JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85 (DOI: 10.1002/smr.269)

Research

)

The software maintenance
project effort estimation model
based on function points

i

f

Yunsik Ahn* T, Jungseok Suh, Seungryeol Kim and
Hyunsoo Kim

Kyungwon College, Sungnam, Kyungki-Do, Seoul, Korea

SUMMARY

In this study, software maintenance size is discussed and the software maintenance project effort estimation
model (SMPEEM) is proposed. The SMPEEM uses function points to calculate the volume of the
maintenance function. Ten value adjustment factors (VAF) are considered and grouped into three categories
of maintenance characteristics, that is the engineer’s skill (people domain), its technical characteristics
(product domain) and the maintenance environment (process domain). Finally, we suggest an exponential
function model which can show the relationships among the maintenance efforts, maintenance environment
factors, and function points of the software maintenance project. Regression analysis of some small
maintenance projects demonstrates the significance of the SMPEEM model. Copyright © 2003 John Wiley
& Sons, Ltd.

KEY WORDS: function point; software maintenance; maintenance project effort estimation

1. INTRODUCTION

Software maintenance is categorized into adaptive, corrective, preventive and perfective [1-3]. Most
organizations are concerned about the costs of software maintenance, for it has been increasing
steadily and many companies spend approximately 80% of their software budget on maintenance [4,5].
Therefore, these organizations need to manage their software maintenance efforts and costs effectively.
However, there are fewer effort estimation models for a software maintenance project compared with
software development.

*Correspondence to: Yunsik Ahn, Kyungwon College, Mt. 65 Bokjeong-Dong Sujeong-Gu, Sungnam, Kyungki-Do, Seoul,
Korea 461-701.

TE-mail: ysahn@kwc.ac.kr

Received 13 October 1999
Copyright © 2003 John Wiley & Sons, Ltd. Revised 2 July 2002

72 Y. AHN ET AL.

The major issues in estimation related to software maintenance efforts include the software system’s
size and maintenance productivity [4]. A number of estimation models for software development have
been broadly adopted such as size measures as source lines of code, function points, etc. [6]. Lines of
code (LOC) have also been adopted as the size measure of software maintenance in spite of some
difficulties which derived from the variation in the definition on source codes itself and counting
the new, changed, or reused lines delivered. However, counting the LOC for a priori estimation is
usually difficult in order to estimate how much effort would be required for software maintenance
[6,7]. In addition, productivity factors on software maintenance projects should be differentiated from
those for software development projects.

In this study, the software maintenance project effort estimation model (SMPEEM) is proposed
which is based on the function point measure and new maintenance productivity factors. The SMPEEM
is empirically validated focusing on small maintenance projects.

2. LITERATURE REVIEW

In this section, some models related to the estimation of maintenance efforts and productivity of
software maintenance are reviewed.

2.1. Estimation model for software maintenance efforts

There are some sizing approaches for estimating the software maintenance efforts such as source lines
of code (SLOC) [8], function points (FPs) [9], and object points [10,11]. We review the annual change
traffic (ACT) model, the FP model and COnstruction COst MOdel (COCOMO) 2.0 reuse model.

The ACT model estimates the maintenance size depending on the actual data of annual change traffic
and the FP model counts the number of FPs. The COCOMO 2.0 reuse model reflects the estimated
efforts for modifying reusable software. Each model is described in detail.

2.1.1. The ACT model

ACT is defined as ‘the fraction of the software product’s source instructions which undergo change
during a typical year, either addition or modification’ [12]. Boehm established Equation (1) for
estimating maintenance costs using the data gathered from 63 projects [13]

AME = ACT x SDT (1)

where AME and SDT are the annual maintenance effort and the software development time,
respectively. The dimension of AME may be expressed in man-months (MM). Similarly, Schaefer’s
study suggests the following Equation (2) [14]:

E = ACT x 2.4KLOC"%)

where E is the effort (MM) required to maintain the software annually. ACT is defined as the ratio of
the system undergoing maintenance and the number of source code instructions that are modified or
added during one year of maintenance.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 73

These models are derived from the original COCOMO model. They are mainly applicable for annual
maintenance cost estimation where an organization has the historical data for ACT. Therefore, the
following fundamental problems are still present in these models.

First, if the systems are completely new and there is no historic basis for estimating the ACT, the
results of estimation are likely to be unreliable. Second, the quantity of source code changed and added
does not always represent the effort of the maintenance project. Third, expressing software size using
lines of code a priori to the project can vary. Finally, this approach has the critical risk that it does not
consider quantitatively any scientific attributes representative of software maintainability.

An estimation guide [15] of software maintenance costs may be calculated as the multiplication
of the system’s LOC and maintenance adjustment score. Five factors, such as the frequency of
required maintenance, the volume of processed data, the relevance of the external system, the
necessity of understanding business rules, and the degree of distributed processing are checked for
their maintenance adjustment score [15]. However, this model also contains the insufficiencies of the
ACT model, because the maintenance workload is computed as LOC and the frequency of required
maintenance is considered as a kind of ACT which cannot be easily estimated.

2.1.2. The COCOMO 2.0 reuse model

The COCOMO 2.0 model is an update of the COCOMO model [16]. The post-architecture stage of
this model has the following form:

17
Effort = A x [size] 01+ Zi=1 SFi » [TEm 3)
i=1

where A is a constant and the size is measured in terms of KSLOC (thousands of source lines of code),
FPs or object points. SF means the five scale factors such as precedentedness, development flexibility,
architecture/risk resolution, team cohesion and process maturity. EM means the 17 effort multipliers
including the required software reliability, database size, product complexity, required reusability,
documentation, etc.

In the viewpoint of the software maintenance project, the size and instructions of a new project
(SLOC), are derived from the following equation:

SLOC — ASLOC x (AA+SU+ 0.4 x DM+ 0.3 x CM + 0.3 x IM) @
100

In Equation (4), the size involves the estimated amount of software to be adapted (ASLOC), the rating
scale for assessment and assimilation increment (AA), the software understanding increment (SU),
and three degrees of modification parameters: DM, the percentage of design modification; CM, the
percentage of code modification; and IM, the percentage of the original integration effort required for
integrating the reused software. The rating scale for AA has five levels relating to the effort of module
test and evaluation (T&E) and documentation. As for SU, the rating scales are decided by the degree
of the software’s structure, applications clarity, and self-descriptiveness factor.

We can, however, consider this model as a management model rather than an estimation model,
because of the modification parameters which cannot be estimated before the planning stage of the
maintenance project.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

74 Y. AHN ET AL.

2.1.3. The FP model

The FP model [17] was developed originally for the effort estimation of a new software project in
the 1970s and was expanded to the software maintenance and enhancement project by Albrecht’s FP
revision model [18].

The FP model defines the five basic function types to estimate the size of the software. Two data
functions types are internal logical files (ILF) and external interface files (EIF), and the remaining
three transactional function types are external inputs (EI), external outputs (EO), and external inquiries
(EQ).

In order to adopt this FP model, the maintenance and enhancement project function point calculation
consists of three components of functionality [9]: (1) the application functionality which is included
in the user requirements for the project; (2) the conversion functionality; and (3) the value adjustment
factor (VAF).

Application functionality consists of FPs which are added, changed, and deleted by a maintenance
project. Conversion functionality consists of FPs delivered because of a conversion. The VAF is based
on the 14 weighted characteristics. The degree of influence ranges from zero to five, from no influence
to strong influence.

The formula for the maintenance and enhancement project FP calculation is defined as follows [9]

EFP = (ADD + CHG + CFP) x VAFa + (DEL x VAFb) 5)

where EFP is the enhancement project function point, added (ADD), changed (CHG), deleted (DEL)
FPs are counted as application functionality, and CFP means the unadjusted function points added by
conversion. VAFa and VAFb are the value adjustment factor of the application after and before the
project, respectively.

Function point counts are a more consistent a priori measure of software size compared to the source
lines of code [6]. FP is currently the functional size metric most often used and it continues to gain
adherents in the management information system field and has proven to be successful for building
productivity models and for estimating project costs [19].

However, the VAF of this model is originally introduced for a new software development project.
There are several examples of VAFs such as data communications, distributed processing, and
performance, etc. These factors are not also applicable to the maintenance environment and cannot
be measured with an objective view.

2.2. Productivity factors on software maintenance

In general, maintenance costs are difficult to estimate, because these costs are related to the number
of product, process, and organizational factors related to the productivity of software maintenance.
Some models do not differentiate the productivity factors of software maintenance from those of
development [9,20]. However, the productivity factors of software maintenance differ from those of
software development.

The major maintenance cost driver is associated with the size, age, and complexity [21]. Sommerville
[2] asserted that the productivity factors concerning the environment of software maintenance can
include characteristics such as module independence, programming language, programming style etc.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 75

Table I. Software maintainability hierarchy.

Management Personnel
Process

Operational environment Existing
Target

Target system Maturity attributes
Source code
Documentation

In 1985, software productivity research (SPR) introduced a new way to calculate function points
[22]. The SPR technique for dealing with complexity is to separate the overall complexity into three
distinct areas: problem complexity, code complexity, and data complexity. In this way, the effort to
complete the calculations can also be reduced. Also, software maintainability characteristics were
expressed as a hierarchical structure of seven attributes by Oman’s research as shown in Table I [23].

Belady e al. consider maintenance efforts as the aforementioned productivity effort, complexity of
software design and documentation, and the degree of familiarity with the software [24]. Jorgensen’s
effort prediction model includes variables such as the cause of the task, the degree of change in
the code, the type of operation on the code (mode), and the confidence of the maintainer [25]. The
questionnaires in the study asked for information of environmental characteristics including technical
constraints (response time, security, number of users, platforms), maintenance tools and techniques
(development methodology, CASE tools), and factors related to personnel (number of programmers,
experience) [3].

In the perspectives of software product, the size of both the software understanding and the module
interface checking penalty can be reduced by good software structuring [16], because modular and
hierarchical structuring can reduce the number of interfaces which need checking (discussed in [16]).

Therefore, the various characteristics which have an influence on software maintenance productivity
should be refined.

3. SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL

This section provides a description of the suggested Software Maintenance Project Effort Estimation
Model (SMPEEM). After introducing the approach, the process of counting and adjusting the
function points is explained. Finally, the adjusted function points are applied to estimate the software
maintenance effort by using SMPEEM.

3.1. Approach

The framework of our SMPEEM is based on the concepts shown in Figure 1. First, to estimate the
size of the maintenance tasks, the concept of a FP model is applied. Second, to adjust the counted

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

76 Y. AHN ET AL.

Adinsti Estimating
; ustin
Couptlng . :> J, g' @ Maintenance
Function Points Function Points
Project
Unadjusted Adjusted
FP FP

Figure 1. The concept of suggested SMPEEM.

Table II. Unadjusted FP count calculation table. (Source:
IFPUG Counting Practice Manual 4.1, 1999.)

Weight value by functional
complexity (W)

Function type Low Average High

El 3 4 6
EO 4 5 7
EQ 3 4 6
ILF 7 10 15
EIF 5 7 10

FP considering the maintenance environment, we need to introduce the new concept of the VAF. The
VAFs of this model are related to the attributes of each characteristic group such as the engineer’s skill,
technical characteristics and the maintenance environment. Finally, we suggest an exponential function
model that can estimate how much effort is required for the software maintenance project.

3.2. Counting FPs

FPs of each application type should be counted to estimate the size of the maintenance project. There
are three types of application maintenance such as adding, changing, and deleting. The rule of counting
the function point is used as in the International Function Points User Group (IFPUG) model [9].

An application maintenance type could be one of the five function types: ILF, EIF, EI, EO, or EQ.
Each of these is individually assessed for complexity and given a weighting value that varies from three
(for simple Els) to 15 (for complex ILFs) as shown in Table II.

The unadjusted function count (FC) is computed by multiplying each raw count by the estimated
weight (W):

FC = Z No. of functions x W (6)

function types

where FC is the counted function point and W is the complexity weighting value of each function type.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 77

Table III. Value adjustment factors.

Characteristic groups Factors Notation
Engineer’s skill (1) Knowledge of application domain KAD
(2) Familiarity with programming language FPL
(3) Experience with system software (OS, DBMS) ESS
Technical characteristics (4) Structuredness of software modules SSS
(5) Independence between software modules ISM
(6) Changeability/readability of program language CRP
(7) reusability of legacy software modules RLS
Maintenance environment (8) Up-to-dateness of documentation DOC
(9) Conformity with software engineering standard SES
(10) Testability TST

3.3. Adjusting the FPs
3.3.1. Value adjustment factors

This FC is then further modified by the 10 VAFs. In the SMPEEM model, the three types of VAFs
are: (1) the engineer’s skill, considered as the perspective of ‘people’; (2) the technical characteristics
considered as the perspective of ‘product’; (3) the maintenance environment characteristics considered
as the perspective of ‘process’; as shown in Table III.

The first characteristic group is the engineer’s skill required for the software maintenance, which
includes three factors such as a knowledge of the application domain, familiarity with programming
language, and experience with the system software (OS, DBMS). These factors describe the capability
level of maintenance staff. If the application domain is well understood, the system requirements
can be analyzed easily [2]. Also application experience, language and tool experience, and platform
experience factors measure the productivity of COCOMO 2.0 [16].

The second technical characteristic group contains four factors, i.e. the structuredness of the software
modules, the independence of the software modules, the changeability/readability of the programming
language, and the reusability of the legacy software modules. These factors are representative of
program modules status. As the software is maintained, its structure is degraded [2]. Application age
[25] and reusability [16,26] factors are adopted as the technical productivity measures of software.

The last characteristic group is the maintenance environment which includes up-to-dateness of
documentation, conformity with software engineering standards, and testability factors. These factors
are more related to the maintenance process. Documentation matches with the lifecycle needs [16,26];
process maturity and testability [26] are referenced as the productivity factors to reduce maintenance
costs.

These 10 factors are selected focusing on the perspective of maintenance project managers. In order
to adjust the FP after counting it, as shown in Figure 1, some factors related to the size measures

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

78 Y. AHN ET AL.

of maintenance projects must be excluded; for example, maintenance traffic, size of software system
or database. Because SMPEEM is aimed to estimate efforts in this phase, some factors related to
output measures of estimation must also be excluded; for example the size of required efforts or
team. Some factors related to maintenance organization characteristics for outsourcing can also be
excluded because we consider only internal maintenance projects. We do not include the factors related
to maintenance tools, because the responded organizations do not use any automatic maintenance tools.

3.3.2. Adjustment method

The unadjusted FP is multiplied by the VAF to produce the final FP. In SMPEEM, three characteristic
groups of the 10 VAFs have a weighting value for each group and for each of the factors, respectively.
The VAF of a software maintenance project could be calculated from the following equation:

3 k scores X Wf Wg
w3 [L2 () ()] ?

group=1 " factors=1

where Wg and W f are the weighting values of each characteristic group and their factors, respectively.
These weight values can be substituted from the value in Table II1. Scores are measured by the software
maintenance project manager and vary from O (the lowest degree) to 5 (the highest degree), and are
answered in part 2 of our questionnaire.

The VAF ranges from 0 to 50. This VAF can be used to adjust an unadjusted function count which
was computed by Equation (6).

Alternatively, FPs can be computed by Equation (8), which is introduced for adjusting function

counts as the unit of £+6%:
) 28
FP=FCx{l1—|(—)+ | ——) * VAF 8)
100 5000

where § is the absolute value of the adjustment range. The adjustment range can be decided by the
actual data and repeated experiments of the concerned organization. For example, if an organization
intends to adjust the function counts within the range of £20%, § of Equation (8) can be substituted
with an absolute value of £20 to produce the following equation

FP = FC x {0.80 4 (0.008 x VAF)})

From Equation (9), we obtain the adjusted FPs which can be used to calculate the estimated software
maintenance effort. In the case of VAF = 0, FP is calculated as 80% of the unadjusted function counts.
In contrast, the maximum VAF (50) provides 120% of the unadjusted function counts to final FPs.
Hence, Equation (8) gives us the adjusted FPs through the various adjustment ranges.

3.4. Estimation of software maintenance project effort

Software cost estimation models often have an exponential factor to account for the relative economies
or diseconomies of scale encountered as a software project increases its size [16]. This factor is
generally represented as the exponent B in the equation:

Effort = A x (Size)®?

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 79

Table IV. Weight of characteristic groups (N = 32).

Weight (Wg) 95% Confidence interval
t-test (df = 31) of the difference
Mean Standard
Characteristic groups (%) deviation T Significance ~ Lower Upper
Engineer’s skill 36.7 9.6 0.011 0.991 —3.4263 3.4638
Technical characteristics 33.1 8.6 0.016 0.987 —3.0721 3.1221
Maintenance environment ~ 30.2 9.9 0.025 0.980 —3.6048 3.5173

The relation between the software maintenance effort and FPs can be represented in the following

exponential equation
Effort = a x FP? (10)

where the constants a and b are the coefficients which can be introduced from the result of regression.
So, if FP and VAF of any maintenance project is known, the maintenance effort can be estimated by
Equation (10).

4. VALIDATION

To validate the proposed SMPEEM empirically, a survey method was used. In this section, the summary
of questionnaires and collected data will be described. For searching the best estimation model,
regression analysis was performed by using the Statistical Package for the Social Science (SPSS),
version 9.0.

4.1. Questionnaires

In this study, the questionnaire in the survey consists of two parts. The first part includes questions
about the VAFs’ weight value covering the software maintenance project of most business applications.
The second part is for the collection of actual data about function points and maintenance efforts of
past projects.

4.2. Data collection

To validate the proposed SMPEEM model, the actual data were collected from a survey of the system
management (SM) organizations of four system integration (SI) companies in Korea.

For the sample of software maintenance project managers, a total of 44 questionnaires were
distributed. 32 answers for part 1 and 26 answers of part 2 were collected.

Part 1 of our questionnaire asked to assign weights to the value adjustment factors listed in Tables IV
and V. From these answers, we derive the mean and standard deviation. These average values are
suitable as adjustment factors of SMPEEM if the variance is low.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

80 Y. AHN ET AL.

Table V. Value adjustment factors of SMPEEM (N = 32).

Weight (W) 95% Confidence interval
—_——— f the diff
Characteristic Mean Standard t ot the driferenice Cronbach’s Factor’s
groups Factors (%) deviation (df =31) Significance Lower Upper alpha loading
Engineer’s KAD 45.0 13.7 0.000 1.000 —4.9316 4.9316 0.679 0.359
skill FPL 28.3 8.7 —0.012 0.990 —3.1448 3.1073 0.985
ESS 26.7 8.6 0.012 0.990 —3.0736 3.1111 0.924
Technical SSS 313 10.6 —0.027 0.979 —3.8809 3.7809 0.896 0.884
characteristics ISM 25.9 6.8 0.031 0.975 —2.4043 2.4793 0.836
CRP 219 11.2 —0.013 0.990 —4.0624 4.0124 0.912
RLS 20.8 53 —0.020 0.984 —1.9127 1.8752 0.862
Maintenance DOC 38.6 15.5 —0.002 0.998 —5.5811 5.5686 0.643 0.873
environment MET 29.1 11.8 —0.018 0.986 —4.2945 4.2195 0.758
TST 325 12.2 0.000 1.000 —4.3919 4.3919 0.646

In Table IV, the mean and standard deviation of the characteristic groups are shown. Each mean
value was tested using the two-tailed one sample ¢-test at the 95% significance level. All significance
probabilities (sig.) of Table I'V are above significance level (0.05) and confidence intervals include zero.
For instance, significance probability (sig.) of characteristic group ‘engineer’s skill’ is 0.991 > 0.05
and the confidence interval ranging from the lower (—3.4263) to the upper (3.4638) bound includes
zero. The mean value (36.7) of this group can be supported. Likewise, these mean values of Table IV
could be used as the weight value (Wg) in the SMPEEM model.

We also find that all significance probabilities (sig.) of Table V are above significance level (0.05) and
confidence intervals include zero. For instance, the significance probability (sig.) of the ‘knowledge of
application domain (KAD)’ is 1.000 > 0.05 and the confidence interval ranging from lower (—4.9316)
to upper (4.9316) bound includes zero. Using the same approach, the mean values of 10 factors, shown
in Table V, are calculated and can be used as the weight value (W f) of adjustment factors after testing
of the two-tailed one sample 7-test.

For the collected data from part 1 of our questionnaire, reliability and validity tests were performed.
Table V shows the Cronbach’s alphas as they exceed 0.6. The factor’s loading values are the result of
factor analysis using the extraction method of principle component analysis.

4.3. Regression analysis

Table VI shows the general descriptions of 26 maintenance projects collected from part 2 of the
questionnaires.

For this dataset, we see the general description of these systems. These systems have an average
of 169.1 source modules. The mean value of the age of the systems is 6.24 years. The programming
language of the 22 systems is C, C++ or COBOL. The other four systems are written in PowerBuilder.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 81

Table VI. General descriptions of projects (N = 26).

Items

Unit

Mean value

System’s volume
Programming language

System’s age
Size/project

No. of source modules 169.1

Project

Year

Function point
Maintenance effort/project ~Man-weeks

4 (Power Builder)

22 (C, C++ or COBOL)
6.24

33.8

9.5

Table VII. Actual function point and efforts.

Project Unadjusted FP VAF Actual effort
1 31 3.27 5.7
2 18 3.56 3.6
3 28 3.58 5.7
4 18 3.15 1.4
5 18 3.04 1.4
6 21 3.25 2.8
7 11 2.84 2.1
8 46 2.89 5.0
9 28 1.80 6.1

10 23 2.84 2.8
11 27 2.46 4.0
12 22 3.41 53
13 68 3.37 20.5
14 57 3.01 12.9
15 23 3.15 3.1
16 19 2.65 2.8
17 26 2.68 4.6
18 53 1.90 13.4
19 140 4.05 50.2
20 28 3.25 3.0
21 13 2.66 2.7
22 16 3.77 1.7
23 44 3.54 15.0
24 23 3.28 4.0
25 60 241 12.9
26 17 2.79 2.0

Copyright © 2003 John Wiley & Sons, Ltd.

J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

82 Y. AHN ET AL.

Table VIII. Regression results by adjustment range.

Asymptotic 95% confidence interval

a b

Adjustment
range (%) a b R? Lower Upper Lower Upper

+0 0.041 1.440 09654 0.0192 0.0626 1.3249 1.5554
+10 0.048 1.394 0.9660 0.0233 0.0717 1.2848 1.5033
£20 0.054 1.353 09664 0.0277 0.0811 1.2483 1.4572
+30 0.062 1311 09648 0.0318 0.0924 1.2087 1.4140
+40 0.068 1.282 09639 0.0490 0.1006 1.1810 1.3834
+50 0.073 1.256 09613 0.0370 0.1090 1.1543 1.3585

+100 0.037 1304 09647 0.1768 0.0570 1.2019 1.4058
£150 0.022 1.302 09646 0.0096 0.0348 1.2003 1.4043
+200 0.015 1.304 09649 0.0061 0.0241 1.2023 1.4060

Also, the average function points per maintenance project are 33.8 with a minimum of 11 and a
maximum of 140. The average effort of maintenance project is 9.5 man-weeks, which is much smaller
than the size of new development projects.

From part 2 of the questionnaire, unadjusted FPs of Table VII were estimated using the IFPUG
model. VAFs were calculated according to the SMPEEM model. The responded projects include the
add and change types of projects. Actual efforts were collected from the survey results and measured
in man-weeks.

To evaluate the SMPEEM model, regression analysis is performed. Equation (10) was used for
nonlinear regression analysis which describes the relation of actual efforts and adjusted FPs. The
actual effort (man-weeks) and the FP values of Table VII were used in Equation (10) for each project.
The constants a, b are the coefficients which resulted from the regression.

Table VIII shows a summary of the regression analysis results. We sought the best regression model
by varying the adjustment range from +0% to +200%. Regression coefficients (R?) of most models
are above 0.9. Constants a and b are significant in the asymptotic 95% confidence interval.

We obtain the highest R? value R? = 0.9664, F = 259.90 in the model of adjustment range +20%.
This figure is meaningful considering the significant F value Fpos5(3,25) = 2.99. In conclusion,
Equation (10) can be rewritten as follows

Effort(man-weeks) = 0.054 x Fp!-333 (11)

5. SUMMARY AND CONCLUSIONS

The SMPEEM is designed to help the project manager in charge of software maintenance to calculate
the estimated software maintenance effort. Software maintenance means repairing defects in order to
correct errors and adding small new features to software applications. In this model, the method of
counting the FP to estimate the size of the maintenance is referred to as the FP model of the IFPUG.
Ten new VAFs are used for adjusting the FPs considering the software maintenance complexity
characteristics. These VAFs are grouped into three categories, i.e. the engineer’s skill (people domain),

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 83

its technical characteristics (product domain) and the maintenance environment (process domain). Each
weight of VAFs and the three characteristic groups is given by the mean value of collected data and
validated by the ¢-test. The ten factors of the SMPEEM are simpler and adequate for assessing the
maintenance effort.

With experimental analysis of the ranges of adjustment, the most significant regression model could
be selected. We found that unadjusted FPs are a good measure to estimate the effort of the maintenance
project and that they can be adjusted in the range of +20% by the 10 VAFs of SMPEEM. However, the
10 VAFs are not as influential as one expected.

We are aware that the collected data are only from small maintenance projects. Due to the limitations
of the actual data, our SMPEEM should be refined by collecting and analyzing more actual projects if
this model is to be applied to an organization. The result is that the methodology of SMPEEM may be
used as a useful guide for the estimation of a maintenance project in any organization.

This study also can be further extended by using the maintenance projects of larger size software
systems. These and similar investigations will provide a better estimation of the maintenance efforts
based on productivity factors.

REFERENCES

1. Harrison W, Cook C. Insights on improving the maintenance process through software measurement. Proceedings
International Conference on Software Maintenance. IEEE Computer Society Press: San Diego CA, 1990; 37-45.
http://www.cs.pdx.edu/~warren/Papers/CSM.htm.

2. Sommerville I. Software Engineering. Addison-Wesley: Harlow, UK, 1996; 666—672.

3. Desharnais J, Pare F, Maya M, St-Pierre D. Implementing a measurement program in software maintenance: An experience
report based on Basili’s approach. Proceedings of the Conference of the International Function Points Users Group.
International Function Points Users Group: Mequon WI, 1997; 143-152.

4. Martin J, Mcclure C. Software Maintenance: The Problem and its Solutions. Prentice-Hall: Englewood Cliffs NJ, 1983;
23.

5. Pigoski TM. Practical Software Maintenance: Best Practices for Managing Your Software Investment. Wiley: New York
NY, 1997; 32-33.

6. Low GC, Jeffery DR. Function points in the estimation and evaluation of the software process. IEEE Transactions on
Software Engineering 1990; 16(1):64-71.

7. Jones TC. Measuring programming quality and productivity. IBM System Journal 1978; 17(1):39-63.

8. Park R. Software size measurement: A framework for counting source statements. Report CMU/SEI-92-TR-20, Software
Engineering Institute, Carnegie Mellon University: Pittsburgh PA, 1992.

9. IFPUG. Enhancement project function point calculation. Function Point Counting Practices Manual (Release 4.1).
International Function Points Users Group: Mequon WI, 1999; 8.10-8.17.

10. Kauffman R, Kumar R. Modeling estimation expertise in object based ICASE environments. Stern School of Business
Report, New York University, 1993.

11. Banker R, Kauffman R, Kumar R. An empirical test of object based output measurement metrics in a CASE environment.
Journal of MIS 1994; 8(3):127-150.

12. Pressman RS. Software Engineering A Practitioner’s Approach, ch. 20. McGraw-Hill: New York NY, 1992; 677.

13. Boehm BW. Software Engineering Economics. Prentice-Hall: Englewood Cliffs NJ, 1981; 596-599.

14. Schaefer H. Metrics for optimal maintenance management. Proceedings Conference on Software Maintenance. IEEE
Computer Society Press: Washington, 1985; 114-119.

15. Ministry of Information and Communication. Cost Estimation Guide for Software Business. Korean Ministry of
Information and Communication: Seoul, Korea, 2002; 49-56.

16. Boehm BW, Clark B, Horowitz E, Westland C, Madachy R, Selby R. Cost models for future software life cycle process:
COCOMO 2.0. Annals of Software Engineering Special Volume on Software Process and Product Measurement, Arthur JD,
Henry SM (eds.). Science Publishers: Amsterdam, 1995; 57-94.

17. Albrecht AJ. Measuring application development productivity. Proceedings of the joint SHARE/GUIDE and IBM
Application Development Symposium. SHARE, Inc. and GUIDE Intl. Corp.: Chicagho IL, 1979; 83-92.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

84

Y. AHN ET AL.

18.

19.

20.

21.

22.
23.

24.

25.

26.

Albrecht Al. AD/M Productivity Measurement and Estimate Validation. IBM Corporation: New York, 1984.

Desharnais J, Morris P. Validation of function points—an experimental perspective. Proceedings of the Conference of
the International Function Points Users Group, Atlanta. International Function Points Users Group: Mequon WI, 1996;
167-184.

Symons CR. Function point analysis: Difficulties and improvement. IEEE Transactions on Software Engineering 1988;
14(1):2-11.

Jones C. Applied software measurement. Assuring Productivity and Quality (2nd edn). McGraw-Hill: New York NY, 1997,
51.

SPR. User Guide to SPQR/20. Software Productivity Research Inc.: Burlington MA, 1987; 65.

Oman P, Hagemeister J, Ash D. A definition and taxonomy for software maintainability. Technical Report 91-08, Software
Engineering Test Laboratory, University of Idaho, 1991.

Belady L, Lehman M. An Introduction to Growth Dynamics in Statistical Computer Performance Evaluation,
Freiberger W (ed.). Academic Press: New York NY, 1972; 503-511.

Jorgensen M. Experience with the accuracy of software maintenance task effort prediction models. IEEE Transactions on
Software Engineering 1995; 21(8):674—681.

Dart S, Christie AM, Brown AW. A case study in software maintenance. Report CMU/SEI-93-TR-8, Software Engineering
Institute, Carnegie Mellon University: Pittsburgh PA, 1993.

AUTHORS’ BIOGRAPHIES

Dr Yunsik Ahn is a professor in the Department of Secretariat Science, Kyungwon
College. He holds a BS from Jeonbuk National University, a ME in Computer Science
from Yonsei University and a PhD in Information Management from Kookmin University.
Dr Ahn has more than 15 years of industry experience in information system projects
and information technology consultancy. His current research interest lies in information
system audit and software measurement.

Dr Jungseok Suh is a professor in the Department of Information Science, Korea
Nazarene University. He has a doctorate degree from the Department of MIS at Kookmin
University in Seoul Korea. He also has a Master of Science degree from Boston University,
and a MBA degree, majored in MIS, from Drexel University. His current interest is in
estimating for the developing component software.

Dr Seungryeol Kim is a professor in the School of MIS, Kookmin University Seoul
Korea. He graduated from the Seoul National University and obtained a doctorate
degree from the Department of IE at Iowa State University. He has been a lecturer
in the Department of IE&M at California Polytechnic State University. His current
research interest lies in two areas, object-oriented system analysis and design, and system
measurement. He is also a member of the IFPUG.

Copyright © 2003 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

THE SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL 85

Dr Hyunsoo Kim is a professor of MIS at Kookmin University in Korea. He holds a
BE from Seoul National University, a MS from the Korea Advanced Institute of Science
and Technology, and a PhD in Business Administration from the University of Florida.
His papers appear in Omega, European Journal of Operational Research, Intelligent
Systems in Accounting, Finance and Management, MIS Research, etc. His research
interest include information systems project management, cost estimation models, and

information systems auditing.

J. Softw. Maint. Evol.: Res. Pract. 2003; 15:71-85

Copyright © 2003 John Wiley & Sons, Ltd.

	1 INTRODUCTION
	2 LITERATURE REVIEW
	2.1 Estimation model for software maintenance efforts
	2.1.1 The ACT model
	2.1.2 The COCOMO 2.0 reuse model
	2.1.3 The FP model

	2.2 Productivity factors on software maintenance

	3 SOFTWARE MAINTENANCE PROJECT EFFORT ESTIMATION MODEL
	3.1 Approach
	3.2 Counting FPs
	3.3 Adjusting the FPs
	3.3.1 Value adjustment factors
	3.3.2 Adjustment method

	3.4 Estimation of software maintenance project effort

	4 VALIDATION
	4.1 Questionnaires
	4.2 Data collection
	4.3 Regression analysis

	5 SUMMARY AND CONCLUSIONS

