evaluation (Square)—Quality Requirements. International Organization for Standardization.

