Problems when Introducing Aspect-Oriented Constructs in
Models of Functional Requirements and Possible Solutions to
these Problems

Silvio Meier and Martin Glinz
Department of Informatics, University of Zurich, Switzerland
{ smeier | glinz } @ifi.unizh.ch

Abstract— The new paradigm of aspect-oriented programming demands
new modularization techniques in the early phases of software development,
i.e. requirements analysis and architectural design. Especially during the
requirements analysis phase, there is a potential for conflicts between the
introduced aspect-oriented paradigm and traditionally postulated qualities
that must be fulfilled by a requirements specification. In this paper, we
analyse the problems which may occur during the requirements phase when
using aspect-oriented constructs. We also propose solutions for solving or
mitigating the identified problems.

I. INTRODUCTION

The introduction of aspect-oriented constructs in programming lan-
guages has been one of the major advances in modularizing software in
the last few years. The usage of the aspect-oriented paradigm in programs
improves the following qualities, as discussed in [1] and [2]:

o The modules' of a software are better modularized.

o The better modularization leads to a better separation of concerns
and a clearer responsibility in the system, and therefore the artifacts
are better maintainable and reusable.

o The time-to-market is reduced by a better modularized and simpler
design, resulting in a reduction of costs.

Aspect-oriented decomposition of software creates the need for an
early identification, separation and description technique for aspect-
oriented artifacts, especially during the early phases of software engineer-
ing (requirements analysis and architectural phases). If aspect-oriented
constructs are applied in the early phases of software engineering,
the improvement of the above-mentioned qualities can also be applied
to the artifacts at this stage. At the same time, there will be other
improvements, such as a better traceability of crosscutting concerns in
software requirements specifications (SRS). Summarized, we can say
that several advantages result from the application of the aspect-oriented
paradigm in SRSs.

In the case of software requirements artifacts, i.e. parts of a SRS, there
are several qualities [3] (Unambiguous, Complete, Correct, ...) that are
needed or desirable for a good specification. Especially the qualities
Understandable and Verifiable/Validatable are strongly influenced by
the introduction of aspect-oriented constructs in software requirements
specifications.

In the rest of the paper, we will discuss the conflicts and problems
arising from the introduction of aspect-oriented constructs in models of
functional requirements®. In Section II, we will discuss the problems
and conflicts that occur, while a possible solution for the problems
is proposed in Section III. In Section IV, we conclude the paper and
indicate the direction of future work of the topic.

II. PROBLEMS WITH ASPECT-ORIENTED CONSTRUCTS IN
REQUIREMENTS MODELS

Aspect-oriented artifacts introduce a new modularization dimension
for crosscutting concerns in SRSs. These artifacts are locally better
understandable as compared to conventional artifacts. The main reason

"Modules are either components of the core concern or aspectual constructs of
the crosscutting concerns.
2However, the insights can also be applied in general to SRS artifacts.

for this is a better separation of concerns, i.e. a local decoupling of
software artifacts. However, the additional modularization dimension
introduces also a new form of complexity. When trying to understand
aspect-oriented requirements models in a global way (how the elements
of the model interplay), we face more complexity than with conventional
ones. As an illustration, take the merge operation in UML 2.0 [4],
which works quite similar to the weave operation in aspect-oriented
models and is extensively used for modularizing the UML metamodel.
This modularization eases the comprehensibility of local metamodel
packages. However, manually merging packages in order to obtain
a global understanding is a nightmare. Even when merging is done
automatically, the result can be rather difficult to understand. This is
mainly due to the redundancy introduced by merging. Aspect-oriented
artifacts behave in a similar way. Even with automatic weaving, the
weaved product can still be rather complex and, hence, difficult to
validate/verify. This leads us to our first problem:

Problem 1: When validating/verifying aspect-oriented models, one
faces different levels of complexity, depending on the level of detail
of the methods employed. Methods with a local focus are easier to
apply to an aspect-oriented modularization than to traditional models.
On the other hand, globally understanding weaved artifacts becomes
more difficult, thus making validation/verification on this level harder.

Approaches dealing with SRSs need the possibility to describe dif-
ferent views on the system. However, the current approaches to aspect-
oriented specification concentrate on particular views and neglect the
other ones. For example, Aratjo, Whittle and Kim [5] model behavior
separately from structure, concentrating on the behavior view. They do
not explain how the structure is modeled and how behavior and structure
models interplay. Neither do they treat crosscutting concerns in other
views. Suzuki and Yamamoto [6] use stereotypes for modeling structural
crosscutting concerns in UML class diagrams. However, they do not
describe how the crosscutting behavior is modeled and integrated into
the class structure. We state this as our second problem:

Problem 2: Today’s approaches neglect multiple views of crosscutting
concerns. They rather concentrate on one view or few of them. However,
for the use in requirements models, an approach supporting all possible
kinds of views on a crosscutting concern is needed.

Most of the current approaches use a modeling language such as UML
[4] which consists of loosely coupled sub-languages. These languages
suffer from many problems concerning consistency, redundancy and view
integration [7]. As a consequence, a user has to invest considerable
intellectual effort for mentally integrating the different sub-models into
one coherent model. When weaving aspects into an SRS based on such
models, the effort required for understanding and interpreting this SRS
may easily exceed the capabilities of an average user. Hence, we identify
our third problem:

Problem 3: The understandability of aspect-oriented artifacts be-
comes worse when the language used for embedding the aspect-oriented
constructs consists of loosely coupled sub-languages. The required effort
may exceed the capabilities of an average user.

III. SOLUTIONS TO THE PROBLEMS

Problem 1 (varying complexity for models on different levels of
detail) can be handled by introducing different means for the valida-
tion/verification of SRSs on either a global or a local level. For a global
validation/verification of the model, we suggest to do first a weaving®
and then to use simulation techniques. With simulation, one can very
easily validate/verify the model of a system. With the help of semi-
formal simulation techniques and the use of stub simulation [8], one can
even simulate partially finished models. It is also possible to simulate
larger parts of the model (while it is hard to verify/validate large models
by static means). For small portions of the system model, on the other
hand, it is more convenient to perform validation/verification by static
methods such as peer reviews or discussing the model parts with the
customer.

Solution 1: Introduce different means for the local and the global
level when validating/verifying models containing aspect-oriented arti-
facts. We suggest to use static methods like peer reviews for verify-
ing/validating small parts (artifacts) in a local context of an SRS, while
we recommend dynamic techniques such as simulation on the global
level of the SRS.

Problem 2 is mainly caused by the focus of today’s approaches.
There is no reason why an aspect-oriented modeling language should
not support more than one view. This can be handled by using a
language that comprises all the views needed for describing aspect-
oriented requirements models and by creating aspectual elements that
are represented in all views.

Solution 2: Provide all views needed for the modeling of aspect-
oriented constructs, i.e. a view for the internal behavior, the exter-
nal behavior, the static structure (including associations between ob-
jects/classes) and the context elements of a requirements specification.

In particular, a modeling language for a software requirements spec-
ification should be based on an integrated approach, i.e. it should not
consist of a set of loosely coupled modeling languages, such as UML [4].
Integrated models improve the understanding of the interplay between
multiple views and concerns. Especially when dealing with requirements
models, the models should be easily understandable as they will be used
for the communication with the customer. Therefore, we propose to use
an integrated modeling language as the basis for the integration of aspect-
oriented language constructs.

Solution 3: The usage of an integrated modeling language reduces
the intellectual effort for interpreting aspect-oriented models and eases
communication.

IV. CONCLUSIONS

In this paper, we have identified three problems that occur when intro-
ducing aspect-oriented constructs in models of functional requirements
and have sketched solutions for these problems:

o For handling different levels of complexity during valida-
tion/verification, different test means are appropriate. For a global
focus, it is the best doing first a weaving and then a simulation.
For a local focus, it is more efficient to use a static method like a
peer review.

o The modeling language supporting aspect-oriented constructs
should provide different views of the aspect-oriented artifacts, i.e.
the static structure (including relationships), the internal behavior,
the external behavior and a context description.

o Modeling languages which are extended by aspect-oriented con-
structs should consist of an integrated set of sub languages.

We have developed a modeling language in our research group

called ADORA [7] which is currently being extended by aspect-oriented
language constructs. ADORA integrates solutions 2 and 3: it is a language

3The weaving of crosscutting constructs increases also the complexity of the
model, but when doing so, a model can be simulated.

BooksAdministration...
BorrowBooks.
receive deleteBooks() |

send prepareDelete()

receive lst() |
send getList() over
ReadCatalog

DeleteBooks.

SearchBooks..
receive deletionFinished()

receive list() |

send getList() over
ReadCatalog SearchBooks.

receive editingFinished() |

EditBook

before

receive borrow() |

Lo

receiyg-edtBooks() |
send prepare€dit()

_—

> Authorize Authorization

4 Authenticate

receive authorized()
over Authorize |

receive userPasswordEntered() |
send authenticate() over Authenticate

BooksAdministration

(b) BorrowBooks.

receive userPWEntered() |
send authenticate() over
AuthenticateBooksAdministration

receive lst() |
send getlist() over
ReadCatalog

DeleteBooks.

Authenticate
SearchBooks. receive authorized()|
over Authorize

BooksAdministration |

receive
deleteBooks() |
send prepareDelete()
SearchBooks.

receive editBooks()
send prepareEdit()

receive deletionFinished() |

receive borrowFinished() receive bortow() |

Authenticate

receive
userPWEntered()

send authenticate()

over AuthenticateBorrowBooks

receive list() |
send getList() over
ReadCatalog

BorrowBooks.

receive editingFinished() |

Authorized

receive authorized()
over Authorize
BooksAdministratior

EditBook. Authenticate

receive authorized()
o AthorireBoorowBooks receive userPWEntered() |
send authenticatel) over

AuthenticateBooksAdministration

Authorization.

» AuthonzeEooksAdmwmluamn

« AuthenticateBooksAdministration

4 AuthorizeBorrowBooks

> AuthenticateBorrowBooks

Fig. 1. An example of an aspect-oriented (a) vs. conventional model (b) in the
language ADORA

with tightly coupled sub-languages and consists of all mentioned views
also for aspect-oriented artifacts. We are also working on the problem
of simulating aspect-oriented models for implementing solution 1. An
example of a conventional and an aspect-oriented model in the language
ADORA can be found in Fig. 1.

REFERENCES

[1]1 R. Laddad, AspectJ in Action, Practical Aspect-Oriented Programming. New
York: Manning Publications Company, 2003.

[2] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and G. Griswold,
William, “Getting Started with Aspect],” ACM Communications, vol. 44,
no. 10, pp. 59-65, 2001.

[3] The Institute of Electrical and Electronics Engineers, IEEE recommended

practice for software requirements specifications. IEEE Std 830-1998. 1EEE

Computer Society Press, 1998.

Object Management Group, UML 2.0 Superstructure Specification. OMG

document ptc/03-08-02. http://www.omg.org/cgi-bin/doc?ptc/2003-08-02,

2003.

[5] J. Aratjo, J. Whittle, and D.-K. Kim, “Modeling and Composing Scenario-
Based Requirements with Aspects,” in 12th IEEE Requirements Engineering
Conference, 2004, pp. 58-59.

[6] J. Suzuki and Y. Yamamoto, “Extending UML with Aspects: Aspect Support
in the Design Phase,” in Proceedings of the 3rd Aspect-Oriented Programming
Workshop at the 13th Euorpean Conference on Object-oriented Programming
(ECOOP 1999). Springer, 1999, pp. 299-300.

[71 M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with ADORA,”
Information Systems, vol. 27, no. 6, pp. 425444, 2002.

[8] C. Seybold, S. Meier, and M. Glinz, “Evolution of Requriements Models
by Simulation,” in 7th International Workshop on Principles of Software
Evolution IWPSE 2004, 2004, pp. 43-48.

[4

[l

