
© Copyright IBM Corporation 2006

Qualities and Constraints in IT Architecture
Non-Functional Requirements
Examples: Availability and Performance

Dr. Marcel Schlatter
IBM Distinguished Engineer
Member of the IBM Academy of Technology
marcel.schlatter@ch.ibm.com

IT Architecture

© Copyright IBM Corporation 20072

Non-functional requirements (or NFRs) define the desirable
qualities of a system and the constraints within which the system
must be built

- Qualities define the properties and characteristics which
the delivered system should demonstrate

- Constraints are the limitations, standards and
environmental factors which must be taken into account
in the solution

Qualities Constraints

NFRs

IT Architecture

© Copyright IBM Corporation 20073

Exercise – List Typical IT Project Constraints and NFRs

List 5-10 types of constraints and qualities you would
expect a typical medium to large IT project to have

Constraints
- Business
- Technical

Qualities
- Runtime
- Non-Runtime

IT Architecture

© Copyright IBM Corporation 20074

Constraints

The business aspects of the
project, customer's business
environment or IT organization
that influence the architecture

The technical environment and
prevailing standards that the
system, and the project, need
to operate within

Regulatory

Organisational

Risk Willingness

Marketplace
factors

Schedule &
Budget

Legacy
Integration

Development
Skills

Existing
Infrastructure

Technology State
of the art

IT Standards

Business Technical

IT Architecture

© Copyright IBM Corporation 20075

Qualities

Runtime qualities are
‘measurable’ properties, often
expressed as “Service Level
Requirements”.

Qualities might also be related
to the development,
maintenance, or operational
concerns that are not
expressed at runtime.

Performance &
Capacity

Availability

Manageability

Security

Usability

Portability

Maintainability

Scalability

Adaptability

Integrate-ability

Data Integrity

Run-time Non-Runtime
focus of this

session

Service Level Agreements

IT Architecture

© Copyright IBM Corporation 20077

The best technique for reducing the risk of poor quality of
service is to consider the qualities from the start

Build ‘quality’ into the solution starting with early design
Understand the risks to the project

Conduct quality of service engineering from the first elaboration of
the architecture model

Set guidelines for the developers (software & infrastructure)
Test the application/system at each major stage of
development
Make sure that the live support teams will be able to manage
quality

Fix it early, and save money and problems later …

Design

$1

Build

$10

Test

$100

Run

$1000

IT Architecture

© Copyright IBM Corporation 20078

However a BALANCE must be maintained
between risk and cost

R i s k C o n t a i n m e n t
C o n t r a c t u a l

i s s u e s

B u s i n e s s i s s u e s

T e c h n i c a l i s s u e s

P r o j e c t s i z e

M a n a g e m e n t p r o c e s s e s

R e s o u r c e s
T e c h n o l o g y

E
st

im
at

in
g F

orecasting

M o n i t o r i n g

T r o u b l e
s h o o t i n g

R e n e g o t i a t i o n

T i m e s c a l e

Over-engineering will
be costly

Failure to engineer
creates technical &

business risks

IT Architecture

© Copyright IBM Corporation 20079

Availability

IT Architecture

© Copyright IBM Corporation 200710

The reality of Availability is that customers directly
relate it to the End User experience

The Availability of a system is a measure of its readiness for usage

IT Architecture

© Copyright IBM Corporation 200712

Key Availability Terms – Mean Times …

Mean Time to Recover (MTTR) is the typical time that it takes to
recover (includes repair) a component, sub-system or a system.
Mean Time to Failure (MTTF) is the mean time between successive
failures of a given component, sub-system or system.

Mean Time between Failure (MTBF) is the average time between
successive failures of a given component, sub-system or system

Down! Up!

MTTR MTTF
MTBF

Down!

IT Architecture

© Copyright IBM Corporation 200713

One of the attributes of the design that should be understood for
Availability Engineering is the effect of using components in
series

Functional Operational

Components connected in a chain, relying on the previous component for
availability
The total availability is always lower than the availability of the weakest link

Server Switch Firewall

Availability (A) = A1 x A2 x A3

1 2 3

Application Server

Product Catalogue

Database Manager

99% 99% 99%

99%

99%

99%
99% 99% 99%

Down

10.8 days / year

IT Architecture

© Copyright IBM Corporation 200714

Another attribute of the design that should be understood for
Availability Engineering is the effect of using components in
parallel

Functional
Application aware

Operational
- Separate nodes all serving the same IP

address
- Load balancer is a multiplexer

Component redundancy through duplication
Total availability is higher than the availability of the individual links

Request
Broker

Authentication
Server

3

Availability = 1-[(1-A(1))x(1- A(2))x (1-A(3))]

2

1

3

2

1

Load
Balancer

Authentication
Server

Authentication
Server

99%

99%

99%

99%

99%

99%

Availability = 99.9999%
Down: 0.5 minutes / year

IT Architecture

© Copyright IBM Corporation 200716

Separation of Concern is a technique that can be used to enable
a loose coupling for components that provide critical services

Functional
Loose coupling of HA Components

Operational

The separation of components with regard to business importance and
their availability characteristics

Critical Non-Critical Vs Critical
Non-Critical

Product Catalogue Product Catalogue

Shopping BasketShopping Basket

Customer
Complaints

HA-focused Nodes

Non HA-focused Nodes

Part Details
Product

CatalogueSystem Border

vs.
Part Details

Product
CatalogueSystem Border

Inventory
Adder

Process
Scheduler

IT Architecture

© Copyright IBM Corporation 200717

Fault Tolerance is a technique that can be used to enable the
detection and correction of latent errors before they become effective

Functional
Use try and catch blocks throughout
code
Consider the case when “Bad Data”
arrives and how to continue. E.g. put
“Bad Data” in repair queues

Operational
Achieved through duplications. For
examples: Disk Mirroring, e.g. RAID
Specialised operations staff
Autonomic Computing mechanisms

Error Processing - Error processing is aimed at handling errors and
exceptions, wherever possible, before the occurrence of a true failure.
Error Treatment - Fault treatment is aimed at preventing previously
activated faults from being reactivated.

Vs
Error Error

Total Service

No Service

Total Service
Degraded Service

Redundant array of inexpensive / independent disks

(*)

IT Architecture

© Copyright IBM Corporation 200718

Availability – a final word

It is estimated that
- ~20% of your total availability is a function of your use of technology
- ~80% is a function of your people and processes

Someone may say:
- The root cause of the system outage was that firewall logs were full
- The real reason was there was insufficient process in place to

monitor the logs and clear them down

Technology and design is important, however don’t
assume that is your only challenge

IT Architecture

© Copyright IBM Corporation 200719

Performance

IT Architecture

© Copyright IBM Corporation 200721

There are three main, heavily inter-related aspects of
Performance to be considered

Response Times
- On-line response times
- Batch run times

Throughput
- Transactions per second
- Records processed per hour

Capacity
- Component sizing to handle load
- Contingency and Scalability

Sufficient capacity is
required to meet

throughput
requirements

Must have adequate
throughput to avoid
poor response times

IT Architecture

© Copyright IBM Corporation 200722

Major activities a Performance Engineer executes across the
project lifecycle

Manage the Solution

Solution Macro Micro Build Deploy-

Solution Delivery

Manage the Solution
Solution
Start-up

Close the
SolutionSolution

Outline

High Level
Design

Detailed
Design

Build Cycle Deployment

Design, Development & Tracking

Reqmnts & Early Design

Test Planning & Execution

Estimation & Modelling

Volumetrics

Technology Research

Risk & Performance Management

Live Monitoring & Capacity Mgmt

IT Architecture

© Copyright IBM Corporation 200724

Enterprises often cannot provide detailed volumetric
information – often, it has to be derived (or guessed!)
Real questions IBM Performance Engineers have been asked by customers

“We’re just about to spend £20m on advertising our new
brand. How many web servers do we need?” -
Insurance company

“Will this new digital audio broadcasting solution perform
OK, given we don’t know how we are going to use it
yet?” – Public service radio broadcaster

“How fast is the Internet?” – Offshore bank

Volumetrics

IT Architecture

© Copyright IBM Corporation 200725

BUSINESS VOLUMETRICS

SITE MAP

USE CASES

SCENARIOS

MARKETING &
ADVERTISING
PLANS AND
FORECASTS

TECHNICAL
INFRASTRUCTURE

DESIGN

TECHNICAL TXN
MAP

ORDER
HARDWARE

CAPACITY MODEL

PERFORMANCE
TEST PLAN

USER ACTIVITY
MODEL

HISTORICAL
FIGURES

VOLUME &
BEHAVIOUR

ASSUMPTIONS

PERFORMANCE
REQ’TS

RISK
ASSESSMENT

Volumetric data can be traced from various sources
An example “volumes map” used on an engagement

Volumetrics

IT Architecture

© Copyright IBM Corporation 200726

Cost /

Effort

Accuracy / Benefit

Rules of
thumb

Analytical

Modelling

Utility tools

Simulation

Prototyping

Modelling Tools

Queueing Theory

Statistical Techniques

Spreadsheets

Performance characteristics of a system can be investigated
by creating a model

Different techniques are available different levels of effort to provide
answers with different levels of reliability

Estimation & Modelling

IT Architecture

© Copyright IBM Corporation 200727

Exercise - Volumetric estimation

Shop
- In the peak hour, on the average, every 60 seconds a

new shopper arrives (random arrivals, generated by a
Poisson process)

- Average shopping time: 10 minutes (random
distribution)

- Average time at the cashier: 2 minutes (random
distribution)

Estimate the minimum number of carts the shop must have
to make sure that customers almost never have to wait for
a cart

Estimate the minimum number of cashiers required to
make sure that the number of customers that must wait for
a cashier is almost always at most 3

The demo uses the Ptolemy II
simulation modelling tool

Open Source simulation toolkit
written in Java available from

http://ptolemy.eecs.berkeley.edu/pt
olemyII

The model is a Discrete Event
simulator. It has been extended

with some custom actors (in
porkbench.jar)

Estimation & Modelling

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://ptolemy.eecs.berkeley.edu/ptolemyII

IT Architecture

© Copyright IBM Corporation 200729

A range of Performance Test types are used for
different purposes Test Planning & Execution

Positioning volume tests

Transaction Volume or Load

R
es

po
ns

e
tim

e

Volume for:
Single thread test

Volume for:
Target volume test
Acceptance test
Soak test
Response profiling test

Volume for:
Stress test

Target
response

time

Volume at which
system fails or

goes into serial
execution

Response time
at which system

is unusable

IT Architecture

© Copyright IBM Corporation 200730

Live Monitoring and Capacity Planning activities aim to ensure that
the system continues to meet its performance targets once in live

Once in live, there is the possibility of collecting real performance data, such as:
- Real business volumetrics (volumes of events, business entity volumes)
- Technical volumetrics (transaction volumes, data sizes, …)
- Response times (at various tiers of the system)
- Traffic profile information (peaks, distributions)

Systems are subject to change from many perspectives:
- Future business demand
- Changes in user behavior (e.g. affecting workload mix)
- Infrastructure change (network upgrade, hardware platform change, consolidations, …)
- Application change (product upgrades, replacement of middleware, new functional requirements …)

As with initial performance modelling, the capacity plan needs cover all resources which
could cause a system to perform poorly
- Performance bottlenecks can occur at any part of the chain
- Incentives to ensure the system makes optimum use of the available resources

This process starts at the design phase
- Capacity planning will likely be the responsibility of a different group
- The ability to record and report performance data must be considered during the design phase
- Systems management design needs to support the capacity planning processes
- Applications may have to be explicitly instrumented to record response time data

Live Monitoring & Capacity Mgmt

IT Architecture

© Copyright IBM Corporation 200731

Summary of Topic
Despite continuing advances in technology, IT Architects spend significant
amounts of time engineering systems to account for Quality of Service
requirements
- In the context of often significant constraints
- Software and infrastructure designs need to be iterated together to achieve goals

Non-functional requirements & service levels may be contractually binding
- Failure to achieve targets may result in financial penalties for the IT provider, and/or

lost business for the customer
- If a design cannot be established which meets requirements, this is top severity

project issue
Modelling theory, techniques and tools are available to assist with
evaluating design alternatives
- Employing them successfully requires understanding of the systems elements,

management of assumptions and appropriate modelling skills
Regardless of the quality of design, the quality of implementation must be
validated through testing
- QoS design should inform test strategy and test planning

The effort expended should always be proportionate to the risk involved

	Slide Number 1
	Non-functional requirements (or NFRs) define the desirable qualities of a system and the constraints within which the system must be built
	Exercise – List Typical IT Project Constraints and NFRs
	Constraints
	Qualities
	The best technique for reducing the risk of poor quality of service is to consider the qualities from the start
	However a BALANCE must be maintained �between risk and cost
	Slide Number 9
	The reality of Availability is that customers directly relate it to the End User experience
	Key Availability Terms – Mean Times …
	One of the attributes of the design that should be understood for Availability Engineering is the effect of using components in series
	Another attribute of the design that should be understood for Availability Engineering is the effect of using components in parallel
	Separation of Concern is a technique that can be used to enable a loose coupling for components that provide critical services
	Fault Tolerance is a technique that can be used to enable the detection and correction of latent errors before they become effective
	Availability – a final word
	Slide Number 19
	There are three main, heavily inter-related aspects of Performance to be considered
	Major activities a Performance Engineer executes across the project lifecycle
	Enterprises often cannot provide detailed volumetric information – often, it has to be derived (or guessed!)�Real questions IBM Performance Engineers have been asked by customers
	Volumetric data can be traced from various sources�An example “volumes map” used on an engagement
	Performance characteristics of a system can be investigated by creating a model
	Exercise - Volumetric estimation
	A range of Performance Test types are used for different purposes
	Live Monitoring and Capacity Planning activities aim to ensure that the system continues to meet its performance targets once in live
	Summary of Topic

