Informatik II: Modellierung

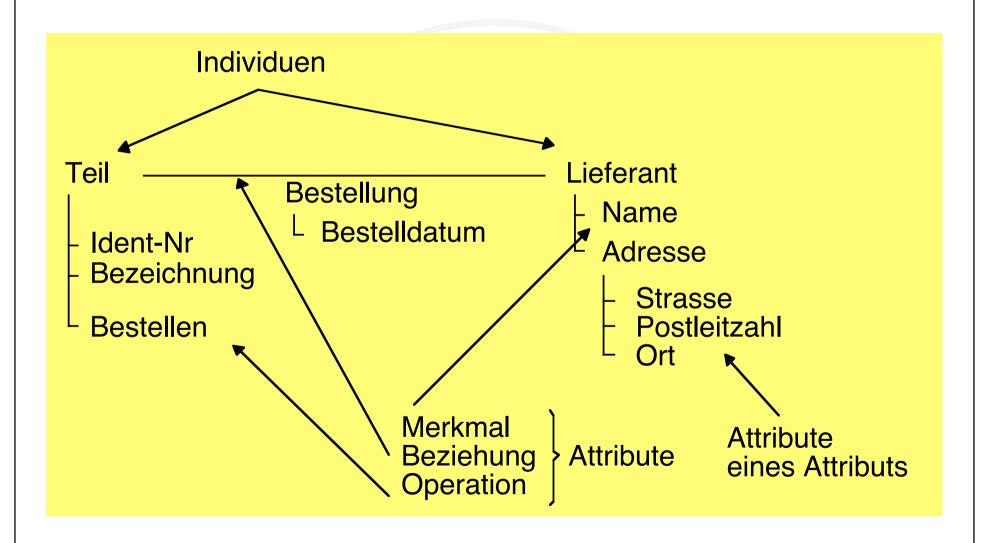
Prof. Dr. Martin Glinz

Kapitel 2

Einführung in die Modelltheorie

Universität Zürich Institut für Informatik

Inhalt


- 2.1 Grundannahmen
- 2.2 Hauptmerkmale eines Modells
- 2.3 Sprache und Modell
- 2.4 Operationen auf Modellen
- 2.5 Deskriptive und präskriptive Modellbildung
- 2.6 Philosophische und ethische Aspekte

2.1 Grundannahmen

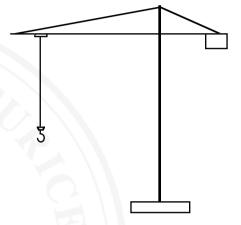
Betrachtet werden nur Modelle als Abbilder oder Vorbilder (vgl. Kap. 1.1)

- Jedes Modell und jedes modellierte Original wird als Menge von Individuen und Attributen beschrieben.
 - Ein Individuum ist ein individuell erkennbarer, von anderen Individuen eindeutig abgrenzbarer, für sich stehender Gegenstand.
 - Attribute sind
 - Eigenschaften von Individuen oder von anderen Attributen
 - Beziehungen zwischen Individuen oder Attributen
 - Operationen auf Individuen oder Attributen.

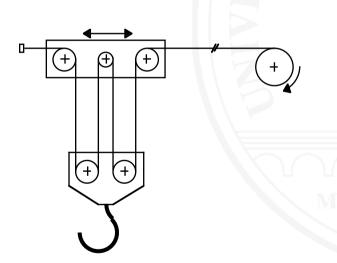
Beispiel für die Elemente eines Modells

2.2 Hauptmerkmale eines Modells

- Abbildungsmerkmal
 Jedes Modell ist Abbild oder Vorbild
- Verkürzungsmerkmal
 Jedes Modell abstrahiert
- Pragmatisches Merkmal
 Jedes Modell wird im Hinblick auf einen Verwendungszweck
 geschaffen

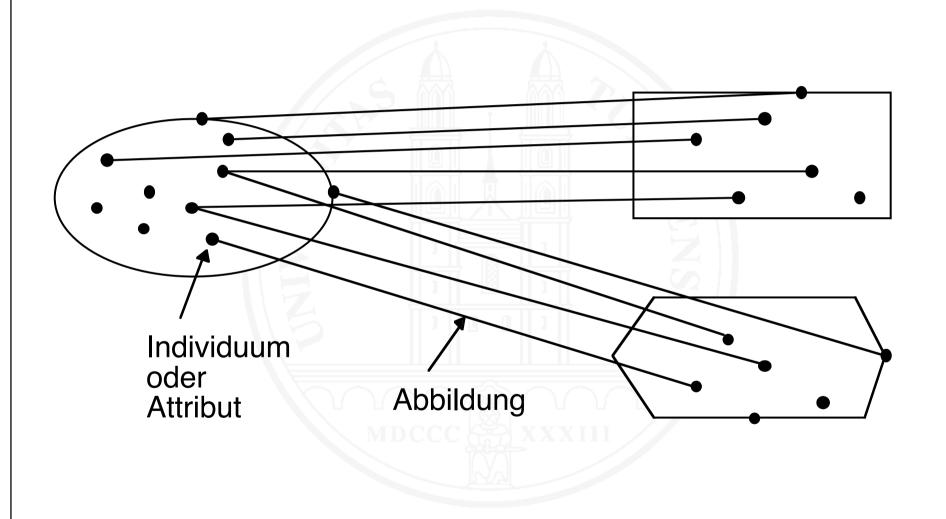

(Stachowiak 1973)

Das Abbildungsmerkmal – 1



a. Original

b. Ein Modell eines Krans


c. Ein anderes Modell eines Krans

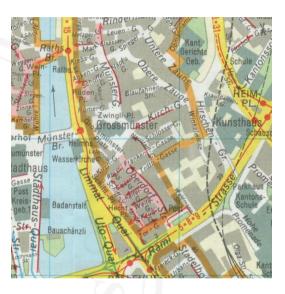
d 4d Last ↓ Zug

d. Ein Modell des Modells c.

© 2005 by Martin Glinz

Das Abbildungsmerkmal – 2

Das Abbildungsmerkmal – 3


- Modelle sind Abbilder oder Vorbilder eines vorhandenen oder zu schaffenden Originals
- Zu jedem Modell gehört eine Abbildung, welche die Individuen und Attribute des Originals auf diejenigen des Modells abbildet
- Das Original kann selbst wieder ein Modell sein
- Es kann verschiedene Modelle des selben Originals geben

Das Verkürzungsmerkmal – 1

Original

Modell

- Modelle erfassen meistens nicht alle Individuen und Attribute des Originals
- Es wird nur das modelliert, was den Modellschaffenden wichtig/ nützlich/notwendig erscheint
- Das Modell kann Individuen und Attribute enthalten, die keine Entsprechung im Original haben

Das Verkürzungsmerkmal – 2

"A message to mapmakers: highways are not painted red, rivers don't have county lines running down the middle, and you can't see contour lines on a mountain."

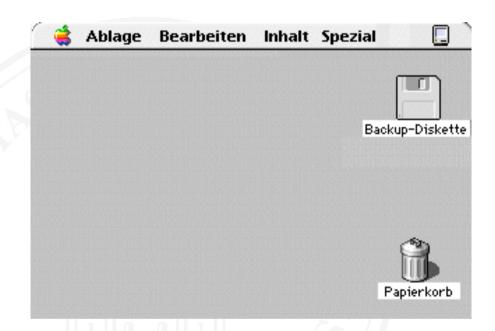
William Kent (1978)

Aufgabe 2.1:

Warum hat es auf topographischen Karten Höhenlinien?

Das pragmatische Merkmal

- Original und Modell(e) sind einander nicht aus sich selbst heraus zugeordnet.
- Jedes Modell ist für einen spezifischen Zeitraum und Verwendungszweck geschaffen
- Es gibt keine a priori richtigen oder falschen Modelle
- Es dürfen keine Modellattribute ausgewertet werden, die keine Entsprechung im Original haben.



Informatik II: Modellierung

Kapitel 2 © 2005 by Martin Glinz

Aufgabe 2.2

Gegeben ist folgendes Modell einer Diskette:

Notieren Sie in Stichworten zu dieser Modellbildung:

- (1) Welche Attribute des Originals entsprechen welchen Modellattributen?
- (2) Welche Attribute des Originals sind nicht modelliert?
- (3) Welche Attribute des Modells gibt es im Original nicht?
- (4) Mit welcher Pragmatik wurde dieses Modell erstellt?

2.3 Sprache und Modell

- Modelle, welche nicht aus einem konkreten Material bestehen, benötigen eine Sprache, in der sie ausgedrückt werden können
- Sprache: strukturierte Menge von Zeichen und die damit bezeichnete begriffliche Vorstellung
- O Zeichen: Laute, Schrift, Symbole, Gebärden,...
- Modelle: in der Regel mit Schrift und Symbolen ausgedrückt: Notation

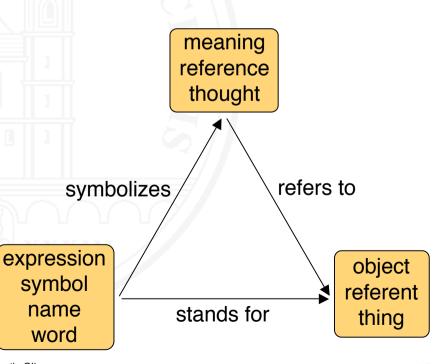
Notation – System von Schrift- und Symbolzeichen zur Darstellung eines Modells

- Explizite Zuordnung von begrifflicher Vorstellung und Notation
- Meist mehrere Notationen zur gleichen begrifflichen Vorstellung

Beispiel

Informatik II: Modellierung

Kapitel 2


Sprachelement: Beispiel: In der Sprach- und Zeichentheorie: Begriffliche Datenstruktur, bei der Bezeichnetes Vorstellung das zuletzt abgelegte Bezeichner Element als erstes wieder entnommen wird (de Saussure) Bedeutung, Referenz, Gedanke **Notation** Keller Ausdruck, Symbol, Stack Name, Wort (Ogden und Richards)

© 2005 by Martin Glinz

14

Exkurs in die Sprach- und Zeichentheorie

- In jeder Sprache sind
 - Bezeichner (Schrift- bzw. Klangbild, Symbol) und
 - Bezeichnetes (begriffliche Vorstellung)
 einander explizit (im Prinzip willkürlich) zugeordnet (de Saussure 1916)
- Sprache kann (aber muss nicht!)
 Dinge der Realität bezeichnen
- Semiotisches Dreieck (Ogden und Richards 1923):

Notation und Bedeutungen

- Wenn zwei Partner (Menschen oder Maschinen) kommunizieren, so tauschen sie eine Menge von Zeichen aus
- Erfolgreiche Kommunikation erfordert die Festlegung von
 - Notation
 - gemeinsamer Zeichenvorrats
 - Regeln für die Bildung von Zeichenstrukturen (Syntax)
 - Bedeutung der Zeichen, d.h. der ihnen zugeordneten begrifflichen Vorstellung (Semantik)
- Erfordert v.a. in Fachsprachen explizite Bedeutungsdefinitionen

Ontologie – explizite Bedeutungsdefinitions-Systeme

Ontologie –

In der Informatik: die konzeptuelle Formalisierung von Wissensbereichen

[Allgemein: die Lehre vom Sein]

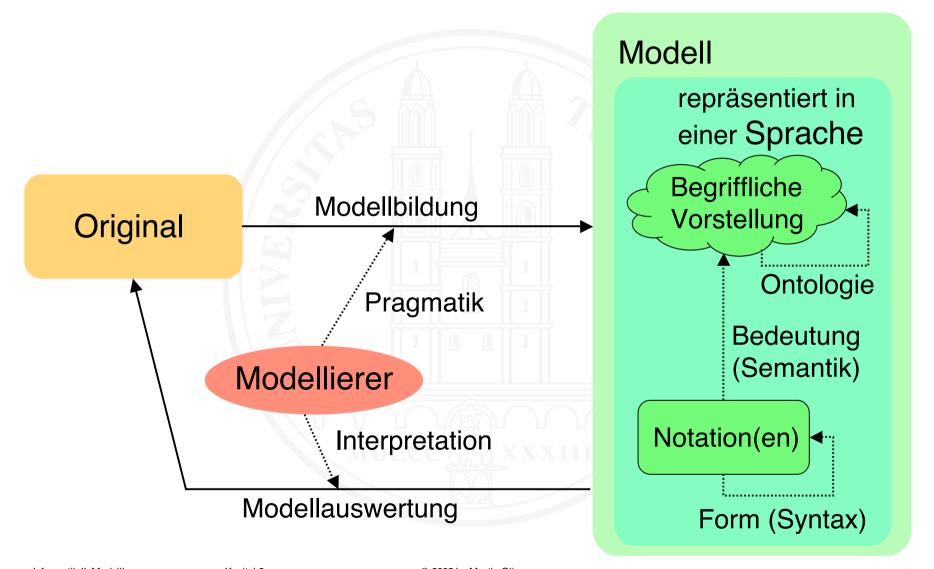
- Ontologien sind formale Modelle einer Anwendungsdomäne, die dazu dienen, den Austausch und das Teilen von Wissen zu erleichtern
- Damit Menschen über ein Modell kommunizieren können, benötigen sie eine gemeinsame Ontologie des Anwendungs- und Wissensbereichs, der dem Modell zu Grunde liegt

Beispiel

Anwendungsbereich: Linienflüge

Bezeichnetes, begriffliche Vorstellung: Der für einen Flugschein zu

zahlende Betrag


Bezeichner: Preis

Nur mit einer Ontologie, welche die Begrifflichkeit von «Preis» exakt bestimmt, werden Angebote verschiedener Fluggesellschaften vergleichbar

Aufgabe 2.3:

Nennen Sie Beispiele möglicher unterschiedlicher Auffassungen von «Preis»

Zusammenhang von Original, Modell und Sprache

Informatik II: Modellierung

Kapitel 2

© 2005 by Martin Glinz

Beispiel

Original

Die Beschäftigten im Verkauf der Firma AGP sind Peter Muster, Anna Maier, Fritz Mann und Eva Schütz

Begriffliche Vorstellung «Mitarbeiter ist beschäftigt in Abteilung» Modell (repräsentiert in einer Sprache) **Notationen** beschäftigt

beschäftigt in

beschäftigt

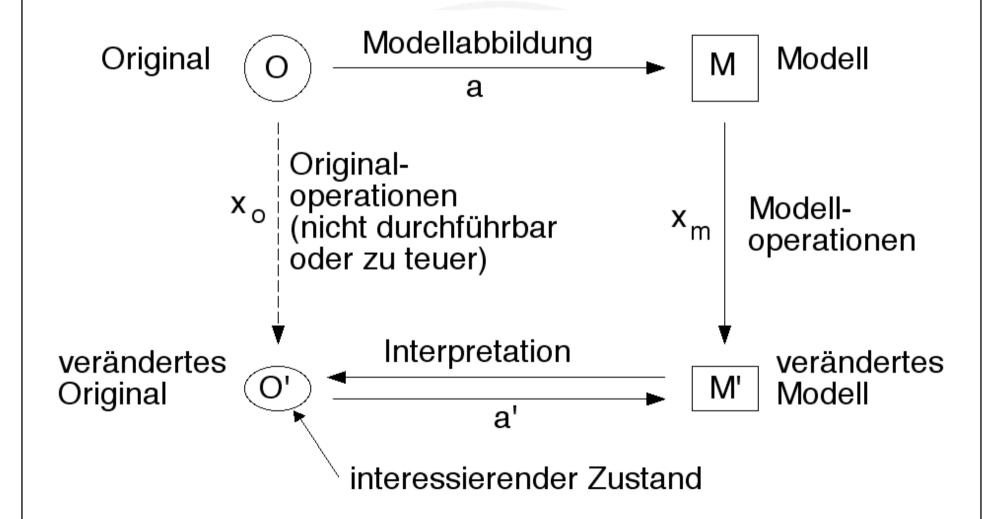
Abteilung

Abteilung

Mitarbeiter

Mitarbeiter

2.4 Operationen auf Modellen


- O Problem: Operationen auf Originalen sind manchmal
 - nicht durchführbar oder
 - zu teuer
- Operationen auf Modellen:

Aus dem resultierenden Modellzustand Rückschlüsse ziehen, wie sich das Original unter den gleichen Operationen verändert hätte

Beispiel: Wirkung des Zusammenstoßes zweier Fahrzeuge auf menschenähnliche Puppen in diesen Fahrzeugen

- Vorsicht: Nur solche Modelloperationen sind zulässig,
 - zu denen es eine entsprechende Operation auf dem Original gibt
 - deren resultierende Attribute auf entsprechende Attribute des Originals abbildbar sind

Operationen auf Modellen – 2

Informatik II: Modellierung

Kapitel 2

© 2005 by Martin Glinz

2.5 Deskriptive und präskriptive Modellbildung

- Modellierung eines existierenden Originals oder
- Modellierung eines zukünftigen, aber nicht gestaltbaren Originals
- Deskriptive Modellierung

Beispiele: Stadtplan, Wettervorhersage, Komponentenstruktur eines im Einsatz befindlichen Informatiksystems

- Modellierung eines zu schaffenden, gestaltbaren Originals
- Präskriptive Modellierung
- Beispiele: Konstruktionszeichnung, Anforderungsspezifikation für zu entwickelnde Software

Deskriptive und präskriptive Modellbildung – 2

- Deskriptive Modellbildung muss sich streng an der Realität orientieren
- Präskriptive Modellbildung darf zukünftige Realität gestalten
- Deskriptiv und präskriptiv sind Eigenschaften der Modellbildung, nicht der Modelle selbst:
 - dasselbe Modell kann deskriptiv bezüglich eines Originals und präskriptiv bezüglich eines anderen Originals sein

Aufgabe 2.4:

Begründen Sie diese Aussagen an Hand von Beispielen

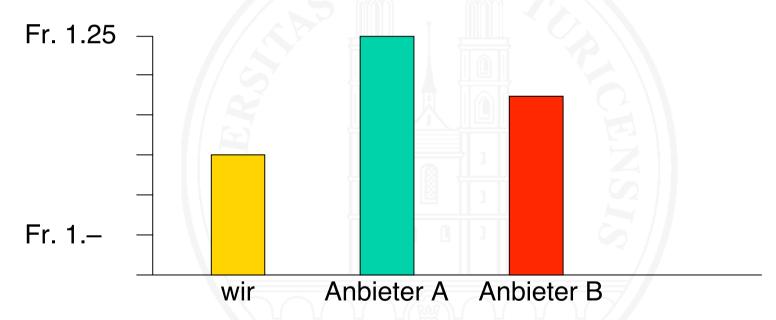
Deskriptive und präskriptive Modellbildung – 3

- Vorsicht: auch deskriptive Modellbildung ist nicht wertfrei:
 - zu Grunde liegende Pragmatik
 - gezielte Verkürzung
 - gezielte Wahl der Notation
 - In Werbung und Propaganda häufig anzutreffen

Beispiel: Politische Propaganda

 Eine politische Partei erstellt folgendes deskriptive Modell der Erwerbsquote in der Schweiz:

1972: 58,9% der Ausländer sind erwerbstätig 2000: 59,2% der Ausländer sind erwerbstätig


 Die Erwerbsquote der Schweizer ist dabei dem Verkürzungsmerkmal zum Opfer gefallen:

1972: 46,2% der Schweizer sind erwerbstätig 2000: 54,7% der Schweizer sind erwerbstätig

Der erwünschte Propagandaeffekt entsteht durch geeignetes Auswählen bzw. Weglassen von Attributen des Originals bei der Modellbildung

Beispiel: Werbung

Eine Telefongesellschaft erstellt folgendes deskriptive Modell der eigenen Preise und derer der Konkurrenz:

Aufgabe 2.5:

Was schließen Sie intuitiv aus diesem Modell?

2.6 Philosophische und ethische Aspekte

Was sind Originale?

- O Existieren Dinge a priori und objektiv?
- Existiert nur, was erkennbar ist?
- Gibt es objektive Erkenntnis?
- ➡ Erkenntnis ist intersubjektiv

Verantwortung, Modelle und Realität

- Modelle in der Informatik beschreiben Gegenstände und/oder Prozesse eines in der Regel realen Problembereichs
- Jedes Modell stellt das Original aus einer bestimmten Sicht heraus dar und verändert damit die Wahrnehmung des Originals
- Das gemäß einem Modell konstruierte System wird durch seinen Einsatz selbst ein Teil der Realität und beeinflusst/verändert den modellierten Problembereich
- ➡ Modellierung ist ein Stück weit Realitätskonstruktion
- ⇒ Die Erstellung von Modellen ist keine wertfreie Tätigkeit
- Alle Beteiligten tragen die Verantwortung für die durch das Modell bewirkten Interpretationen und Veränderungen des Originals

Literatur

De Saussure, F. (1916). *Cours de linguistique générale* (Herausgegeben von C. Bally und A. Sechehaye unter Mitarbeit von A. Riedlinger). Lausanne-Paris: Payot.

Ludewig, J. (2003). Models in Software Engineering – An Introduction. *Software and Systems Modeling* **2**, 1.

Kent, W. (1978). Data and Reality. Amsterdam etc.: North-Holland.

Mädche, A., Staab, S., Studer, R. (2001). Ontologien. Wirtschaftsinformatik 43, 4 (August 2001). 393-396.

Ogden, C. K. & Richards, I.A. (1923). *The Meaning of Meaning. A Study of the Influence of Language upon Thought and of the Science of Symbolism*. London: Routledge & Kegan Paul.

Stachowiak, H. (1973). Allgemeine Modelltheorie. Wien: Springer.

Wedekind, H., G. Görz, R. Kötter, R. Inhetveen (1998). Modellierung, Simulation, Visualisierung: Zu aktuellen Aufgaben der Informatik. *Informatik-Spektrum* **21**, 5 (Okt. 1998). 265-272.