
 1

An Experimental Validation of the ADORA Language

Stefan Berner, Nancy Schett, Yong Xia, Martin Glinz

Technical Report 99-07
Institut für Informatik, Universität Zurich

Winterthurerstrasse 190
CH-8057 Zurich, Switzerland

+41-1-63 54570
http://www.ifi.unizh.ch/~glinz

Abstract

ADORA (Analysis and Description of Requirements and Architecture) is an approach to
object oriented modeling that is based on object modeling and hierarchical decomposition, using
an integrated model. The ADORA language is intended to be used for requirements specifications
and high-level, logical views of software architectures.

In order to assess the comprehensibility and the appeal of specifications written in ADORA we
conducted a controlled experiment with students. We wrote two specifications of the same prob-
lem in ADORA and in UML and let the students study them. Then we tested the students' compre-
hension by asking questions about the contents of the specification and tested how they liked
ADORA in comparison to UML by asking questions about personal preferences.

In this report we describe the experiment and report the results.

1. Introduction

ADORA (Analysis and Description of Requirements and Architecture) is an approach to
object-oriented modeling that is based on object modeling and hierarchical decomposition, using
an integrated model. The ADORA language is intended to be used primarily for requirements
specifications and also for logical-level architectural design.

The principal ideas of ADORA are listed as follows.
• Using an integrated model. Unlike UML, in which a collection of different models with

nearly no semantics in between is used to specify a whole system, an integrated model is
adopted in ADORA. This makes it possible for us to check the consistency of the whole
system.

• The system being modeled with hierarchical decomposition. Decomposition ensures
large specification being manageable and comprehensible. ADORA uses abstract, proto-
typical objects, instead of classes, as the core of the ADORA model. This is a most distinc-
tive feature of the ADORA model, which allows that objects can be recursively
decomposed into objects (or elements that may be part of an object, like states). Therefore,
the full power of object modeling on all levels of the hierarchy can be exploited with this
decomposition mechanism, and only the degree of abstractness is varied: objects on lower

 2

levels of the decomposition model small parts of a system in detail, whereas objects on
higher levels model large parts or the whole system on an abstract level.

• Visualizing models in context. The integrated ADORA model is visualized by presenting
details of a model always with an abstraction of its surrounding context. Hierarchical
structures can be viewed at any level of detail. A fisheye view concept [1] is used to real-
ize these features.

• Expressing different parts of a specification with varying degree of formality. The
ADORA language contains elements that - together with an open and flexible modeling process -
allow tailoring the formality of ADORA models to the problem at hand.

The detailed introduction to ADORA is given in [2,3].

2. Goals of the experiment

In our opinion, there are two fundamental qualities that a specification language should have:
• When people set up a model using a language (or a set of notation), the language should

help users to interpret the meanings of that model correctly.
• The users must like it. In particular, the language must be easy to read (a specification has

much more readers than writers).

Therefore, we set up our experiment with the following goals.
(i) Determine the comprehensibility of an ADORA specification both on its own and in com-

parison with an equivalent specification written in UML – today's standard modeling lan-
guage – from the viewpoint of a reader of the specification.

(ii) Determine the acceptance of the fundamental concepts of ADORA (using abstract objects,
hierarchical decomposition, integrated model...) both on its own and in comparison with
UML from the viewpoint of a reader/writer of models.

3. Setup of the experiment

The basic idea of the experiment was
• to write two specifications of the same problem, one in ADORA and one in UML
• let students read these specifications
• test the comprehensibility and acceptance of the two specification languages by asking

questions (a) about the contents of the specifications and (b) about the personal impres-
sions and preferences of the students.

3.1 Preparation of the experiment.
As a sample application we chose a distributed ticketing system. The system consists of geo-

graphically distributed vending stations (POS) where users can buy tickets for events (concerts,
films, musicals...) that are being offered on several event servers. The vending stations and the
event servers shall be connected by an existing network. From another project, we had a detailed
specification of this system written in natural language (in German) [5].

Because of the limited experiment time, we only wrote partial specifications of the ticketing
system in ADORA and in UML. We also prepared two introductory tutorials on UML and on
ADORA.

 3

The UML specification was written by a new research assistant who was familiar with UML,
but had nearly no knowledge of ADORA before. The UML tutorial was written by an experienced
research assistant, who works on another project of our group which has few relations with the
ADORA project. The ADORA specification and tutorial were written jointly by a research assis-
tant who had worked in the ADORA project for several years and a graduate student.

Both teams jointly prepared the questionnaires. The two teams worked separately and inde-
pendently at most of the time. At the end of modeling the system, they collaborated in order to get
two models nearly equal in semantics (We purposely made some small differences in the two
models and asked the participants in the questionnaires to tell the differences).

The questionnaire consisted of two parts. The original questionnaire was written in German.
In Appendix A4 both the original German version as well as an English translation are given. In
the first part of the questionnaire, the “objective” one, we aimed at measuring the comprehensibil-
ity of an ADORA model. We created 30 questions about the contents of the specification to test
whether the participants understood the execution of the Ticketing System correctly. 25 questions
were yes/no questions; the rest were open questions. We also prepared a sheet with the correct
answers for all questions.

For every question, we additionally asked
• whether the answering person was sure or unsure about her or his answer;
• how difficult it was to answer the question (effort: easy, moderate, difficult, impossible).
In the second part, the “subjective” one, we tested the acceptance of ADORA vs. UML. We

asked 14 questions about the personal opinion of the answering person concerning distinctive fea-
tures of both ADORA and UML.

3.2 Participants
We ran the experiment with fifteen persons who were not members of our research group.

Most participants were Diploma students1 or Ph.D. students from our department. A few partici-
pants came from industry. We ensured that all participants had sufficient fundamental knowledge
in Computer Science and particularly in software specification.

The members of our research group had nearly no personal contacts with any of the partici-
pants.

Most participants had some knowledge in UML. None of them had been exposed to ADORA
before.

3.3 Process of the experiment
Figure 1 shows our experiment process.

1. These students are at the level of M.Sc. students.

 4

Figure 1. The process of the experiment

The participants were first given an introduction both to ADORA and to UML.
According to the experiment process, we gave them one hour training on UML and one hour

training on ADORA.
Then the participants worked in two groups. The members of Group 1 answered the objective

part of the questionnaire first for the ADORA specification and then for the UML specification;
Group 2 members did it vice-versa. Finally, both groups answered the subjective part of the ques-
tionnaire.

We did not assign participants to a certain group but asked the participants to form two groups
(equal or almost equal in size).

While participants were working on the questionnaires, only questions concerning syntax/
semantics of language elements or understanding the questions/questionnaires were answered by
the members of our group. The participants were also strongly advised to refer only to the given
specification when trying to answer a question. The students were asked not to sign their name on
the questionnaires.

At the end of experiment, they were asked to hand in their questionnaires to us, after they fin-
ished the work.

3.4 Validity of the experiment
Fairness is the major concern of this experiment, because any bias to our own specification

language, ADORA, would make the whole experiment meaningless. Therefore, we took the fol-
lowing measures to avoid bias towards ADORA and to make the experiment fair.

1. Selecting an example system which had not been used in the ADORA project before. The
ticketing system was first used in another project "Simulation Tools for Requirement
Engineering" which has no direct relation with the ADORA project.

2. Equal and good quality of the models both in ADORA and in UML for that system. As we
described above, we divided our group into two teams. The UML team consisted of
research assistants who were familiar with UML and were not directly involved in the
ADORA project. This team wrote the UML specification of the ticketing system and pre-
pared the UML tutorial.

3. Fairness of the Questionnaires. During the preparation, our research group members had
been strongly advised to make the questionnaires neutral. It was the team working on the
UML part that contributed to most of questions in the questionnaires.

Mini Tutorial
ADORA

(both groups)

Mini Tutorial
UML

(both groups)

 Obj. Questions
ADORA

(group 1)

 Obj. Questions
UML

(group 2)

Obj. Questions
UML

(group 1)

Obj. Questions
ADORA

(group 2)

Subj. Questions
(both groups)

 5

4. Participants with the knowledge of computer science, but no ideas on ADORA. The
ADORA project is still in the research phase, and has never been disseminated to the participants
(mainly our students) in any software engineering courses.

5. Equal training for the both specification languages (UML and ADORA). As mentioned in
the experiment process, the participants got the same amount of training both on UML and
ADORA (1 hour for each).

6. Two randomly divided groups, working on opposite sequences (UML/ADORA and ADORA/
UML). We ensured this according to our experiment process (c.f. Section 3.3).

7. Anonymity of the filled questionnaires. This was fulfilled in our experiment process (c.f.
Section 3.3).

Through these efforts, we think we have adopted a neutral stance in the experiment.

4. Results

Two participants did not finish the experiment; another person’s answers could not be scored
because his answers revealed insufficient basic knowledge of object technology. So we finally
had twelve complete sets of answers.

The results are presented in the following diagrams and tables.

4.1 Evaluation of the “objective” questionnaire
Table 1 summarizes the result of the evaluation of the "objective" questionnaire for the two

groups. As the differences between Groups 1 and 2 are marginal, we consolidated the results of
the two groups. The consolidated figures are also shown in Table 1.

For each model, we should have a total of 360 answers (30 questions times 12 participants).
For every answer, we determined whether the answer was objectively right or wrong according to
our answer sheet. The answers were further subdivided into those where the answering person
was sure about her or his answer and those where she or he was not (the confidences of the partic-
ipants on answering questions). Those values again are subdivided, indicating how difficult it was
to answer the questions in the participants’ opinion (the efforts of the participants on answering
question). For some questions, as participants forgot to give the ranks of confidence or effort, we
excludes those answer from our final statistical data.

easy moderate difficult impossible
(guess)

G
R

O
U

P
 1

 -
 A

D
O

R
A

ri
gh

t sure 50 (34.5%) 48 (33.1%) 14 (9.7%) 0 (0%) 112 (77.2%) 132
(91.0%)

unsure 0 (0%) 6 (4.1%) 14 (9.7%) 0 (0%) 20 (13.8%)

w
ro

ng sure 1 (0.7%) 0 (0%) 3 (2.1%) 0 (0%) 4 (2.8%) 13
(9.0%)

unsure 3 (2.1%) 6 (4.1%) 0 (0%) 0 (0%) 9 (6.2%)

Table 1: Evaluation results of "objective" questionnaire

 6

 In Figures 2 and 3, the results are visualized graphically. For example, in the Figure 2, we cal-
culated the percentages (shown on the vertical coordinate axis) by sorting the participants’
answers by groups (Group 1, Group 2), models (UML, ADORA), correctness (right, wrong),
effort (easy, moderate, difficult, impossible) and confidence (sure, unsure).

G
R

O
U

P
 1

 -
 U

M
L

ri
gh

t sure 66 (43.4%) 28 (18.4%) 6 (3.9%) 0 (0%) 100 (65.8%) 131
(86.2%)

unsure 3 (2.0%) 6 (3.9%) 22 (14.5%) 0 (0%) 31 (20.4%)

w
ro

ng sure 1 (0.7%) 2 (1.3%) 6 (3.9%) 0 (0%) 9 (5.9%) 21
(13.8%)

unsure 8 (5.3%) 3 (2.0%) 1 (0.7%) 0 (0%) 12(7.9%)

G
R

O
U

P
 2

 -
 A

D
O

R
A

ri
gh

t sure 57 (44.9%) 39 (30.7%) 7 (5.5%) 0 (0%) 103 (81.1%) 113
(89.0%)

unsure 1 (0.8%) 4 (3.1%) 5 (3.9%) 0 (0%) 10 (7.9%)

w
ro

ng sure 0 (0%) 3 (2.4%) 1 (0.8%) 1 (0.8%) 5 (3.9%) 14
(11.0%)

unsure 6 (4.7%) 1 (0.8%) 0 (0%) 2 (1.6%) 9 (7.1%)

G
R

O
U

P
 2

 -
 U

M
L

ri
gh

t sure 40 (31.0%) 24 (18.6%) 3 (2.3%) 8 (6.2%) 75 (58.1%) 99
(76.7%)

unsure 2 (1.6%) 8 (6.2%) 14 (10.9%) 0 (0%) 24 (18.6%)

w
ro

ng sure 0 (0%) 2 (1.6%) 7 (5.4%) 0 (0%) 9 (7.0%) 30
(23.3%)

unsure 13 (10.1%) 6 (4.7%) 1 (0.8%) 1 (0.8%) 21 (16.3)

G
R

O
U

P
s

1+
2

-
A

D
O

R
A

ri
gh

t sure 107(39.3%) 87 (32.0%) 21 (7.7%) 0 (0%) 215 (79.0%) 245
(90.1%)

unsure 1 (0.4%) 10 (3.7%) 19 (7.0%) 0 (0%) 30 (11.0%)

w
ro

ng

sure 1 (0.4%) 3 (1.1%) 4 (1.5%) 1 (0.4%) 9 (3.3%) 27
(9.9%)

unsure 9 (3.3%) 7 (2.6%) 0 (0%) 2 (0.7%) 18 (6.6%)

G
R

O
U

P
S

1+
2

-
U

M
L

ri
gh

t sure 106(37.7%) 52 (18.5%) 9 (3.2%) 8 (2.8%) 175 (62.3%) 230
(81.9%)

unsure 5 (1.8%) 14 (5.0%) 36 (12.8%) 0 (0%) 55 (19.6%)

w
ro

ng sure 1 (0.4%) 4 (1.4%) 13 (4.6%) 0 (0%) 18 (6.4%) 51
(18.1%)

unsure 21 (7.5%) 9 (3.2%) 2 (0.7%) 1 (0.4%) 33 (11.7%)

easy moderate difficult impossible
(guess)

Table 1: Evaluation results of "objective" questionnaire

 7

Figure 2 should be read as follows. For example, in Group 1, about 77% of the questions
about the ADORA model were answered correctly and the participants were sure about their
answer. For about 45% of these answers, the participants judged the answer to be easy to give.

Figure 3 shows the overall results for the first goal of our evaluation, indicating the compre-
hensibility of ADORA models vs. UML models.

 Figure 2. Comprehensibility of models (Groups 1 and 2 shown seperately)

Distribution of Evaluation Results (Correctness, Effort, and Confidence)

Group 1 / ADORA

0

10

20

30

40

50

60

70

80

right (sure)
group 1/Adora

right (unsure) wrong (unsure) wrong (sure)

answer

%

easy

moderate

difficult

impossible

Group 2 / ADORA

0

10

20

30

40

50

60

70

80

right (sure)
group 2/Adora

right (unsure) wrong (unsure) wrong (sure)

answer

%

easy

moderate

difficult

impossible

Group 1 / UML

0

10

20

30

40

50

60

70

80

right (sure)
group 1/UML

right (unsure) wrong (unsure) wrong (sure)

answer

%

easy

moderate

difficult

impossible

Group 2 / UML

0

10

20

30

40

50

60

70

80

right (sure)
group 2/UML

right (unsure) wrong (unsure) wrong (sure)

answer

%

easy

moderate

difficult

impossible

 8

4.2 Evaluation the “subjective” questionnaire
Table 2 summarizes the results of the subjective part of the questionnaire.

The above table can be read as follows. For example, consider the statement of "the specifica-
tion gives the reader a precise idea about the system components and relationship". For the

Statement strongly
agree

mostly
agree

mostly
disagree

strongly
disagree

The specification gives the reader a precise idea
about the system components and relationships

ADORA 23 % 62 % 8 % 8 %

UML 8 % 46 % 31 % 15 %

The structure of the system can be determined
easily

ADORA 54 % 31 % 8 % 8 %

UML 8 % 38 % 23 % 31 %

The specification is an appropriate basis for
design and implementation

ADORA 25 % 75 % 0 % 0 %

UML 0 % 50 % 33 % 17 %

Using an integrated model (ADORA) makes sense 42 % 25 % 33 % 0 %

Using a set of loosely coupled diagrams (UML) makes sense 8 % 17 % 67 % 8 %

Hierarchical decomposiition eases description of large systems 15 % 69 % 15 % 0 %

ADORA eases focusing on parts without losing context 38 % 46 % 15 % 0 %

Decomposition in ADORA eases finding information 46 % 38 % 15 % 0 %

Integrating information from different diagrams is easy in UML 15 % 15 % 46 % 23 %

Specifying objects with their roles and context is adequate 31 % 54 % 15 % 0 %

Describing classes is sufficient 0 % 15 % 62 % 23 %

Table 2: Acceptance of distinct features: ADORA vs. UML

Distribution of Evauation Results
(Correctness, Effort, and Confidence)

UML ADORA

0

10

20

30

40

50

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

0

10

20

30

40

50

60

70

80

right
(sure)

right
(unsure)

wrong
(unsure)

wrong
(sure)

easy

moderate

difficult

impossible

 Figure 3. Comprehensibilty of models (two groups consolidated)

 9

ADORA model, 23% of the participants strongly agree with this statement; 62% of the partici-
pants mostly agree this statement; 8% of the participants mostly disagree this statement; and 8%

of the participants strongly disagree1.

4.3 Analysis of the results
A qualitative analysis of the evaluation results yields the following tendencies for both

groups.

• Reading ADORA models is less prone to errors than reading UML models.
When we analyze the errors that the participants made when reading the models, we find that
the participants made fewer errors with ADORA than with UML. In Group 1, there is a differ-
ence of 4.8%, while in Group 2 the difference is 12.3%. In the consolidated results, we have a

difference of 8.3%2. Using Hypothesis Testing [6], we found that the result is statistically sig-
nificant at the 0.5% level, which is a very strong result (for details, see Appendix 5).

• Both groups of participants strongly support our hypothesis that users like the fundamental
concepts (abstract objects, hierarchical decomposition, integrated models, etc.) of ADORA
and that they prefer them to those of UML.
From the Table 4, we can easily get the above conclusion. As the size of the sample is small,
we do no statistical analysis here.

From the confidence analysis of the results, we can see that

• when participants correctly answer a question, they are more confident of themselves after
reading the ADORA model
Let us study the consolidated results of Group 1 and Group 2. For those correctly answered
questions, which were got after participants worked on the ADORA model, 87.8% (215/245)
of them were answered by the students with confidence (instead of random guess). For those
correctly answered questions, which were got after participants worked on the UML model,
76.1% (175/230) of them were answered by the students with confidence.
We can see the same tendency, when we study Group 1 (84.8% vs. 76.3%) and Group 2
(91.2% vs. 75.8%) separately. I.e. comparatively speaking, when participants read the
ADORA model, they got clearer information. Therefore, their selections of answers were more
based on their interpretations of the model rather than by random guess.

Again, the result is statistically significant at the level of 0.5%.

• Though participants make a mistake, they are more confident that they are "correct", when
reading the UML model.
From Table 1 and Table 2, we find a contradiction: Group 1 is against the above statement,
and Group 2 is for the statement.

1. The percentages have been rounded properly, therefore the sums in the rows sometimes yield 99% or
101%.

2. The possible reasons are: the participants in Group 1 did the ADORA part first. Comparatively, it was eas-
ier for them to answer nearly the same questions in UML notations again.

 10

From the consolidated results of Group 1 and Group 2, using the method of Hypothesis Test-
ing again, we calculate the statistics and conclude that there is not a significant difference
between the proportions of answering questions wrong with random guess reading two mod-
els at a 40% level of significance.
Therefore, we think this statement can not be proved from our experiment.

• From the efforts analysis, we can draw no special statements in favor of either UML or
ADORA.

5. Conclusions

Despite the fact that the number of participants is fairly small, these results strongly support
the comprehensibility hypothesis and also show a clear trend that an ADORA specification is eas-
ier to comprehend than an UML specification. The results also strongly support our hypothesis
that users like the fundamental concepts of ADORA and that they prefer them to those of UML.

Our students are just the people who will soon use those specification languages in their
industrial careers. Thus they represent the future software engineers in the industrial field. In this
sense, working with students in the ADORA validation experiment is reasonable.

Due to our explicit measures for ensuring a fair, unbiased experiment we are confident that
our results are not inadvertently biased in favor of ADORA.

The experiment and its encouraging results give us the confidence that the ADORA approach
will meet our expectations concerning the comprehensibility of ADORA models and the accep-
tance of the ADORA concepts. We think that our validation approach can also be applied for
doing similar validation work on other modeling languages.

 11

References

1. Berner, S., Joos, S., Glinz, M. Arnold, M. (1998). A Visualization Concept for Hierarchical
Object Models. Proceedings 13th IEEE International Conference on Automated Software
Engineering (ASE-98). 225-228.

2. Glinz, M., Berner, S., Joos, S., Ryser, J., Schett, N., Schmid, R., Xia, Y. (2000). The ADORA
Approach to Object-Oriented Modeling of Software. Submitted for publication. http://
www.ifi.unizh.ch/groups/req/ftp/papers/ADORA_approach.pdf

3. Joos, S. (1999). ADORA-L – Eine Modellierungssprache zur Spezifikation von Software-
Anforderungen [ADORA-L – A modeling language for specifying software require-
ments. [In German]. Ph.D. Thesis, University of Zurich.

4. Rumbaugh, J., Jacobson, I., Booch, G. (1999). The Unified Modeling Language Reference
Manual. Reading, Mass., etc.: Addison-Wesley.

5. Schmid, R., Berner, S., Joos, S., Reutemann R., Ryser, J. (1998): Spezifikation des Referenz-
modells. Arbeitsdokument des AK’s Simulation für das RE, GI-Fachgruppe 2-1-6 .

6. Fogiel, M.(1984). The Statistics Problem Solver. Research and Education Association, New
York, N.Y. 10018

 12

Appendices

A1. Overview of the Ticketing System

The ticketing system, which is used in this experiment, is roughly introduced here in a natural
language. A more detailed description of this system can be read in [5][3].

This system is an information management system, whose main functions are
1) Management of the events (films, concerts, etc) taking place in the region. This includes the
events information being added, being modified, and being deleted.
2) Handle of the ticket-purchase of those events.

The system is consisted mainly three parts:
• Event-Server: All the information of events and the information relating to them (e.g. the

information of seats, etc.)are processed in the Event Server. One Event-Server may stores the
information of one or more events. There are several Enevt-Servers in the system.

• POS: Customers will query all the events in each POS. They can reserve and pay for the tick-
ets of those events in the POS. There are a lot of POSs in the system. After receiving the
requests from the customers, POS will communicate with Event-Server, transfer the user com-
mands to the Server, and transfer the processed results from the Server back to the users.

• Network: It connects the Event-Servers and POSs in the system. For the limit of the experi-
ment time, we do not give detailed specification for this part.

 13

A2. ADORA specification of the ticketing system

TicketingSystem

use (1,1)->

POS …
“point of sale”

(0,n)

EventServer …

(1,n)

Network-
Administration …

useTerminal (1,1) ->
query (1,n) ->

maintain ->

maintain (1,n) ->
configure ->

Customer

Network
Operator

registerClient (1,1) ->
<- administerClient (0,n)

administerServer (1,n) ->
<- registerServer (1,1)

request (1,1) -> <- maintainEvents (1,n)

Event
Promoter

<- manage (1,n)

<- submitEventNames (n,m)

<- submitEventData (1,n)

Ticketing System --- Page 1

POSPOS -- point of sale, controls query, reservation and purchase of tickets

QueryAndPurchase -- main behavioral thread; handles event query and ticket purchase

begin …

initialization …
EventDirectory …

eventQuery …

ticketPurchase …

ProcessedEvent …

PaymentEngine :
extern

Printer : extern

systemFailure …

Terminal …

receive (started)
from Terminal /

receive (cancelOrTimeout)
over userInterface /

receive (startQuery) over userInterface/
send (displayAllEvents) over controlUI

receive (startPurchase)
over userInterface /

receive (cancelOrTimeout) over userInteface /

receive (ticketsPrinted) over print /

"no Terminal
or no EventDirectory
or no PaymentEngine
or no Printer"

req
ue

stE
ve

nt
Lis

t ->

<- collectPaymentFor

<- printTicketsFor

eventListToDisplay ->

<- requestEventData

<- userInterface

<- collect

<- print

oneEventToDisplay ->

controlUI ->

initiatePayment ->

initiatePrint ->

<- s…
qu …

<- submitEventData (1,n)
request (1,1) ->

"no Printer"receive (nodeShutdown)
over maintain /

"no Terminal
or no PaymentEngine

Ticketing System --- Page 2

 14

POSPOS -- point of sale, controls query, reservation and purchase of tickets

initialization

startup

shutdown …

receive (started)
from Terminal /

systemFailure …

EventDirectory …

PaymentEngine :
extern

Printer : extern

Terminal …

<- collect

<- print

QueryAndPurchase …

eventListToDisplay ->

controlUI ->

initiatePayment ->

initiatePrint ->

req
ue

stE
ven

tLis
t ->

<- submitE…
query (1,n …

"no Terminal
or no EventDirectory
or no PaymentEngine
or no Printer"

"no Printer"

"no Terminal
or no PaymentEngine

<- userInterface

stoppedreceive (nodeStartup) over maintain/
send (nodeConnect: posName …)
over registerClient

registeringPOS

registeredToNet

receive (nodeConnected) over administerClient /
send (startup) to EventDirectory

receive (started) from EventDirectory /
send (startup) to PaymentEngine

eventDirectoryUp

receive (started) from PaymentEngine /
send (initialize) to Printer

printerUp

receive (initialized) from Printer /
send (initialize) to Terminal

paymentEngineUp

true /
send (nodeDisconnect: …)
over registerClient

receive (nodeShutdown)
over maintain /

Ticketing System --- Page 3

POSPOS -- point of sale, controls query, reservation and purchase of tickets

EventDirectory -- provision and (automatic) update of the (local) list of available events

operational

eventlistToDisplay

req
ue

stE
ve

ntL
ist -

>

initialization

EventSummaries …

(0,n)

idle

stopped

receive (startUp) from compositionOf(self) /
"clear list of available events (->EventSummaries)"
send multicast (getService) over query

updating

…

…
…

receiveAll (eventSummary: name[String])
over submitEventNames /

"note: this means to receive all event names from all
servers thereafter, add event names to EventSummary"
send started to compositionOf(self)

receive (getEventSummaries) over requestEventList
"ask each event summary for the name of the event it
represents, and generate a list of event names"
send "this list of event names" over eventListToDisplay

receive (serviceAvailable: eventName[String])
over submitEventNames /

"add an event summary (event name, etc.)
to EventSummaries"

receive (serviceUnavailable: eventName[String])
over submitEventNames /

"remove the event summary (event name, etc.)
from EventSummaries"

…

query (1,n) ->
<- submitEventNames (n,m)

query (1,n) ->
<- submitEventNames (n,m)

…
…

request (1,1) ->
<- submitEventData (1,n)

EventServer …

(1,n)

EventServer …

(1,n)
…

Ticketing System --- Page 4

 15

POSPOS -- point of sale, controls query, reservation and purchase of tickets

QueryAndPurchase -- main behavioral thread; handles event query and ticket purchase

begin …

initialization …

eventQuery

receive (cancelOrTimeout)
over userInterface /

ticketPurchase …

receive (startQuery)
over userInterface /

send (displayAllEvents)
over controlUI

receive (startPurchase)
over userInterface /

systemFailure …

readyForSelection

oneEventSelected

readyForPurchase

receive (eventSelected: eventName[String])
over userInterface /

send (process: eventName[String])
to ProcessedEvent

receive (ready) from ProcessedEvent /
send (displayOneEvent) over controlUI

receive (started)
from Terminal /

receive (cancelOrTimeout) over userInterface /

receive (ticketsPrinted) over print /

EventDirectory …

ProcessedEvent …

PaymentEngine :
extern

Printer : extern

Terminal …

<- collectPaymentFor

<- printTicketsFor

<- collect

<- print

eventListToDisplay ->

req
ue

stE
ven

tLis
t ->

<- requestEventData

<- userInterface
oneEventToDisplay ->

controlUI ->

initiatePayment ->

initiatePrint ->

<- submitEventData (1,n)

receive (nodeShutdown)
over maintain /

"no Terminal
or no EventDirectory
or no PaymentEngine
or no Printer"

"no Printer" "no Terminal
or no PaymentEngine

request (1,1) ->

Ticketing System --- Page 5

POSPOS -- point of sale, controls query, reservation and purchase of tickets

QueryAndPurchase -- main behavioral thread; handles event query and ticket purchase

initialization …

receive (cancelOrTimeout)
over userInterface /

receive (startQuery) over userInterface /
send (displayAllEvents) over controlUI

systemFailure …

receive (started)
from Terminal /

eventQuery …

receive (startPurchase)
over userInterface /

ready

prepare

true /
-- cleanup
send welcomeMsg

to Terminal

begin

…

…

ticketPurchase

purchased&printing

reservation …

noTicketsPrinted

EventDire

ProcessedEvent …

PaymentE

Printer : e

Terminal

<- collectPaymentFor

<- printTicketsFor

<- collect

<- print

…

…

…

…

…

…

…

…

<- submitEventData (1,n)

receive (nodeShutdown)
over maintain /

"no Terminal
or no EventDirectory
or no PaymentEngine
or no Printer"

"no Printer" "no Terminal
or no PaymentEngine

…

<- requestEventData
oneEventToDisplay ->

<- userInterface
controlUI ->

receive (cancelOrTimeout)
over userInterface /

initiatePayment ->

initiatePrint ->

receive (purchaseConfirmed) from PaymentEngine /
send (purchaseCompleted) to ProcessedEvent
send (displayPurchasedAndPrintingMsg) over controlUI
send (printTickets) over print

receive (ticketsPrinted)
over print /

receive (printFailed) from print /
send (noTicketsPrinted) to ProcessedEvent
send printFailedMsg over controlUI

…

request (1,1) ->

Ticketing System --- Page 6

 16

POSPOS -- point of sale, controls query, reservation and purchase of tickets

QueryAndPurchase -- main behavioral thread; handles event query and ticket purchase

initialization …

receive (started)
from Terminal /

eventQuery …

receive (startPurchase)
over userInterface /

ticketPurchase

reservation

seatSelection

receive (reserveEvent) over userInterface /
send (doReservation) to ProcessedEvent

receive (reservationConfirmed)
from ProcessedEvent /

send (displayReservation) over controlUI
send (collect) over initiatePayment

receive (seat: nr[Cardinal] selected:
selected[Boolean]) over userInterface /

send (seat: nr[Cardinal] selected:
selected[Boolean]) to ProcessedEvent

send (displaySeatSelection) over controlUI

noTicketsPrinted

begin …

…

…

reserving

reserved

noReservation

purchased&printing

…

…

receive (purchaseConfirmed)
from PaymentEngine /

send (purchaseCompleted)
to ProcessedEvent

send (displayPurchasedAndPrintingMsg)
over controlUI

send (printTickets) over print

receive (purchaseFailed)
from PaymentEngine

send purchaseFailedMsg over controlUI

noPayment

"no Terminal
or no EventDirectory
or no PaymentEngine
or no Printer"

receive (nodeShutdown)
over maintain /

receive (ticketsPrinted)
over print /

…

…
systemFailure …

"no Printer"

receive (cancelOrTimeout)
over userInterface /

receive (startQuery) over userInterface /
send (displayAllEvents) over controlUI

receive (cancelOrTimeout)
over userInterface /

receive (printFailed) from print /
send (noTicketsPrinted)

to ProcessedEvent
send printFailedMsg over controlUI

receive (ready)
from ProcessedEvent /

send (redisplay) over controlUI

receive (reservationRejected)
from ProcessedEvent

send reservationRejectedMsg
over controlUI

Ticketing System --- Page 7

 17

QueryAndPurchase -- main behavioral thread; handles event query and ticket purchase

ProcessedEvent -- seat selection; communication (reservation, etc.) with the event server for one event

LocalEventData

"contains the
following information
about an event:
description
date, time, duration
location,
price,
seats (free, reserved,
purchased)
no tickets printed"

EventName

processingEvent

receive (detailInformation: eventData[EventData]) over submitEventData /
"store eventData (date, seats, etc.) from server locally in LocalEventData "
send (ready) to componentOf(self)

ready

receive (seat: nr[Cardinal] selected:
selected[Boolean])
from componentOf(self) /

"update seats in LocalEventData"

receive (reservationRejected)
over submitEventData /

send (reservationRejected)
to componentOf(self)

receive (doReservation)
from componentOf(self) /

send (doReservation: localEventData[EventData]
over request

receive (printFailed) from componentOf(self) /
"update ticket print information in LocalEventData …"
send (printFailed: localEventData[EventData]

over request

reserving

receive (reservationConfirmed)
over submitEventData /

"update reservation information
in LocalEventData"
send (reservationConfirmed)

to componentOf(self)

receive (getDetailInformation)
over requestEventData /

send (detailInformation:
localEventData[EventData])
over oneEventToDisplay

…

updating

…

…

receive (process: eventName[String])
from componentOf(self) /

self.eventName = eventName
-- remember name of event

prepare

true /
do some cleanup ... clear LocalEventData, etc
send (getDetailInformation: eventName[String]) over request

receive (purchaseCompletetd) from componentOf(self) /
"update purchase information in LocalEventData …"
send (purchaseCompleted: localEventData[EventData]

over request

<- submitEventData (1,n)
request (1,1) ->

Ticketing System --- Page 8

 18

A3. UML specification of the ticketing system

Knot NetworkAdm inis tration

1..* 11..* 1

Adm i nis trate
(log in/logout, etc)

EventTicket_DB

Printer

PaymentEngine Term inal EventDirectory
getEventInfo

EventServer

1

1

1

1

query

is _a

POS

is _a

1

1

1

1
part_of

1

1

1

1

part_of

1

1

1

1

part_of

1

1

1

1

part_of

1..*1..* 1..*1..*

sub m it_REQ

Domain Classes in t he Ticketi ng Sys tem

Class Diag ram --- Page 1

A User Case View of the whole System

With limited size of the model, the detailed scenarios of User Cases: "Login/out", "get
Event&Ticket statistical Report", and "Event_porvide" will not be included in this model.

Use Case Diagram --- Page 2

Login/out
NetworkOperator

Purchase

Query

Customer

Event_provide

get Event&Ticket Statistical Report

EventPromoter

 19

Query and Purchase : Principal Flow

Activity Diagram---Page 3

Select Event

Select Seats

Pay for
Tickets

Successful
Payment

incorrect
Payment

Purchase

Query

Show Events
List

Query
 EventDetailedInfo

Show
SeatsInfo

Reserve Seats

Inform Server
on Tickets

Show
TicketsInfo

Report
EventdetailedInf

ChangeSeatsStatus
(free -> reserved)

Check
SeatsStatus

ChangeSeatsStatus
(reserved -> sold)

[some selected Seats not free]

[Seats free]

 : EventServer : POS : Customer

 20

A S c enario o f Q uery

C o llabo ra t ion D iag ram --- P ag e 4

 : C u s to m e r

 :
Te rm ina l

 : P O S

 : E ven tTic k e t_D B : E ven t S erve r

 :
E ven tD irec to ry

1 : g e te ve n tin d e x()

5 : s el e c te ve n t& q ue r ytic k e ti nf o (E ve n tID , Q ryC o n d iti o n)

2 : g e te ve n tin d e x()

6 : q u e ryticke tin fo (E ve n tID , Q ryC o n d i tio n)

1 1 : d is p la yticke tin fo (Q ryR e s u lt)

7 : q u e ryticke tin fo (E ve n tID , Q ryC o n d i tio n)

1 0 : re tu rn (Q ryR e s u lt)

3 : g e te ve n tl is t()

8 : q ue ry tic ke ti nfo (E ve n tID , Q ry Co n d iti o n)

9 : re tu rn (Q ryR e s u lt)

4 : d is p la ye ve n tl is t(E ve n tIn fo)

 : C u s to m e r

 : Te rm ina l : P OS : E ven tS erver : E ventTi c k et_DB : E vent Dir ectory

getevent index ()
geteven t ind ex ()

ge tevent lis t()

d is p lay even t lis t (E ven tIn fo)

s e le c te ve n t(E ve n tID)
s e le c te ve n t(E ve n tID)

d is p la yd e ta i le ve n tin fo (E ve n tID)

q u e ryti cke ti n fo (C on d i tio n)

q u e ryicke tin fo (C o n d itio n)
que ry t ic k et in fo(Condit ion)

q u e ryticke tin fo (C o n d itio n)

re tu rn (Q ry R es u lt)

r etu rn (Q ry R es ul t)

d is p la yticke tin fo (Q ryR e s u lt)

A S c enario o f Q uery

S equenc e D iag ram --- P age 5

 21

 : Customer

 :
Terminal

 : POS

 :
PaymentEngine

 : Printer

 : EventTicket_DB : EventServer

A Scenario of successful Purchase

Collaboration Diagram --- Page 6

 : EventDirectory

1: geteventindex()

5: selectevent&queryticketinfo(EventID, QryCondition)

12: selectseat(SeatNos)

20: pay()

2: geteventindex()

6: queryticketinfo(EventID, QryCondition)

11: displayticketinfo(QryResult)

13: reserveseat(SeatNos)

18: display(ReservedMsg)

23: display(BookedMsg)

7: queryticketinfo(EventID, QryCondition)

10: return(QryResult)

14: Reserveseat(EventID, SeatNos)

17: return(ReservedMsg)

24: updatedb(EventID, SeatNos)

3: geteventlist()

19: intialize()

21: [accept]:paid()

22: print(EventID, SeatNos)

8: queryticketinfo(EventID, QryCondition)

9: return(QryResult)

15: reserve(EventID, SeatNos)

16: [accepted]:return(ReserveMsg)

25: updatedb(EventID, SeatNos)

4: displayeventlist(EventInfo)

 22

 : Customer

 : Terminal : POS : EventDirectory : Printer : EventTicket_DB : EventServer : PaymentEngine

geteventindex() geteventindex() geteventlist()

displayeventlist(EventInfo)

selectevent(EventNo)

selectevent(EventNo)

displaydetaileventinfo(EventNo)

queryticketinfo(Condition)

queryticketinfo(Condition) queryticketinfo(Condition)

queryticketinfo(Condition)

return(QryResult)
return(QryResult)

displayticketinfo(QryResult)

selecseat(SeatNo)
selectseat(SeatNos)

reserveseat(SeatNos)

reserve(SeatNos)

[accept]/return(SeatNos)

return(ReservedMsg)
return(ReservedMsg)

initialize()

pay()
[accept]/paid()

display(BookedMsg)
print(SeatNos)

updatedb(SeatNos)

updatedb(SeatNos)

A Scenario of successful Purchase

Sequence Diagram -- Page 7

 23

inactive

active

ticketsPrinting

ticketsPurchase

seatsreserved Seatsselected
Seatsunavailable

Seatreserv ing

WelcomeMsgDisplayed

eventQuery

allEventsdisplayed a_specif ic_Eventselecting an_Event_detailed_Infodisplayed

errorMsgDisplayedticketsPrinting

initializing

EventDirectoryUp&Eventlist_updatedPaymentEngineUp

PrinterUp

PaymentEnginefailed

PaymentEngineinitialized

Printerfailed

Printerinitialized

allComponentsinitialized

EventDirectoryinitialized

EventDirectoryfailed

ticketsPurchase

seatsreserved Seatsselected
Seatsunavailable

Seatreserv ing

seatsreserved Seatsselected

WelcomeMsgDisplayed

eventQuery

allEventsdisplayed a_specif ic_Eventselecting an_Event_detailed_InfodisplayedallEventsdisplayed a_specif ic_Eventselecting
selectevent an_Event_detailed_Infodisplayedeventselected

ticketprinted

errorMsgDisplayed

sucessfullypaid

pay ment failed

logout[NOT IN "ticketPrinting" AND "seatreserved"]

timeout

selectseats

timeout

Seatsunavailable

timeout OR cancel

NodeShutdown

NodeStartup

Statechart: POS

State Diagram --- Page 8

Seatreserv ing

selectseats

sucessfullyreserved Reservationfail ed

reserveseats

reselectseats

timeout OR cancel
listevent

 24

S t a t e c h a rt : E ve n t D ire c t o ry

S t a t e D ia g ra m --- P a g e 9

in i t ia l iz a t io
n

E ve n t l is t
u p d a t in g

E ve n tD i re c t ory fa i le d [fa i lu re]

E ve n t D ir e c to ry in i ti a l iz e d [s u c c e s s]

re a d y fo r
S y n c ro n iz a t io n _ w it h _ S e rve

a l l_ E ve n ts fro m E ve n t_ S e r ve r tr a n s fe r e d

E ve n t _ a d d e d
t o E ve n t D i re c t o ry

E v e n t_ d e le t e d
t o E ve n t D ire c t o ry

e ve n t s _ l is t _ d is p la y u p d a t e d

s e rvic e A va i l a b le (E ve n tID)
s e rvic e U n a va i la b le (E ve n t ID)

e ve n ts _ l i s t_ d i s p la yu p d a te d

initialization

successfulpayment

payingfailure

readyforuse

Paym entEngineinitialized
[success]

PaymentEnginefailed
[failure]

Statechart: Payment Engine

State Diagram --- Page 10

timeout

validpayment [successfully paid]

invalidpaym ent [paym ent failed]ti me out

 25

A.4. Questionnaire

 A4.1. Objective” questionnaire (in German)

Fragebogen I

Sprache
❏ Adora
❏ UML

Gruppe
❏ 1 (ADORA/UML)
❏ 2 (UML/ADORA)

Kenntnisse in

ve
rti

ef
t

gu
t

K
ei

ne
 /

w
en

ig

DB-Modellierung

OO-Modellierung
OO-Programmierung
OODB-Modellierung

Strukturierte Analyse
sonstige Modellierung

1/3

ja w
ah

rs
ch

ei
nl

ic
h

ja
w

ah
rs

ch
ei

nl
ic

h
ne

in
ne

in
ei

nf
ac

h
an

ge
m

es
se

n
sc

hw
ie

rig
un

m
ög

lic
h

Antwort Aufwand

❏ Unterlagen vorher studiert

1. Die Funktionen einer Verkaufsstelle umfassen:

1.1 Registrieren (Anmelden/Abmelden) der Verkaufsstelle bei der
Netzwerk Administration.

1.2 Bereitstellen einer Veranstaltungsübersicht und Abwicklung des
eigentlichen Ticketkaufs.

1.3 Abwicklung des Ticketkaufs mit dem/den Veranstaltungsser-
ver(n).

1.4 Abwicklung der Bezahlung und des Ticketdrucks.

2. Wenn ein Benutzer sich über die angebotenen Ereignisse infor-
mieren möchte (Veranstaltungsübersicht), wird auf dem Termi-
nal der Verkaufsstelle eine entsprechende Liste angezeigt.

Was trifft zu:
2.1 Diese Liste wird von der Verkaufsstelle jedesmal aufs Neue von

den Veranstaltungsservern angefordert.

2.2 Diese Liste ist lokal in der Verkaufsstelle gespeichert und wird bei
einer Angebotsänderung automatisch aktualisiert.

2.3 Diese Liste ist lokal in der Verkaufsstelle gespeichert und wird in
bestimmten Zeitintervallen aktualisiert.

2.4 Wenn ein Benutzer die Veranstaltungsübersicht anfordert kom-
muniziert die Verkaufsstelle nicht mit den Veranstaltungsservern.

2.5 Gibt es eine bestimmte Komponente in der Verkaufsstelle, welche
diese Liste bereitstellt? Wenn ja welche?

__

3. Die vorliegende Spezifikation einer Verkaufsstelle beschreibt fol-
genden Sachverhalt:
Während eines Kaufvorgangs kann/können:

 26

2/3

ja w
ah

rs
ch

ei
nl

ic
h

ja
w

ah
rs

ch
ei

nl
ic

h
ne

in
ne

in
ei

nf
ac

h
an

ge
m

es
se

n
sc

hw
ie

rig
un

m
ög

lic
h

Antwort Aufwand

3.1 beliebig viele Tickets (Platzkarten) für eine Veranstaltung erwor-
ben werden.

3.2 nur ein einzelnes Ticket erworben werden; d.h. werden mehrere
Tickets gewünscht, müssen mehrere Kaufvorgänge abgwickelt
werden.

4. Gibt es (eine) bestimmte Komponente(n) in einer Verkaufsstelle,
die während des eigentlichen Ticketkaufs (nicht Angbotsab-
frage) für die Kommunikation mit dem Veranstaltungsserver
zuständig ist/sind. Wenn ja welche?

__

5. Wann wird/werden beim (entsprechenden) Veranstaltungsser-
ver der/die ausgewählte(n) Sitzplätze reserviert?

5.1 Nachdem der Benutzer alle gewünschten Sitzplätze ausgewählt
hat, versucht die Verkaufsstelle all diese beim Veranstaltungsser-
ver zu reservieren.

5.2 Jeweils nachdem der Benutzer einen Sitzplatz ausgewählt hat,
wird unmittelbar versucht, diesen beim Veranstaltungsserver zu
reservieren.

6. Ist es möglich, dass im Ticketing System:

6.1 keine Verkaufsstelle aktiv ist

6.2 kein Veranstaltungsserver aktiv ist

7. Eine Verkaufsstelle (ggf. die entsprechene Komponente) wendet
sich zur Erstellung einer Veranstaltungsübersicht (Verzeichnis
der angebotenen Veranstaltungen) an

7.1 alle Veranstaltungsserver

7.2 genau einen Veranstaltungsserver

7.3 die Netzwerkadministration

 27

3/3

ja w
ah

rs
ch

ei
nl

ic
h

ja
w

ah
rs

ch
ei

nl
ic

h
ne

in
ne

in
ei

nf
ac

h
an

ge
m

es
se

n
sc

hw
ie

rig
un

m
ög

lic
h

Antwort Aufwand

8. Eine Verkaufsstelle wickelt den eigentlichen Ticketkauf (nicht
Angbotsabfrage) mit

8.1 genau einem Veranstaltungsserver ab

8.2 mehreren Veranstaltungsserver ab

9. Welche Aktivität gehört nicht zur Ticketabfrage und Ticketkauf:

9.1 Ticketdruck (a)

9.2 Anzeige der Veranstaltungsübersicht (b)

9.3 Aktualisierung der Veranstaltungsübersicht (c)

9.4 Sitzplatzauswahl/Reservierung beim Veranstaltungsserver (d)

9.5 Veranstaltungsauswahl (e)

9.6 Bezahlung (f)

9.7 Wie ist die Abfolge der Aktivitäten während eines Ticketkaufs

10. Während des Ticketkaufs gibt es mindestens zwei (reguläre)
Situationen (Zustände), in denen eine spezielle Fehlerbehand-
lung notwendig ist. Welche sind diese?

11. Wann genau kann der Benutzer (während eines Ticketkaufs)
den Kaufvorgang nicht mehr abbrechen?

 28

A4.2. Objective” questionnaire (Translation in English)

Questionnaire I

Specification Language
❏ ADORA

❏ UML

Group
❏ 1 (ADORA/UML)
❏ 2 (UML/ADORA)

Knowledge on the fol-
lowing technique

ad
va

nc
ed

go
od

no
 /

lit
te

r
kn

ow
le

dg
e

DB-Modeling

OO-Modeling
OO-Programming
OODB-Modeling

Structural Analysis
Other Modeling

1/3

ye
s

m
ay

be
 y

es
m

ay
be

 n
o

no ea
sy

m
od

er
at

e
di

ffi
cu

lt
im

po
ss

ib
le

Answer Effort

❏ Familiar with our handout before

1. Functions of POS includes:

1.1 Registration (login/logout) of POS through the network adminis-
tration.

1.2 Providing the information of events and handling of ticket pur-
chase.

1.3 Handling of ticket purchase with Event-Servers

1.4 Handling the payment and printing the tickets for the customers

2. If a user liked to know about the offered events, the terminal of
POS will show a list of events

Which statements are correct:
2.1 The list will be updated from POS, whenever the new messages

(e.g. new event added, old event deleted, etc.) is transferred from
Event-Servers to POS

2.2 The events list is stored locally in the POS, and will be updated
automatically when a new message is transferred from Event-
Servers to the POS.

2.3 The events list is stored locally in the POS, and will be updated by
the POS periodically.

2.4 When customer query the event information, POS will not com-
municate with Event-Servers.

2.5 Is there a certain component in the POS, whose function is
the management this list? If yes, which component?

__

3. The diagrammatic specification of POS describes the following
things
During the process of purchase:

 29

2/3

ye
s

m
ay

be
 y

es
m

ay
be

 n
o

no ea
sy

m
od

er
at

e
di

ffi
cu

lt
im

po
ss

ib
le

Answer Effort

3.1 a customer can buy many tickets at one purchasing process

3.2 a customer can only buy one ticket at one purchasing process.
I.e. if she/he want to buy more tickets, she/he must start the pur-
chasing process several times

4. Is there a certain component in a POS, which is responsible for
the communication with Event Servers, when customers buys a
ticket (not querying events information)? If yes, which?
__

5. When will a seat/seats be reserved in the Event Servers?

5.1 After the customer selects all the seat, the POS will try to reserve
those tickets in the corresponding Event Server

5.2 Whenever the customer selects one single ticket, the POS will try
to reserve that ticket in the corresponding Event Server

6. Is it possible that in the ticketing system:

6.1 there is no active POS

6.2 there is no active Event Server

7. A POS (as the case maybe, an appropriate component) will gen-
erate a events list from

7.1 all the Event Server

7.2 exactly one Event Server

7.3 the NetworkAdministration

8. One POS handles the ticket purchase (not events query) with

8.1 exactly one Event Server

8.2 many Event Servers

 30

3/3

ye
s

m
ay

be
 y

es
m

ay
be

 n
o

no ea
sy

m
od

er
at

e
di

ffi
cu

lt
im

po
ss

ib
le

Answer Effort

9. Which activities belong to the processes of events query and
tickets purchase:

9.1 printing tickets (a)

9.2 showing the events list (b)

9.3 updating the events list (c)

9.4 selecting the seat(s) and reserving it (them) in the Event Server
(d)

9.5 selecting the favorite event (e)

9.6 paying for the tickets (f)

9.7 what is the sequence of the above activities, which belong to the
processes of events query and tickets purchase.

10. During the processes of tickets purchase, there are at least two
situations in which we need to add some error- or exception-
handling modules when we implement the system. Indicate
them.

11. At which step of the process of ticket purchase that the Cus-
tomer can not abandon their operation?

 31

A4.3. Subjective” questionnaire (in German)

Fragebogen II

Sprache
❏ Adora
❏ UML

Gruppe
❏ 1 (ADORA/UML)
❏ 2 (UML/ADORA)

Kenntnisse in

ve
rti

ef
t

gu
t

K
ei

ne
 /

w
en

ig

DB-Modellierung

OO-Modellierung
OO-Programmierung
OODB-Modellierung

Strukturierte Analyse
sonstige Modellierung

1/2

ja w
ah

rs
ch

ei
nl

ic
h

ja
w

ah
rs

ch
ei

nl
ic

h
ne

in
ne

in
ei

nf
ac

h
an

ge
m

es
se

n
sc

hw
ie

rig
un

m
ög

lic
h

Antwort Aufwand

❏ Unterlagen vorher studiert

Bitte geben Sie Ihre persönliche Meinung zu folgenden
Aussagen, Behauptungen ab!

1. Transparenz (-> Zusammenhänge bleiben erkennbar)

1.1 Die ADORA Spezifikation vermittelt eine präzise Vorstellung über
die Zusammenhänge und Wechselwirkungen im System

1.2 Die UML Spezifikation vermittelt eine präzise Vorstellung über die
Zusammenhänge und Wechselwirkungen im System

2. Struktur (-> aus welchen Objekten/Komponenten mit welchen
Aufgaben besteht das System)

2.1 In der ADORA Spezifikation ist die Strukur des Systems leicht
erkennbar

2.2 In der UML Spezifikation ist die Strukur des Systems leicht
erkennbar

3. Modellierungsansatz

3.1 Es ist sinnvoll – wie in ADORA – alle Aspekte (Struktur, Verhalten,
Funktionalität) in einem einzigen hierarchisch gegliederten Modell
zu beschreiben

3.2 Es ist sinnvoll – wie in UML – die Spezifikation in einzelne lose
zusammenhängende Diagramme (Klassendiagramm, Statedia-
gramm, Sequenzdiagramm, Kollaborationsdiagramm, etc.) aufzu-
teilen

4. Dekomposition/Modellgliederung

4.1 ADORA erleichtert es – aufgrund entsprechender Dekompositions-
mechanismen – auch komplexe(re) bzw. grössere Spezifikationen
verständlich zu beschreiben

 32

2/2

ja w
ah

rs
ch

ei
nl

ic
h

ja
w

ah
rs

ch
ei

nl
ic

h
ne

in
ne

in
ei

nf
ac

h
an

ge
m

es
se

n
sc

hw
ie

rig
un

m
ög

lic
h

Antwort Aufwand

4.2 ADORA erlaubt es dem Benutzer, sich auf momentan wichtige
Teile einer Spezifikation zu konzentrieren, ohne den globalen
Zusammenhang zu verlieren

4.3 Die hierarchische Gliederung eines ADORA-Modells erleichtert es,
Informationen über bestimmte Systemteile zu finden

4.4 In UML ist es einfach die gewünschten Informationen über
bestimmte Systemteile aus den unterschiedlichen Diagrammen
zusammenzutragen

5. Kontext/Rollen

5.1 Um ein System zu spezifizieren ist es angebracht, zu beschreiben
welche Rolle Objekte einer Klasse haben bzw. in welchem Kon-
text diese Objekte benutzt werden

5.2 Es reicht eigentlich aus, Klassen zu beschreiben

6. Detaillierungsgrad

6.1 Das ADORA-Modell des Beispielsystems ist eine geeignete Grund-
lage für nachfolgende Realisierungsschritte (Entwurf, Feinent-
wurf, Codierung, Test, etc.)

6.2 Das UML-Modell des Beispielsystems ist eine geeignete Grund-
lage für nachfolgende Realisierungsschritte (Entwurf, Feinent-
wurf, Codierung, Test, etc.)

 33

A4.4. Subjective” questionnaire (Translation in English)

Questionnaire II

Specification Language
o ADORA

o UML

Group
o 1 (ADORA/UML)
o 2 (UML/ADORA)

Knowledge on the
following technique

ad
va

nc
ed

go
od

no
 /

lit
te

r
kn

ow
le

dg
e

DB-Modeling

OO-Modeling

OO-Programming

OODB-Modeling

Structural Analysis

Other Modelling

1/2

st
ro

ng
ly

 a
gr

ee
m

os
tly

 a
gr

ee
m

os
tly

 d
is

ag
re

e
st

ro
ng

ly
 d

is
ag

re
e

de
fin

ite
ly

 s
ur

e
su

re
un

su
re

do
n’

t k
no

w

Answer Confidence

❏ Familiar with our handout before

Please give your personal opinion on the following statements.
Please be fair.

1. Transparency (-> interrelation among the components)

1.1 The ADORA Specification gives the reader a precise idea about
the system components and their relationships

1.2 The UML Specification gives the reader a precise idea about the
system components and their relationships

2. Structure (-> the system consists of which objects/components
with which functions)

2.1 The structure of the system in ADORA specification is easy to be
identified

2.2 The structure of the system in UML specification is easy to be
identified

3. Rudiment of Modeling Technique

3.1 It is reasonable, as in ADORA, to models all the aspects (structure,
behavior, functionality) in a single hierarchical structured frame-
work.

3.2 It is reasonable, as in UML, to divide the system and specify them
in a number of loosely coupled diagrams (class diagram, state-
chart, sequence diagram, collaboration diagram)

4. Decomposition/Structure of the Model

4.1 ADORA makes it easy to understand a large system due to the
hierarchical decomposition

4.2 ADORA allows user to focus on the important part specification in
this moment, without losing the global context

 34

2/2

st
ro

ng
ly

 a
gr

ee
m

os
tly

 a
gr

ee
m

os
tly

 d
is

ag
re

e
st

ro
ng

ly
 d

is
ag

re
e

de
fin

ite
ly

 s
ur

e
su

re
un

su
re

do
n’

t k
no

w

Answer Confi-

4.3 The hierarchal structure of an ADORA-Model make it easy to find
some specific information from the whole system

4.4 It is easy to integrate information of some specific parts of the sys-
tem from different diagrams.

5. Context / Role

5.1 It is advisable to specify objects with their roles and context

5.2 Describing classes is sufficient.

6. Degree of Detail

6.1 The Adora model of the example system is a suitable basis for fol-
lowing implementation steps (Design, Detailed Design, Coding,
Test, etc.)

6.2 The UML model of the example system is a suitable basis for fol-
lowing implementation steps (Design, Detailed Design, Coding,
Test, etc.)

 35

A5. Statistical Analysis of the Results of the Objective Questionnaire

In order to do the statistical analysis, we reorganize and simplify the Table 1 into the follow-
ing tables:

In this appendix, we give detailed mathematical proofs to the following statements:

• Reading ADORA models is less prone to errors than reading UML models.

From the data in the above tables, it is obviously that the proportion of correctly reading
ADORA model is higher than the proportion of correctly reading UML model. However, are
the differences of the proportions significant? Or it just happens randomly?
As we observe a sampling at size of 553 (15 participants totally gave 553 answers -- 272 of
ADORA and 281 of UML), let us analyze the results using some statistical methods.
Studying Table A.4, which is a simplified form of Table A.3, we use the method of Hypothesis
Testing [6] to test whether the differences are significant.

Group 1 (ADORA/UML)
ADORA UML

sure 112 (77.2 %) sure 100 (65.8 %)Right
unsure 20 (13.6 %)

132
(91.0 %)

Right
unsure 31 (20.4 %)

131
(86.2 %)

sure 9 (6.2 %) sure 12 (7.9 %)Wrong
unsure 4 (2.8 %)

13
9.0 %

Wrong
unsure 9 (5.9 %)

21
(13.8 %)

Table A.1

Group 2 (UML/ADORA)
ADORA UML

sure 103 (81.1 %) sure 75 (58.1 %)Right
unsure 10 (7.9 %)

113
(89.0 %)

Right
unsure 24 (18.6 %)

99
(76.7 %)

sure 9 (7.1 %) sure 21 (16.3 %)Wrong
unsure 5 (3.9 %)

14
(11.0 %)

Wrong
unsure 9 (7.0 %)

30
(23.3 %)

Table A.2

Group 1 + Group 2
ADORA UML

sure 215 (79.0 %) sure 175 (62.3 %)Right
unsure 30 (11.0 %)

245
(90.1 %)

Right
unsure 55 (19.6. %)

230
(81.9 %)

sure 18 (6.6 %) sure 33 (11.7 %)Wrong
unsure 9 (3.3 %)

27
(9.9 %)

Wrong
unsure 18 (6.4 %)

51
(18.1 %)

Table A.3

 36

We test the difference between two proportions, p1 (the percentage of correctly answers of

ADORA part) and p2(the percentage of correctly answers of UML part). In Table 5, is the

percentage of correctly answers of ADORA part in our sampling data, and is the percent-

age of correctly answers of UML part in our sampling data, where

and .

Our hypotheses are
H0 : p1 - p2 = 0 ; H1: p1 - p2 > 0

The statistic is approximately normally distributed with a mean of 0 and a standard deviation

of 1. Suppose we choose = 0.5%.

Then for a one-tailed test our decision rule is: reject H0 if Z > 2.58; accept H0 if .
We calculate

 ,

where is the estimate of .

For the date of this problem,

Since 2.81 > 2.58, we would reject H0, and conclude that, from the consolidated results of
Group 1 and Group 2, the proportion of correctly reading ADORA model is higher than the

proportion of correctly reading UML model at a 0.5% level of significance1.

1. 0.5% level of significance is a very stringent requirement to refuse the null hypothesis. I.e. according to
the statistical theory, we could already be confident that our judgement will be correct (very little chance
to make Type I or Type II error) at a 1% level of significance or an even less stringent 5% level of signif-
icance.

Group 1 + Group 2
ADORA UML

Right 245 (p1= 90.1 %) Right 230 (p2 = 81.9 %)
Wrong 27 Wrong 51
Sum n1 = 245+27 = 272 Sum n2 = 230+51 = 281

Table A.4

p1

p2

p1
245

245 27+
--------------------- 90.1%= =

p2
230

230 51+
--------------------- 81.9%= =

α

Z 2.58≤

Z
p1 p2–() p1 p2–()–

S
p1 p2–

---=

S
p1 p2–

p1 1 p1–()⋅
n1

p2 1 p2–()⋅

n2
-----------------------------+= σ

p1 p2–

Z
0.901 0.819–()

0.901 1 0.901–()⋅
272

0.819 1 0.819–()⋅

281
---+

--- 2.81= =

 37

We did a computer program implementing the above algorithm and calculated the statistic Z
for the data of Group 1 and Group 2 separately too. The results are also fairly supportive to
our judgment.

• when participants correctly answer a question, they are more confident of themselves
after reading the ADORA model

From the consolidated results of Group 1 and Group 2, using exactly the same way as above,
we calculate the statistic Z = 3.32 (> 2.58). Therefore, we conclude that the proportion of
answering questions correctly with confidence after reading ADORA model is higher than the
proportion of answering questions correctly with confidence after reading UML model at a

0.5% level of significance1.

• Though participants make a mistake, they are more confident that they are "correct", after
reading the UML model.

From the consolidated results of Group 1 and Group 2, using the method of Hypothesis Test-

ing, we calculate the statistic Z = 0.174 (< 2.58, < 2.33, < 1.65, <0.252), we conclude that
there is not a significant difference between the proportions of answering questions wrong
with random guess reading two models at a 40% level of significance.
Therefore, we think this statement can not be proved from our experiment.

1. Similar conclusion can be drawn by calculating the statistic Z using data of Group 1 and Group 2 sepa-
rately.

2. When = 0.005, the critical value is 2.58; when = 0.01, that value is 2.33;

 when = 0.05, that value is 1.65; when = 0.40, that value is 0.25.
 Note: 40% level of significance is a very stringent requirement to accept the null hypothesis.

α α

α α

