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Abstract

A general account is given of the problem frames approach to the development of software-intensive systems, assuming that the reader is

already familiar with its basic ideas. The approach is considered in the light of the long-standing aspiration of software developers to merit a

place among practitioners of the established branches of engineering. Some of its principles are examined, and some comments offered on the

range of its applicability. A view of the approach is suggested by an important account of engineering in the aeronautical industry: in

particular, the problem classes captured by elementary problem frames are likened to those solved in established engineering branches by

normal, rather than radical, design. The relative lack of specialisation in software development is identified as an important factor holding

back the evolution of normal design practice in some areas.
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1. Introduction

It is widely held that software development should aspire

to deserve recognition as an engineering discipline.1 This

view motivated the two NATO Software Engineering

conferences of 1968 and 1969, and is clearly stated in the

report [25] of the first conference:

The phrase ‘software engineering’ was deliberately chosen

as being provocative, in implying the need for software

manufacture to be based on the types of theoretical

foundations and practical disciplines, that are traditional in

the established branches of engineering.

The report reflected what was clearly the consensus of

the participants: software is, or should become, one more

class of engineering product, to be set alongside such

established engineering products as bridges, motor cars,

chemical plants and aeroplanes. The consensus was

unchanged 1 year later at the second conference in 1969,

and has been widely accepted ever since.
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1 In this paper we will use the terms software development and software

engineering interchangeably.
The participants assumed implicitly that the phrase

software engineering was to be narrowly interpreted, to

mean the engineering of the software itself—that is, of the

structure and content of program texts—and that it was

primarily concerned with the processes of software design,

programming and testing, and with program execution. The

alternative broader interpretation of the phrase, to mean the

engineering of change in the world by devising and

installing software-intensive systems, was not seriously

considered. Surprisingly, the conference participants

devoted little of their discussion to exploring and discussing

the established practices in the engineering branches they

hoped to emulate. (An exception was the talk by W.D.

McIlroy at the first conference, in which he advocated the

development and use of mass-produced software com-

ponents, citing as possible examples trigonometric func-

tions and input–output routines.) Instead they focused on the

processes, products and challenges they recognised in their

own practice of software development, without comparing

them with those of other disciplines.

A very interesting paper by Maibaum [24] discusses

some aspects of the relationship between software engin-

eering and the established branches, drawing heavily on

Vincenti’s illuminating book What Engineers Know and

How They Know It [31]. Vincenti writes chiefly about

aeronautical engineering in the first half of the 20th century

when the field was being established by researchers and

practitioners. He gives illuminating detail of five case
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studies including the problems of aerofoil design, a series of

wind-tunnel experiments on propellers, the invention and

development of flush riveting, the concept of a control

volume as a theoretical tool in fluid dynamics, and the

process by which the initially vague notion of ‘flying

qualities’ became more exact and amenable to quantitative

analysis and design. He also discusses the nature and

anatomy of engineering knowledge, and the processes by

which it evolves and increases over time.

The present paper, too, draws on Vincenti’s book as a

source of well-founded observations about engineering

practice. Its purpose is to discuss some principles and

aspects of the problem frames approach (which we will refer

to as ‘PF’) to software development, and to relate them to

the practice that Vincenti describes. The problem frames

approach is not a development method. It is, rather, a

perspective and a conceptual framework, embodying a

certain way of looking at an important group of problem

classes and of structuring the intellectual processes of

developing good solutions. It is intended to be usable in

several ways: constructively, to guide development;

analytically, to help understanding of completed develop-

ments; and methodologically, to help understanding of

existing and proposed approaches to software engineering.
2. The machine and the problem world

The PF view of software development takes as its starting

point the alternative broader interpretation of the phrase

software engineering, corresponding closely to Rogers’s

definition [30] of engineering, quoted and amplified by

Vincenti:

Engineering refers to the practice of organising the design

and construction [and, I would add, the operation] of any

artifice which transforms the physical world around us to

meet some recognised need.

This definition succinctly captures the PF view. The

development task is to design and construct an artifice. In PF

we call this artifice the machine, constructed by building

software that is then executed on a general-purpose

computer, specialising the computer to serve a particular

purpose. That purpose is to meet a recognised need, which

we call the requirement. Satisfying the requirement involves

transforming the physical world around us: in PF, the part of

the world to be transformed, in which the requirement is

located, is called the problem world. Using Polya’s term, we

may say that the principal parts [27] of a software

development problem are the machine, the problem world,

and the requirement. Their relationships are shown in the

generalised problem diagram in Fig. 1.

The machine interacts with the problem world at an

interface of shared phenomena a. Typically, these phenom-

ena are events and states, controlled either by the problem
world or by the machine and shared at input–output ports or

registers of the machine. (It is often convenient to raise the

level of abstraction here—for example, by regarding an

extremely reliable input–output device, such as an attached

printer, as an integral part of the machine: the phenomena a

would then include print events.) The machine and the

problem world are both physical, conforming to their

characterisation in Rogers’s definition; their interactions at

a are unmediated and therefore also physical. The

requirement is shown by a dashed oval, indicating its

intangible quality. The requirement is not a tangible part of

the problem: it is a predicate or condition on the problem

world that the machine is required to bring about. The link

between the requirement and the problem world is

represented by a dashed line. This link denotes references

by the requirement to physical phenomena b of the problem

world. These are the phenomena that the customer for the

system would observe to determine whether the requirement

is satisfied. In general, the phenomena b, which we may call

the requirement phenomena, are distinct—and sometimes

disjoint—from the phenomena a. We may call the latter the

specification phenomena: they are the phenomena in terms

of which the external behaviour of the machine—that is, of

the software—must eventually be specified.

The generalised problem diagram of Fig. 1 emphasises

the physical phenomena of the requirement, the problem

world and the specification: the machine and problem

world, their interaction, and the requirement, are all to be

understood in terms of physical phenomena rather than in

terms of purely mathematical abstractions. That is not to say

that PF eschews abstraction, but rather that it insists that

abstractions must be firmly grounded in observable physical

reality. For example, if we consider the striking of a key by a

computer user to be a shared phenomenon at the

specification interface, we are abstracting from the causal

chain that runs from depression of the keytop to assigning

the corresponding encoded value to a machine register. This

causal chain may be very complex, involving interpretation

of the key codes and execution of a debouncing algorithm;

but we choose to regard the key depression and the

assignment as a single shared event. Such abstractions are

inevitable in any treatment of physical phenomena. What

we insist on is that any abstraction can be unambiguously

explained in terms of phenomena that we can observe in the

physical world.

Clearly this stipulation excludes certain problem classes.

For example, PF makes no claim to offer guidance in the

problems of factorising a large integer, finding the shortest

path in a graph, or beating the world champion at chess or

go. Nor can such problems be brought within the scope of

PF by a gratuitous reification—for example, by stipulating
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a physical representation of the integer or graph or

chessboard in a disk file. In some problems, such as the

construction of a single-person computer game, the physical

problem world may contain nothing other than the operator

or user, and the problem world phenomena (other than the

specification phenomena) are purely imaginary. The PF

approach may then need at least some modification to

accommodate the absence of an objective reality to which

problem world descriptions can be referred. This kind of

problem is discussed in [1]. However, it is important to

recognise that problem worlds involving the behaviour of

people interacting with the system are fully appropriate to

PF: an interesting extension [2] of the approach allows the

knowledge they acquire and use in their activities to be

brought within the PF scope.
3. Problem reduction

Because PF is concerned with engineering in the world, it

demands a clear distinction among three descriptions:

† the requirement R, describing the customer’s require-

ment—how the world is desired to be—in terms of the

requirement phenomena b;

† the specification S, describing, in terms of the

specification phenomena a, the machine behaviour that

must result from execution of the software to be

developed;

† the world properties W, describing the given properties

of the problem world that hold independently of the

machine’s behaviour and that govern the possible

relationships between the specification and requirement

phenomena.

To show that the machine will indeed satisfy the

requirement it is then necessary to show that:

S;WjR

In other words, if a machine satisfying S is installed in a

problem world satisfying W, then the requirement R will be

satisfied. (A deeper and more detailed discussion of this

entailment can be found in [10,12].) The gap between what

is desired at the interface b and what can be directly

monitored and controlled by the machine at interface a is

bridged by the given properties of the problem world.

Showing, formally or informally, that this relationship holds

among the three descriptions may be called the basic

problem concern.

PF does not mandate a sequence of development tasks.

But in concept we can imagine a development process that

begins by capturing the customer’s requirement R, and

proceeds, using the given properties W, to devise a machine

behaviour specification S. We may call such a process full

problem reduction: starting from a problem involving the

phenomena a and b and the problem world properties,
it derives a reduced problem in which the phenomena b and

the problem world do not appear at all. A problem of

engineering in the world has been reduced to the problem of

building a machine with a specified external behaviour.

When the problem world is more complex, and is structured

as an interacting set of problem domains, the problem can be

partially reduced in each of a series of steps, successively

removing domains that are farthest from the machine. (Hall

and Rapanotti have pointed out the connection between

problem reduction and the weakest-environment calculus

[21].) Eventually, of course, once this reduction process is

complete, a programming process will create a program

whose execution will satisfy S.

Software development has traditionally dealt chiefly in

what are, in this sense, reduced problems: the problem was

seen solely as satisfying a given specification—often

informal and sometimes unwritten—rather than including

the process of deriving the specification. Early computers

were connected very loosely and asynchronously, by data on

punched card or paper or magnetic tape, to their problem

worlds: it seemed natural to start at the point where the data

was presented to the computer. Most software, apart from

the compiler, the operating system kernel, and the software

to manage input–output and system resources, consisted of

batch programs performing mathematical computations or

data processing tasks. Programs for mathematical compu-

tations were often written by people already fully familiar

with the task to be performed, who saw no need for a written

specification. Data processing tasks were often simply

specified as reproducing, sometimes with little or no change,

the behaviour of an existing manual or punch-card system.

In general, the production, content and format of program

specifications were not considered to be a significant part of

the software development task.

This view was memorably expressed by Dijkstra [7]:

The choice of functional specifications—and of the notation

to write them down in—may be far from obvious, but their

role is clear: it is to act as a logical ‘firewall’ between two

different concerns. The one is the ‘pleasantness problem,’,

i.e. the question of whether an engine meeting the

specification is the engine we would like to have; the

other one is the ‘correctness problem,’, i.e. the question of

how to design an engine meeting the specification.the two

problems are most effectively tackled by.psychology and

experimentation for the pleasantness problem and symbol

manipulation for the correctness problem.

Dijkstra was concerned to maintain the mathematical

purity of computer science, and rejected the notion of

software engineering in any sense. He dubbed software

engineering ‘the doomed discipline’, and claimed that its

goal was self-contradictory because computers were purely

symbol manipulation machines. The ‘pleasantness

problem’—that is, obtaining the functional specification—

was for others to address. Computer scientists and software
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developers should restrict their attention to the ‘correctness

problem’, and should address it by formal mathematical

techniques.

This narrow view of the software development task has

had an enduring effect. Although lip service is almost

universally paid to the need to analyse and describe the

problem world, the reality is that most descriptions—

certainly most formal descriptions—constructed in software

projects are descriptions of the machine rather than of the

world. What may have begun as an effort to describe the

world slips quickly into a focus on an object or database

structure that is intended to represent it in the machine. The

PF emphasis on the explicit investigation, description and

use of the given problem world properties can be seen as an

attempt to exert a countervailing intellectual influence. PF

views the process of problem reduction as an integral and

central part of the software engineering discipline.
4. Reduced problems in engineering

It may perhaps seem that in spite of Rogers’s definition

the PF emphasis on the problem world is at odds with

established engineering practice. At first sight, engineering

practice seems to focus very directly on the product, or

artifice, to be designed and constructed, leaving the world

around it very much in the background. Automobile

engineers appear to think much more about cars than

about roads or drivers, so justifying an analogous emphasis

in software engineering on the machine rather than the

problem world.

A distinction should be made here between what we may

call local and ubiquitous problems. In a local problem the

problem world is unique to a particular place, and the

engineer must examine that problem world in all its

particularity. Consider, for example, the building of a road

or rail bridge over a navigable river. The bridge designer

must obviously carry out an explicit and detailed

investigation and analysis of the given properties of the

particular problem world: the character of the ground on

which the bridge supports will be erected; the river currents;

the sizes and speeds of vessels navigating the river; the local

winds; the density, nature and flow patterns of the planned

traffic; and the seasonal variations in temperature and other

atmospheric conditions.

In a ubiquitous problem, by contrast, the engineering

product is intended to be used anywhere that the operational

environment exhibits certain broad characteristics that are

essentially independent of the specific operational locality.

Automobile engineering is concerned with wheeled vehicles

that travel on terra firma; aeronautical engineering is

concerned with vehicles that travel in the earth’s atmos-

phere. The problem world properties of interest are then

location-independent properties, and do not demand a fresh

explicit description of roadways or of the atmosphere for

each new car or aircraft design. Rather than ad hoc products
of the development project in hand, these descriptions are

standard reference material.

Vincenti writes of the indicative problem world proper-

ties to be considered by the aeronautical engineer:

Descriptive knowledge is knowledge of how things are.

Descriptive data needed by [aeronautical] designers include

physical constants (acceleration of gravity, for example) as

well as properties of substances (failing strength of

materials, coefficients of viscosity of fluids, etc.) and of

physical processes (rate of chemical reactions and so forth).

Occasionally they deal with operational conditions in the

physical world (frequency and strength of atmospheric gusts

for aircraft fatigue-loading calculations). As we have seen

with flying qualities, they also encompass information on

human beings (maximum forces exerted by pilots [on an

aircraft’s manual controls]).

Certainly, some of this descriptive knowledge—strength

of materials and rate of chemical reactions—is clearly about

the substrate of the engineering artifice itself rather than its

problem world or operating environment. Frequency and

strength of gusts, however, and forces exerted by pilots, are

certainly properties of the problem world. But they do

not require to be established afresh on each occasion. In

respect of these properties the engineers need only address the

reduced problem, reduced in the light of standard knowledge

of the properties of the problem world or environment.
5. Normal and radical design

Vincenti draws on his own experience of aeronautical

engineering and on the work of the philosopher Michael

Polanyi [26] and the historian Edward Constant [6] to

explain the central importance of normal—as opposed to

radical—design for established engineers. Normal design is

what allows them to succeed where they do and as often as

they do. Of an engineer practising normal design he writes:

The engineer engaged in such design knows at the outset

how the device in question works, what are its customary

features, and that, if properly designed along such lines, it

has a good likelihood of accomplishing the desired task.

Every device possesses an operational principle, and, once

the device has become an object of normal, everyday

design, a normal configuration. Engineers doing normal

design bring these concepts to their task usually without

thinking about them.

In short, it is usually otiose, or even harmful, to rework

from basic principles a problem whose requirements, design

and solution have been firmly established by long and

successful experience. Vincenti gives the example of

automobile design:
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Automobile designers of today usually (but not invariably)

assume without much thinking about it that their vehicle

should have four (as against possibly three) wheels and a

front-mounted, liquid-cooled engine.

Vincenti lays some stress on the hierarchical structure of

engineering products in the established branches. He

distinguishes between devices and systems. Devices are

‘single, relatively compact entities’, while systems are

‘assemblies of devices brought together for a collective

purpose.’ The distinction is, of course, relative. The struts of

an aircraft’s landing gear are a device—a part of the landing

gear viewed as a system. The landing gear, viewed as a

device, is a part of the aircraft regarded as a system. The

aircraft itself can be viewed as a device forming a part of the

airline system, or even of a national or global system of air

transport.

Although the distinction between devices and systems is

relative in this sense, it is also closely associated with the

distinction between normal and radical design. Normal

design can be applied only to a device, to a ‘single,

relatively compact entity’. Radical design is always

necessary for a system, where there is no history of

successful development of closely fitting precedents.

Radical design may also be necessary when a new kind of

device is required. Then the engineer’s ambitions must be

dramatically lowered:

.how the device should be arranged or even how it works

is largely unknown. The designer has never seen such a

device before and has no presumption of success. The

problem is to design something that will function well

enough to warrant further development.

In effect, only normal design can realistically hope to

produce a reliable product with no major defects or failures.

Though less conspicuous than radical design, normal design

makes up by far the bulk of day-to-day engineering

enterprise. Unfortunately, this is not true of software

engineering.
6. Elementary problem frames

Elementary problem frames can be regarded as defining

problem classes in software engineering that are currently

the object of normal design. Their machines, set firmly in

the context of the problem worlds that provide their purpose,

play the role that Vincenti’s well-understood devices play in

the established engineering branches. Particular elementary

problem frames, specialised from the universal problem

diagram of Fig. 1, capture classes of software development

problems whose software solutions take the form of

individual programs or, at most, very small systems of

programs. For example:
† In a WorkPieces problem a User edits a WorkPiece such

as a text or graphic document. The requirement is that

the edit commands issued by the User should effect

appropriate corresponding changes in the WorkPiece.

† In a Required Behaviour problem the Control Machine is

required to impose a particular behaviour on a

Controlled Domain.

† In an Information Display problem the Information

Machine is required to monitor the state and behaviour

of a Real World and to display information about it on a

Display.

Problem frames do not aim to capture classes of

problems of realistic size and complexity. Most of them

capture simple subproblems that can appear only as

ingredients or aspects of realistic problems. For example,

the WorkPieces frame captures problems of simple

document editing. The subsequent use of the document,

and even the user’s ability to inspect different parts of the

document while it is being edited, are ignored: the solution

to a WorkPieces problem is not useful in isolation.

Each problem frame constitutes what we might call a

problem pattern. The very well-known work on object-

oriented design patterns [9,3] has some obvious similarities,

and is clearly concerned with the identification of devices

that, once identified, can become the objects of normal

design. But design patterns are firmly located within the

machine: all parts of each pattern are represented in

programming terms. The work on analysis patterns [8] is

an interesting treatment of some problem fragments in an

object-oriented setting.

A problem pattern stipulates:

† a decomposition of the problem world into a particular

set of physical problem domains interacting with each

other and with the machine in a particular topology;

† a characterisation of each problem domain according to

its physical properties—causal, lexical or biddable—as

they affect the problem (the Controlled Domain is

causal, the WorkPiece is lexical, and the User is

biddable);

† a characterisation of each interface according to the

types of the subsets of the phenomena—events, states,

symbols—that are shared at the interface and to the

assignment of control of each subset to one of the sharing

domains;

† the nature of the requirement and of its link—none,

reference only, or constraining—to each problem

domain.

Problems that fit different elementary frames specialise

the basic problem concern in different ways, giving rise to

frame concerns of different forms. The specialisation arises

because the given properties W of each problem domain d

must be separately described, and these descriptions must

be combined with each other and with the specification
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S and requirement R in a way that respects the connectivity

of the frame diagram and the control of shared phenomena.

The frame concern of a problem class can be regarded as

loosely analogous to the operational principle of a device

class in normal design—how the characteristic parts of the

device fulfil their special function in combining to an overall

operation which achieves the device’s purpose. Vincenti

cites Sir George Cayley’s famous statement of 1809 [5] in

which he characterised the principle of the fixed-wing

aircraft: ‘to make a surface support a given weight by the

application of power to the resistance of air.’ The surface

provides the lift because the applied power drives the

surface against the resistance of the air.

In addition to the frame concern each problem frame

raises a number of specific concerns that must be addressed

if the solution is to be acceptable. For example:

† Initialisation. The machine necessarily begins operation

in its initial state, and at that moment the problem world

is also in one of some set of states. If the developer has

not considered the problem world state that in fact holds

initially in a particular case, the specified machine

behaviour is unlikely to satisfy the requirement, at least

for some initial period of operation and possibly for the

whole lifetime of the system.

† Breakage. A causal domain may be damaged if certain

sequences of operations are performed on it. For

example, some component of a Controlled Domain

may be damaged if certain operation sequences are

performed by the machine. The developer must identify

such sequences, and ensure that the machine always

avoids them.

† Reliability. A causal problem domain typically satisfies

its properties description with high—but never with

perfect—reliability. If the reliability is too low in

relation to the criticality of the system it is necessary

to detect, or even to anticipate, failures and to prevent,

mitigate or compensate their effects.

† Information deficit. In an Information Display problem

the information directly and currently available to the

machine at the time it must produce each display output

may be inadequate. It may have been available at an

earlier time; or it may be information that must be

accumulated from the beginning of execution; or it may

be deducible only by elaborate calculation or estimation

from the information available earlier. The developer

must then find some effective way of overcoming this

information deficit.

In general, different problem frames raise different

specific concerns. Information deficit does not arise in

WorkPiece problems. Information Display problems do not

raise reliability concerns. Breakage is not a concern in

WorkPieces problems. To a significant extent the set of

concerns that must be addressed, and the detail of each

concern, depend on the characteristics of the frame’s
problem domains. Breakage and reliability do not arise for

lexical domains; information deficit does not arise for

biddable domains. However, the importance of a particular

concern can not be finally determined by considering

abstract characteristics either of domains or of problem

frames. It must be ultimately determined by the knowledge,

experience and judgement embodied in a particular class of

normal design task, applied to the particular problem world

of the case in hand. The engineer practising normal design

knows in advance what concerns will merit most of his

attention.

Many of the failures documented in P.G. Neumann’s

Risks forum [29] can be attributed to the absence of

established normal design practice for at least the failing

part of the system. With hindsight the mistake or neglect

that led to the failure is conspicuous, and we may often

wonder why the developers did not see it. The reason is that

they were doing radical design, not normal design, and their

knowledge, experience and judgement were not specifically

honed for the particular design task they were doing. In

Vincenti’s words, they ‘had no presumption of success.’

Depending on the circumstances, blame for the failure may

be laid at the developers’ door for ignoring existing normal

design practice; or at the customer’s door for stipulating

requirements that went too far beyond what can be reliably

delivered by current practice; or, more generally, at the

software development community’s door for failing to

evolve a normal design practice when enough knowledge

and experience existed to do so.
7. Instantiating elementary frames

In an established branch such as aeronautical engineering

[6], the task of normal design is ‘the improvement of the

accepted tradition or its application under new or more

stringent conditions’. Relatively small design changes give

quantitative increments in cost, performance or economy,

while retaining the customary configuration of parts and the

accepted operating principle. Examples in software engin-

eering are most readily found in the improvement of what

we may call internal software components—components all

of whose interactions are with other formally specified

software components, within the machine. The classic

handbook for a large variety of such software devices is

Knuth’s magnum opus The Art of Computer Programming

[17–19], where detailed discussions are given of the

construction and performance of algorithms for sorting,

tree traversal, garbage collection and many other purposes.

Some examples can be cited closer to the problem world.

Spell checkers, for instance, appear to have become the

object of normal design, to judge by their greatly improved

speed and reliability.

In the design of solutions for problems fitting

elementary problem frames the need for incremental

quantitative improvement may be present, but is usually
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dominated by the need to instantiate known solutions for

the detailed properties of specific problem domains.

Instances of the WorkPieces frame, for example, will

differ not only in response time and speed of saving the

document being edited, but more importantly in the

different lexical structures and operations of the Work-

Pieces they are required to handle. Similarly, instances of

the Required Behaviour frame will differ in the structural

and dynamic properties of the Controlled Domain. These

differences provide the core subject matter for software

development methods. For example, a model-based

method such as Z [13] or VDM [15] is very appropriate

to instantiating the common data structures that charac-

terise a set of WorkPieces together with the repertoire of

editing operations which can be applied to them.

Similarly, problems fitting the Transformation frame, in

which the task is to produce sequential output streams

from sequential input streams, can often be appropriately

solved by the JSP design method [4,14]: the sequential

structures of the streams are described in regular

expressions which are then combined to give the required

program structure.
8. Composite elementary problems

A problem fitting an elementary frame will sometimes be

soluble by a simple machine, whose specification can be a

single text. But sometimes a specific concern will demand a

decomposition into two or more subproblems. For well-

understood elementary problem frames this decomposition

will be highly standardised. This standardised decompo-

sition is another aspect of what Vincenti calls ‘a given

operational principle and normal configuration’: it is

understood not only how the device should work but
Model
Real Wo

Real
World

Model
Builder 

Model
User 

Model

Fig. 3. A standard d
also what arrangement of parts will best allow it to work in

that way.

Consider, for example, an Information Display problem

in which the requirement is to maintain a Display showing

information about a Real World. Fig. 2 shows the problem

frame diagram:

The requirement is that the visible phenomena of the

Display should correspond in a certain way to the state of

the Real World. If the particular problem in hand presents a

significant information deficit problem (as most Information

Display problems do), the standard solution is to decompose

the problem into two subproblems communicating by a

Model domain, as shown in Fig. 3.

The Model domain is an invented lexical domain, often a

database on disk. One subproblem constructs and maintains

the Model, satisfying the requirement that the Model should

correspond in a certain way to the Real World; the other

subproblem maintains the Display, using the Model and

satisfying the requirement that the display should corre-

spond in a certain way to the Model. If we can express the

requirements Display N Model and Model N Real World as

relations, it seems clearly desirable that their relational

composition should be equal to the original requirement

Display N Real World.

Introducing the Model domain is an unavoidable, and

necessarily universal, practice in software development.

Decomposing the problem into the two subproblems shown,

however, is not standard practice: essentially it is a

separation into two concurrent processes. They will

subsequently need to be composed. In normal design of a

composite device, the technique and mechanism of

composition is standardised. Here, for example, a standard

technique of mutual exclusion, applied to critical regions of

appropriately chosen granularity, may be sufficient.
9. Decomposing realistic problems

If problems fitting elementary problem frames are

devices in Vincenti’s terms, then realistic problems are

usually systems—‘assemblies of devices brought together

for a collective purpose’—and consequently the object of

radical design. To repeat Vincenti’s words, “The designer

has never seen such a device before and has no presumption
rld

Display
Model

Display

Model

ecomposition.
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of success. The problem is to design something that will

function well enough to warrant further development.” The

need for radical design springs from either or both of two

sources. Some of the devices making up the system may be

currently unfamiliar, themselves demanding radical design;

and the particular combination of devices may be novel,

posing unfamiliar problems of interaction.

The PF approach aims to contain and minimise the

radical aspects of development in any particular case by

application of two interlocking principles. The first principle

is that a realistic problem should be decomposed, so far as

possible, into subproblems that fit known elementary

problem frames. That is: all those parts or aspects of the

system that can be properly regarded as familiar devices

should be identified, and developed by the applicable

techniques of normal design. What makes PF distinctive

here is the granularity and compactness of the parts into

which the problem is decomposed. Elementary problem

frames capture closed systems, which, even if not

realistically useful in isolation, are complete in themselves.

Each subproblem has its own machine, its own problem

world, and its own requirement, and has no external

connections.

This decomposition rule has important consequences for

the granularity of the decomposition. Some commonly used

development techniques, by contrast, decompose problems

into open parts, usually of smaller granularity. This is true,

for example, of decomposition into programming objects

(which offer and invoke methods); of dataflow decompo-

sition into sequential processes (which assume stream or

database communication with other processes); and of

requirements decomposition into use cases (each detailing

one episode of user interaction within a larger, usually

unspecified, context). Each of these techniques has its place;

but from a PF point of view none is satisfactory as the chief

form of problem decomposition.

The second principle, flowing from the first, is that

subproblem composition is a major development topic in

its own right, demanding explicit and separate consider-

ation. Because the devices identified in the decomposition

are closed systems, and to a large extent standardised, their

normal development pays—and should pay—no attention

to the need to combine them with other devices into a

realistic system. But eventually, of course, the decomposed

subproblems must be recombined or composed. Compo-

sition brings its own concerns: the composition of the

subproblem requirements must be shown to approximate

closely enough to the original problem requirement; the

subproblem machines must be configured for some kind of

parallel execution, cooperating to whatever extent is

necessary; conflicts between subproblems must be

resolved.

In the PF approach, the central principle to be applied

here is that treatment of the composition concerns should be

deferred until each subproblem has been identified and

analysed to the point of obtaining a satisfactory machine
behaviour specification and problem world description.

Until this point, the identification and treatment of the

decomposed subproblems should—in principle—take no

account of the eventual need to make them work together.

This principle stands in opposition to the most commonly

used techniques, in which consideration of the composition

concerns is integrated at the outset into the treatment of the

subproblems. A seeming advantage of these traditional

techniques is that composition can become a relatively

trivial mechanical matter of matching actual to formal

parameters or output stream to input stream definitions. In

practice, however, the widespread emphasis on integration

testing indicates that the common technique is hard to carry

through successfully. An important advantage of the PF

technique of deferring the composition concerns is that the

subproblems are then seen in their purest forms, in which

they correspond exactly to known devices, not yet

complicated by their eventual interactions. Further, the

composition concerns can be dealt with later as an explicit

task of composing known devices into a system. If the

deferred composition concerns then prove to demand

substantial reworking of the subproblems to be composed,

this is not a disadvantage of the separation: it is rather an

indication that dealing simultaneously with the subproblems

and their composition concerns would have been very

difficult.
10. Composition concerns

Composition concerns arise when subproblems have

parts of their problem worlds in common. Examples of

composition concerns are:

† Interference. Two subproblems interfere if one causes

change in a problem domain and the other inspects the

same domain: for example, the Model Builder machine

changes the Model domain while the Model User

machine inspects it. The Model User subproblem has a

domain properties description of the Model, and it is

necessary to ensure that the Model conforms to this

description during each inspection. A suitable granular-

ity must be chosen for mutual exclusion of atomic

changes and inspections.

† Scheduling. A scheduling concern arises when inter-

ference can not be dealt with by atomicity of changes

and inspections. Suppose, for example, that in a library

system one subproblem deals with membership and

another deals with borrowing and returning books. In the

books subproblem membership is treated as static,

although in reality it is constantly changing as people

join and leave the library. Questions then arise about

book loans towards the end of a membership period. Can

a member whose membership has only one week to run

borrow a book for two weeks? What if a borrower

resigns from membership before returning the book?
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† Conflict. The requirements of two subproblems that

cause change in the same domain may sometimes

conflict. For example, in a lift control problem the

subproblem requirement of providing lift service may

conflict with the subproblem of ensuring safe operation

in the presence of mechanical and electrical faults: lift

service may demand movement of the lift car to service a

request, while safety demands that it be locked by the

emergency brake at its current position in the shaft.

Clearly two conflicting requirements can not both be

satisfied: one must be given precedence.

The interference concern can be regarded as an

implementation matter. The properties description of the

Model domain as seen by the Model User machine has

already been given. To address the concern it is necessary

only to ensure that this description holds at the relevant

times. But the scheduling and conflict concerns, by contrast,

raise requirements issues that were not visible when the

subproblems were considered in isolation.
11. Implementing composition

In the PF approach architecture can be seen as the

composition and implementation of the subproblem

machines in a realistic problem. Because a full-scale

realistic problem is likely to be the object of radical design,

there are several approaches that can be valuable in different

cases.

Two reported approaches aim to bring more realistic

problem classes within the ambit of normal design. The first

is reported in [11], where the machine of a subproblem is

assumed to be specialised in a standard way that implements

a particular scheduling and prioritisation scheme. The

problem is to satisfy customer orders in a warehouse.

Investigation of the requirement shows the potential for

interference between orders for the same product, leading to

duplicate allocation of the same stock. It also shows the

need for a fair scheduling, ensuring that an order placed

earlier will be allocated scarce stock in preference to a later

competing order. The solution proposed is to use a

specialised machine rather than the generic general-purpose

computer usually assumed in an elementary problem frame.

The specialised machine has built-in behavioural properties

one-at-a-time and first-come-first-served, each capable of

being instantiated for the problem in hand. In effect, aspects

of the requirement are being delegated to the implemen-

tation. Some part of the requirement need not be stated in

explicit detail because it is implicit in the choice of the

specialised machine.

The second of these approaches is reported in [28], where

the idea of an architectural frame or AFrame is introduced

as an elaboration of the problem frame diagram to

accommodate an early architectural decision. One of their

examples is a Transformation problem frame in which
a standard decomposition into sequential processes is

expected, and the architectural decision has been made to

implement composition of the resulting machines by the

pipe-and-filter architecture. Another example draws on the

well-known MVC pattern [20].

Both of these approaches can be regarded as enlarging

the set of devices that can be the object of normal design by

defining specialised composite elementary problem frames.

A different approach is reported in [22], where the task of

composing conflicting requirements is addressed. In this

approach an additional machine—which may be viewed as

an architectural connector—is introduced between the

conflicting machines and their common problem domains,

and arbitrates in cases of conflict. In [22] the approach is

examined in several different cases of real and potential

conflict, and offers, at least in part, the possibility of

application in the composition of many different realistic

problems.
12. Specialisation and the growth of knowledge

It is apparent from Vincenti’s account that an important

part of the success of the established branches of

engineering can be attributed to specialisation. Vincenti

takes it entirely for granted that aeronautical engineers do

not work on problems in other branches: they do not

design bridges or chemical plants or even motor cars. The

specialisation goes deeper, to much lower levels. For

example, W.F. Durand and E.P. Lesley devoted their work

from 1916 to 1926 on the design of propellers [31]. One

whole chapter of Vincenti’s book is devoted to the

development by the aircraft companies of flush riveting, in

which the aerodynamic properties of wings and fuselages

are improved by the use of rivets whose head do not

protrude above the surface of the skin.

Even a cursory inspection of the literature of an

established branch of engineering reveals a similar level

of specialisation. Whereas much software engineering

literature (like the present paper, it might be said) tends to

focus on general concerns or on methods or approaches

proposed for universal or nearly universal application, the

literature of established engineering tends rather to focus on

highly specialised applications and problems. For example,

one issue of The Journal of Structural Engineering [16]

contains papers on such topics as ‘Performance Evaluation

of Controlled Steel Frames under Multilevel Seismic

Loads’, ‘Stress Concentration Factors of Doubler Plate

Reinforced Tubular T Joints’, ‘Reliability Assessment of

Highway Truss Sign Supports’, and ‘Wind Sensitivity of

Recycled Plastic Soundwalls’. This kind of specialisation

seems an essential foundation for the incremental growth of

knowledge in the established branches of engineering.

Specialisation is essential to the growth of knowledge

because it allows experience to be accumulated effectively

and systematically. The accumulation of experience
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and knowledge demands a conceptual structure within which

it can be evaluated and stored, and from which it can be

reliably and easily retrieved when it is relevant. Excessively

narrow specialisation results, perhaps, in a smaller contri-

bution to knowledge than would otherwise have been possible,

but in a contribution nonetheless. Absence of specialisation

often results in no contribution at all: the knowledge gained is

too vaguely expressed, and is added to a largely unstructured

corpus of software engineering knowledge in general rather

than to a specific place or places in a detailed structure. The

existence of a structured corpus of knowledge offers no

guarantee that the knowledge will be used—that is, retrieved

and applied when it should. The notorious failure of the

Tacoma Narrows Bridge in 1940 was due to wind-induced

oscillation of a kind that had been observed repeatedly in

suspension bridges and recorded from as early as 1836 [23].

But the absence of such a knowledge structure virtually

guarantees that it will not be used.
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