
Reguirements Engineering at runtime - Online RE

Bekim Meta

University of Zurich
Seminar in Requirements Engineering

bekim.meta@uzh.ch

Abstract. The paper gives a brief introduction into different frame-
works and concepts to support requirements engineering at runtime, also
known as - Online Requirements Engineering. Describing these frame-
works will give us an overview of current research trends in this chal-
lenging topic of requirements engineering. As the current research shows,
designing such kind of frameworks significantly challenges the role of re-
quirements engineering.

Keywords: Online Requirements Engineering, OnlineRE, dynamically
adaptive systems. OnlineRE frameworks

1 Introduction

Requirements engineering at runtime is one of the challenging areas of require-
ments engineers. To specify requirements, apart from current system behavior
the engineers have to additionally describe possible changes that the system
and its environment may encounter in the future. The more possible adaptation
possibilities are described, the better is the expected behavior of the system.
Ensuring that the requirements specification is complete, becomes increasingly
difficult and complicated. The requirements continuously change and the envi-
ronments are getting more and more complex. To deal with such complexity,
stable and continuously adaptable systems are needed. The user of the system
should receive optimal results at any time. This paper should give an overview
of existing work and highlight open points for future research.



2 Terms and Definitions

2.1 Important terms and definition used in the paper

The purpose of this chapter is to give a definition of some key terms that are
used in different aspects in this paper. Most of them play a prominent role in
runtime requirements engineering.

Requirements Monitoring: Determines the degree to which a system
satisfies its requirements [1]. It also detects conditions that might conduct to a
requirement violation.

Adaptive Monitoring: A monitoring technique to reduce monitoring over-
head while achieving acceptable levels of monitoring accuracy [2]. The monitor-
ing configuration is updated continuously depending on the monitored system
at runtime.

Adaptive Sampling: A technique to minimize the monitoring costs by con-
tinuously adapting the frequency of the sensors gather monitoring data [2]. While
system and environmental conditions stay constant, the monitoring frequency is
very low. If the environmental conditions change, the monitoring frequency in-
creases accordingly.

DAS (Dynamic Adaptive System): It is a computer based system (CBS)
that: is capable of recognizing that the domain with which it shares an interface
has changed and is capable of changing its behavior to adapt to the changing
conditions. [3]

Goal oriented requirements engineering: The goal oriented require-
ments engineering is a new approach in requirements engineering. It makes ex-
plicit the - why - of requirements [4]. Before this approach the requirements on
data and operation were just there. Why they were there and whether they were
sufficient was not captured [5]. A seminal work by Lamsweerde [6] gives a deep
explanation on this goal-oriented requirements engineering approach.

Goals vs. Requirements: A goal is defined as a fixed objective of a service,
whereas a requirement is a more volitive concept that can be influenced by the
context [6]. A requirement represents one of the possible ways of achieving a goal.
It represents a more concrete short-term objective that is directly achievable
through actions performed by one or more agents. E.g. If we take an online
shop, one goal could be to maximize usability of the system , which is very
abstract. By contrast a requirement could be – the display must show both, the
current shopping basket and a list of available options.

Genetic Algorithm: A genetic algorithm is a stochastic, research based
technique for generating solutions in optimization problems in large solution
spaces [2].

Context aware services: The context awareness means the ability of a
particular service to adapt itself to a continuously changing environment.

Development time vs. runtime: A software system is permanently changed
and adapted, improved throughout its lifetime. Thus its difficult to make a clear
distinction between development time and runtime. In contrast a software release
is a finalized version of a software system at a given point in time. A new system is



developed based on new requirements and previous release (bug fixes included).
Therefore the runtime of the software is starting when the development time is
finished. The deployed release is used inside a customer organization.

Changing context: While analyzing requirements we cannot rely on as-
sumptions about the world. It complicates the development of the software. An
example adapted from Finkelsteins and Savignis work [5] gives a good explana-
tion of a changing context, in the case of a context-aware mobile service. The
changing context may entail:
Changing location: Not only the absolute location of one device can change, but
also the relative location of two devices must be taken into consideration.
Changing bandwidth: bandwidth changes for mobile devices are often unpre-
dictable.
Changing display characteristics: There are different mobile phones and devices
in the market which have different display characteristics. E.g. PDAs, text-only
mobile phones, smart-phones, etc.
Changing usage paradigm: For example from a user perspective having a full
screen, button centered PDA, is very different from using a scroll-centered mo-
bile phone.
Unknown target platform: Platforms may be unknown in advance and the ser-
vices should anyway be able to dynamically adapt to the new context.

2.2 Definition of OnlineRE

Before going deeper into OnlineRE I will try to formulate a definition. The term
’OnlineRE’ is a new term in the world of requirements engineering and there is
no definition yet existing. After some research on requirements engineering at
runtime, I define OnlineRE as follow:

OnlineRE is the task of monitoring, capturing, organizing, structur-
ing and analyzing user requirements after the application has being
deployed or installed at customer side.

As we can extract out of the definition above, OnlineRE starts from the
moment on the customer has installed our software. All tasks from that moment
on are considered to be part of requirements engineering at runtime.

3 RE at development time vs. RE at runtime

In this chapter I want to make a distingshment of requirements engineering at
development time and requirements engineering at runtime. I will briefly give
an overview of the requirements engineering at development time, and switch to
what’s relevant while doing requirements engineering at runtime.



3.1 RE at development time

At development time the requirements engineering process consists of different
steps:

Requirements Elicitation: During the elicitation process we try to com-
municate with our customers, users and all other stakeholders to gather different
software requirements. We try to do it as good as possible from different point of
views. Possible techniques that are used here are interviews, questionnars, sur-
veys etc. We can also visit the customer at his workplace and try to understand
the requirements he might have. We try to find out constraints and how the
current system (if there is one) might affect our software.

Requirements Modeling: After the elicitation the requirements modeling
takes place. During this process we try to generate different system models to
illustrate different point of views. One important part in this process is to find out
how the system behaves, how it reacts to different events from outside. Helpful
tasks in this process are also structuring the system in different parts and also
modeling the system environment. Including traceability links [7] makes it much
easier for the development and the customer to understand the dependencies to
the requirements.

Requirements Specification: In the specification process we try to exactly
describe and formulate the previously defined models. We can generate different
prototypes which will help us in the next iteration to make the requirements
more precise and eliminate or find new requirements from the stakeholders.

Requirements Validation: During the validation process we validate all
gathered requirements. We try to find errors and correct them or validate them
having the costs and development effort in mind. We also make sure if specific
requirements can be done with current technology or not.

Requirements Management: In this process we document all the require-
ments and maintain them if there are changes or requirement updates during
runtime. Most of the processes are done in several iterations until we get to
a point where we say that all requirements are correct and accepted by the
customer.

3.2 RE at runtime

Now we switch to RE at runtime. Currently most of researches in this topic of
requirements engineering are focusing on how to monitor a software system and
dynamically update it at runtime. That is why monitoring takes a key position
in the frameworks I‚Äôm going to talk about later in this paper. As I‚Äôve had
good personal experience using some other techniques and methods in a context
of runtime requirements engineering, I decided to include them in my paper
as well. The techniques I am going to introduce and explain in detail are the
following:

Log File Analysis: Logs are the language the application uses to talk to us.
That‚Äôs why they are so attractive to be used at runtime to refine requirements,
identify requirements violations and maybe gather new requirements. We can



analyze them in detail, extract requirements engineering relevant information
out of them and use this information to increase usability and requirements
satisfaction at runtime.

Integrated tools for user feedback: The next technique I‚Äôm introduc-
ing is integrated tools for user feedback, which shall make it easy to the software
users to send us feedback regarding the usage of the application, requirements
violations, improvements etc.

Log file analysis of interoperability modules:
This is quite similar with the – Log file Analysis – method. The difference

here is that we use logs of other modules and applications or components our
software interacts with. We can analyze them and try to find requirements vi-
olations. Now we will go deeper into the monitoring technique. As I mentioned
above monitoring is a very important term in the OnlineRE context. In the fol-
lowing I will describe what monitoring is and what we can monitor at runtime.
Monitoring in software systems is mostly used to monitor performance aspects
of the software. Using monitoring in the context of requirements engineering is
a new technique and is integrated in different frameworks regarding OnlineRE.

In the following few lines I will briefly show what can be monitored at runtime
in an OnlineRE context.

Application Environment and Context: We can monitor the environ-
ment the application is installed or deployed on. We can monitor different param-
eters like bandwidth, operating system, browser name, browser version, memory
available, cpu usage etc. All this data can be used to automatically update the
application according to the context it is running on.

User Activity: For example on a web application we can monitor the brows-
ing activity, clicking on different actions, the frequency of the usage of different
features of the application. Having this kind of information we can restructure
the application according to user activity.

Interoperability Modules: At runtime our software might interact with
other modules, components of different applications. Monitoring this interaction
can increase the stability of the software. The requirements of other interacting
components might change during time, monitoring them will help us to dynam-
ically refine existing requirements and if possible gather new requirements at
runtime.

System Performance: Monitoring system performance was the start of
monitoring techniques. Having performance data at runtime can help us to iden-
tify bottlenecks, memory usage of different parts of the software, cpu usage etc.

Error Logs: Most of applications produce errors which are written on error
log files. Monitoring the errors can help us to identify requirement engineering
specific errors and refine or update the requirements accordingly.

4 OnlineRE frameworks and techniques

In this chapter I will introduce and briefly explain some techniques which can
be used in a runtime requirements engineering context, including their strengths



and limitations. I will start with some of the frameworks used in different research
projects and go on with some techniques coming from my side, also very useful
in an onlineRE context.

4.1 Plato-RE

Plato - RE presented by Ramirez et al. [2, 12] detects conditions that might
conduct to a requirement violation and dynamically generates new monitoring
configurations at runtime. It is a computation-based approach to adaptively
monitor software requirements. The framework continuously observes the run-
ning system components and sensors to make sure that all requirements are
satisfied. It is able to detect conditions that might conduct to a requirements
violation. This approach is very computationally expensive and requires a set
of configuration parameters and preferences to be predefined at development
time. Each configuration specifies another data gathering frequency from the
components and active system sensors.

Fig. 1. Data flow diagram of Plato-RE [2]

Fig. 1 shows an overview of the data flow of Plato-RE [2]. As we can see it
uses different data types to generate a new monitoring configuration. The fig-
ure illustrates how the data is generated from starting at design time until the
requirements are monitored at runtime. At design time the developers specify
preferences for monitoring the satisfaction of requirements, such as tradeoffs be-
tween costs and data accuracy. At runtime the system evaluates the degree of



requirements satisfaction by applying utility functions. It also detects conditions
conductive to a requirement violation. The utility functions continually produce
new values. If these values drop below a user specified threshold, a trigger is
invoked and Plato-RE generates a new monitoring configuration. As input data
it accepts monitoring data, the values produced by utility functions and moni-
toring preferences. [2, 12] A dynamically adaptive systems (DAS) can use this
configuration and tune the frequency parameter for the system components and
sensors. Ramirez et al. [2] show a detailed explanation of this approach in their
work. They demonstrate how developers may leverage it in a context of a run-
ning example.
Strengths

1. Optimizes system behavior at runtime.
As the system permanently generates the best configuration it extremely
saves system resources. E.g. a robot with several sensors can save power as
Plato RE makes it possible to use adaptive monitoring and adaptive sampling
(see terms and definitions).

2. Dynamically updates the monitoring configuration.
The system does not have to be offline to generate a new monitoring config-
uration. It will dynamically generate it while the system is running.

3. System variables are dynamically adjusted.
All system variables are adjusted to permanently have the best values ac-
cording to the environment.

4. Reduces monitoring costs.
5. Increases performance and application quality.

Limitations

1. Only applicable to non-functional requirements.
Plato RE can only adapt the system to increase performance or quality.
The framework is not able to adapt the system to change the functionality
according to the environment or the context.

2. Small range of application domains.
The framework can not be used for any software domain. It is only used in
domains where sensors are used to monitor the system environment, e.g. in
robots.

3. Computational intensive.
It uses a lot of utility and fitness functions to generate new monitoring
configurations, therefore it is very computational expensive and requires a
lot of system resources.

4. Uses stochastic data, probability, predictions .
The framework uses genetic algorithms (see terms and definitions) to gener-
ate new configurations. Predictions may not always generate the right results.

4.2 Traceability Links

Traceability Links are used as a technique to manage the links from the require-
ments to the code and from the code to the requirements. Gotel and Finkelstein



[9] define traceability links as follow:

Requirements Traceability refers to the ability to describe and follow
the life of a requirement, in both a forwards and backwards direction.

In this section we will identify some requirements traceability links that can
be used at runtime. To do this we will have a look at some aspects (See Phol
[8]) related to requirements traceability, which are summarized in table 1.

Table 1. Traceability Links at runtime, D = usage in dev. R = usage at runtime [7]

The aspects in Table 1. represent different benefits of the availability of trace-
ability links. According to Pohl [8] this table can be used as a basis to identify
typical usage of traceability links. As shown in table 1 we only consider the
following links:

1. Requirements to Requirements (Req.-Req.)
2. Requirements to Design (Req.-Design)
3. Requirements to Code (Req.-Code)
4. Requirements to Test (Req.-Test)
5. Requirements to Rational (Req.-Rat)

As we can see on table 1 the most important links at runtime are Req.- Code
and Req.-Test. If we have to update the code at runtime, the relevant test cases
are directly identified. Running these built-in tests at runtime ensures the qual-
ity of the software.

Strengths

1. Supports change management.
Any change can be traced and managed correctly.



2. Supports quality management.
As any code change is followed by the execution of according built-in test, we
can make sure that the change works correctly. Quality remains the same.

3. Impact analyzis.
Any impact of the updated code or requirement can be easily identified using
existing traceability links.

Limitations and disadvantages

1. Requires development effort.
During development time we have to generate traceability links and build-in
tests which require some additional time and development effort.

2. Requires build-in test and management effort.
To ensure that the changes are correct, build-in tests must be available.
These will be executed after each update of the code. The software gets
much complex and bigger. Also a lot of management effort is required to
maintain the build-in tests and traceability links if they have to be updated,
extended or changed over time.

4.3 Active Rules

Using Active Rules to dynamically update a running software is a new framework
introduced by Daniel et. al. [10] in their recent work. This framework is basically
used in web applications to update them at runtime, in case of a requirement
violation. At development time different rules are created using a new introduced
language called ECA-WEB [10]. Any rule contains five categories to define scope,
events, conditions, the action to be executed and the priority. Figure 2 shows an
overview of the framework.

Fig. 2. The rule engine: internal rule execution logic. [10]

As we can see in figure 2 the framework contains a rule engine to manage the
rules and a message oriented middleware to communicate with the application.
The rule engine contains a rule evaluator to evaluate the rules and a rule registry
containing all predefined rules. The engine is embedded in the software [10]. In



case of a requirement violation at runtime, e.g. current browser version is not
compatible with a feature of the application, an event is raised (1). Using the
message oriented middleware the event is processed to the rule evaluator (2).
According to the raised event the evaluator picks the right rule from the repos-
itory (3). E.g. a rule with scope = browser, web event, conditions to check the
session of the user, action to use another similar feature which is supported by
that specific browser version and a high priority as the feature is not usable with
that browser. The engine checks the rule priority (4) and evaluates the condi-
tions (5). The according action is forwarded to the message driven middleware.
At the end the action is executed in the web application (7).

Strengths

1. Dynamically update the application.
The framework makes it possible to dynamically update a running web ap-
plication at runtime.

2. Easy to understand.
The concepts, rule engine and the rule language are easy to understand and
to be implemented.

3. Rules can be managed dynamically.
The framework provides a decoupled environment to administrate the rules.
One can add new rules, delete or modify existing rules at runtime [10].

Limitations and disadvantages

1. Embedded inside the design model.
Having an additional software component in the design model makes it much
complex and not easy to manage over time.

2. New language ECA-Web for the rules is introduced.
New language in the development environment always requires efforts to
understand and learn.

3. Requires management effort.
As part of the application the rule engine has to be managed and maintained
over time. Old rules have to be updated or removed over time. Any change
in the software should also consider a change in the rules.

4.4 Log-File Analysis

The logs are the language of the application at runtime. Any value of a specific
parameter or condition at runtime can be easily written on a log file. Analyz-
ing the log files can help us to identify requirements violations or even identify
new requirements. To be able to extract relevant information out of the log files
some relevant steps are required. At development time requirement relevant logs
should be considered in the programing process. If we know that a specific fea-
ture might have a problem at runtime, all relevant parameters should be written
in the log file. E.g. if we have a web application and don’t know how it will be-
have on a smart phone, we should write log files where we consider information



like platform, browser version, browser name, name of the function called, etc.
Having such kind of information could help us to identify requirements viola-
tions, performance issues, usability issues etc. All possible improvements can be
implemented in the following software release. At runtime the application might
generate big log files. To have an overview on the logs available, relevant log
entries should be filtered. This requires additional tools to analyze them and
filter accordingly. The following graphic shows an overview of how this method
can be used.

Fig. 3. Log file analysis process

On the first step we collect the relevant log files out of existing application
deployments. On a second step the files are filtered according to requirements
relevant log files. On a third step the filtered data is processed on a database
and used for requirements analysis.

Disadvantages
Log files might get big (GBs of logs). Analyzing them requires analyzer tools. It
requires development effort to specify requirement specific log files.

4.5 Integrated Feedback Tools

Many applications provide the possibility to add new tools and features as ad-
ditional components. Adding feedback tools as a new feature gives us the pos-
sibility to receive feedback directly from the end user. This feedback can be a
simple comment, a bug report, a claim, a suggestion to increase usability, some-
thing that is not working correctly on his special device etc. Having this kind



of feedback can help us to identify new requirements, refine or update the ex-
isting requirements. A collection of all feedbacks will then be considered while
implementing the next release of the application.

Let’ s have a look at a simple example. An end-user tries to open a web-
application on his new smart phone. He realizes that the colors are quite different
than on his desktop PC. He opens the feedback tool and writes a simple comment
with a remark that the colors look quite different and that he can not reed the
text correctly.

Also questionnaires and surveys can be integrated and used at runtime.
Disadvantages

1. Users are fatigue.
Users are tired of giving feedback. Even there is a bug or error that can be
improved most of users don’ t want to give any feedback as they simply feel
uncomfortable.

2. Interpretation of the feedback is not always simple.
Having the feedback is one thing, but understanding what the user exactly
wants to say is another thing. It is not always simple to interpret it correctly.
It might be something totally different from what the end user exactly re-
quires to that what the developers can extract out of it.

3. Complexity of the application increases.
Having feedback tools means having more code in the application. It should
be maintained and improved over time, which requires more development
effort.

4.6 Interoperability-Log Analysis

The same way as analyzing the logs of the application can also analyze the
logs of interoperability modules. If our application interoperates with different
external modules, the exchange data format might change over time. Analyzing
the according log files can help us identify this kind of log files and change the
application accordingly.

Disadvantages
As mentioned in chapter 4.3 one big disadvantage of log files is that they

might get too big and require log analyzer tools to gather requirement engineer-
ing specific information out of it. Another disadvantage in this special case is
that the log files might not always be available and ready to be analyzed.

5 Future Work and Challanges

One of the most important and key issues of run-time requirements engineering
is that context and environment is continuously changing. This requires that the
requirements are continuously refined and the system behavior is adapted to the
changing context. To make this possible, the system must know about its context
and environment. Any change should be represented at runtime. Context and



environment information must be present in a way that it is understandable for
both, the system and the users who interact with the system. It also should be
possible to easy manipulate it at runtime. Some of the presented frameworks do
have these capabilities, but there is still a lot of work to do. The frameworks are
not fully finalized. Monitoring a system at runtime also requires requirements in-
formation to be available. As requirements can change over time, it is important
that requirements information can be accessed and continuously manipulated at
runtime. There must be a standard protocol on how to update the requirements
at runtime, so the systems can do this automatically and independent. It would
be also much easier for monitoring framework to monitor the system and detect
possible requirements valuations. One possible idea would be to have a standard
description format for describing requirements, e.g. xml. The specific fields and
values that might change during the runtime, due to requirements change, should
be accessible and manipulatable by the user and other systems. One can simply
change these relevant parameters in the xml description and the system would
get an event and change its behavior according to the new requirements. To
support this idea, also some design specific aspects at development time must be
considered. The system should be capable of reading the manipulated variables
at runtime. This might be a challenge as we can not predict any change of the
environment, but at least it should cover most relevant requirements. Monitor-
ing frameworks would be able to easily update the xml data according to the
discovered changes. Having permanently all changed requirements (in a simple
standard format so that all the systems can understand) at runtime, is one of the
most important topics which requires some more research. It should be possible
to provide a set of mechanisms for representing context in context aware ser-
vices. All device vendors should have a common understanding on the concepts
and should not care about supporting different formats. One open question and
important work to do is to find a set of frameworks to be applicable at any
kind of software. It should be customizable and easy to understand so that any
software developer can bring it in the software engineering process.

6 Conclusion

In this paper I first gave an overview of requirements engineering process at
development time. I switched to requirements engineering at runtime focusing on
the monitoring technique. I illustrated some existing frameworks in the context of
OnlineRE and focused on three main techniques and frameworks. I showed how
we can monitor and update the monitoring configuration of an application using
PlatoRE. I introduced the technique of traceability links to trace the changes
from the code to the requirements and the other way round and explained how
adaptive rules can be used in an online requirement engineering context. For
each framework. I also showed its strengths, limitations and disadvantages.



References

1. S. Fickas and M.S. Feather: Requirements monitoring in dynamic environments, in
RE 95: Proceeding of the Second IEEE International Symposium on Requirements
Engineering. Washington, DC, USA: IEEE Computer Society, 1995, pp.140-147

2. Ander J.Ramirez, Betty Cheng and Philip K. McKinley: Adaptive Monitoring of
Software Requirements.. Michigan State University, US. IEEE , 2010

3. Daniel M. Berry, U Waterloo Betty H.C. Cheng, Michigan State U Ji Zhang: The
Four Levels of Requirements Engineering for and in Dynamic Adaptive Systems.
Michigan State U., 2005

4. K. Yue. What Does It Mean to Say that a Specification is Complete? In Proceedings
of IWSSD-4 - the Fourth Inter- national Workshop on Software Specification and
Design, Monterey, CA, USA, 1987

5. Anthony Finkelstein and Andrea Savigni: A Framework for Requirements Engineer-
ing for Context-Aware Services. Department of Computer Science University College
London Gower Street London WC1E 6BT United Kingdom, 2010

6. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed Requirements Ac-
quisition. Science of Computer Programming, 20:3 - 50, 1993.

7. Alexander Delater, Barbara Peach. Using Requirements Traceability Links at Run-
time. University of Heidelberg, Institute of Computer Science. Heidelberg. Germany,
2010

8. Pohl, K.: Requirements Engineering, dpunkt.verlag. 2008
9. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem.

In: Proceedings of the International Conference on Requirements Engineering, Col-
orado Springs, CO, USA, pp. 94‚Äì 101 (1994)

10. Florian Daniel, Maristella Matera, Alessandro Morandi, Matteo Mortari, and
Giuseppe Pozzi: Active Rules for Runtime Adaptivity Management. Dipartimento
di Elettronica e Informazione, Politecnico di Milano. Italy, 2010

11. Andres J. Ramirez,David B. Knoester, Betty H.C. Cheng, Philip K. McKinley:
Plato: a genetic algorithm approach to run-time reconfiguration in autonomic com-
puting systems, 2010
URL:www.cse.msu.edu/ dk/papers/ramirez2010plato.pdf (Access 02.03.2011)


