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Abstract 

 
Product derivation from a product line model is a 

central activity in product line requirements engineer-
ing. A product line framework and/or approach should 
provide sophisticated visualization and product deriva-
tion support, otherwise large product lines become 
very hard to handle. In this paper we first present how 
we can benefit from existing single-system visualiza-
tion techniques in product lines. Then we introduce 
new visualization aids and concepts that support the 
analysis of variability and the derivation of products in 
software product line engineering. We expect that 
these new visual support mechanisms will significantly 
ease the work of stakeholders and requirements engi-
neers when negotiating a new product based on a 
software product line. 
 
 
1. Introduction 
 

Software product line engineering (SPLE) is a soft-
ware engineering paradigm that has gained more and 
more attention in research and industry over the last 
years. The main goals and promises of SPLE are to 
maximize the amount of reuse of existing software 
artifacts, thus reducing development cost and time as 
well as increasing product quality [12].  

A central activity in SPLE is product derivation, 
which deals with creating concrete application prod-
ucts from the product line. In product derivation, 
stakeholders (in particular, requirements engineers and 
customers) usually sit together, discuss the product’s 
common and variable elements, and decide which vari-
able parts shall be included in the concrete product and 
which ones shall not. Furthermore, new requirements 
might also be identified in this process. Primarily, such 
requirements will have to be modeled for completing 
the concrete product specification. Later, some of them 
will be added also to the product line domain. 

When dealing with large requirements models, the 
task of understanding and visualizing the relevant in-

formation is essential for supporting stakeholder nego-
tiations. Especially when concrete decisions have to be 
taken in the variability model, the deciding 
stakeholders need mechanisms for 
(1) generating views that show the relevant parts of the 

model only, 
(2) visualizing the structure of the variability and the 

dependencies between variable items, 
(3) visualizing the effects and the impact when taking a 

decision during product derivation. 
We are developing a new approach for integrated 
product line modeling and product derivation [17] 
which is based on a combination of the aspect model-
ing capabilities of the ADORA language and tool [4] 
[11] [15] and a specialized form of decision tables. 
The commonality is modeled as a plain vanilla ADORA 
model (called the core model), while variants are mod-
eled as aspects. All information about the variability 
constraints and decision support is kept in a decision 
table. When a variant is selected during product deriva-
tion, it is added to the core model by weaving the 
corresponding aspect into the core model. 
The ADORA tool features sophisticated visualization 
mechanisms for hierarchical and aspectual graphic 
models [4] [15] [11], including smart layout adaptation 
[16] [14], line routing [13] and view generation [15]. 
In this paper, we focus on specific product line visuali-
zation mechanisms for meeting the requirements (1)-
(3) stated above which build upon the existing ADORA 
visualization techniques. 

We first describe how we can benefit from the al-
ready established visualization mechanisms in ADORA 
when handling a product line. These include vertical 
abstractions (fisheye views) and horizontal abstractions 
(visualizing and/or hiding different views of the inte-
grated model). Then we introduce new visualization 
aids. These include selective visualization of variability 
constraints, visual tracing of selections between the 
graphical model and the decision table, partial weaving 
(which considerably eases the task of product deriva-
tion), and visual traceability of the effects of including 
or omitting variants in the resulting product application 



 

model. Additionally, we introduce impact views, 
which is a new concept for tracing the effects of bind-
ing a variant in large, industrial product lines. Impact 
views are generated views showing only the model 
elements directly impacted by a decision  plus their 
surrounding context. 

The remainder of the paper is organized as follows: 
Section 2 describes a running example of a simple 
product line and how our existing visualization tech-
niques can help visualize the model. Section 3 focuses 
on variability analysis and product derivation, in par-
ticular, traceability between decisions and graphical 
model elements, selective variability constraint visuali-
zation, dynamic weaving, and traceability of decision 
impact in woven product models. Section 4 describes 
impact views as a visualization aid for large product 
models. In Section 5 we conclude with a discussion of 
related work, a summary of our results, the state of our 
work, and future plans. 
 
 
2. Visualization of Graphical Product Line 
Models 
 

For the ADORA language we have developed many 
advanced visualization techniques to better visualize 
and handle the integrated models. These techniques 
provide significant benefit when working with single 
system models. But we can also benefit from them 
equally well when modeling product lines. In the fol-
lowing subsections we will briefly introduce a running 
example and then demonstrate how visualization can 
help to understand these models better. 

 
2.1. Running Example 

 
As a running example we use a simple electronic 

home security system. We have already used a pre-
liminary version of this in previous work [17]. 

The electronic home security system consists of an 
alarm module, a main module, and a door control 
module. For the alarm module there won’t be any 
variation. For the main module there are two alterna-
tives: an economy system and a high-end system. For 
the door control module there are three basic mecha-
nisms to unlock the door: a magnetic card reader, a 
fingerprint reader, and a keypad plug-in. Two alterna-
tive types of keypads can be connected to the keypad 
plug-in: a hardware keypad and a touchscreen keypad. 
An optional logging mechanism can be used to write 
log entries for selected events. 

 

2.2. Horizontal Abstractions 
 

In an integrated model, the various facets of a system 
are all described within one modeling language. In the 
ADORA language [4], these facets, which are called 
views in ADORA, include:  
 The base view, which represents the hierarchy of 

components and objects a system is comprised of 
(notation: nested rectangles); 

 The structural view, describing static associations 
between objects (notation: lines connecting rec-
tangles); 

 The behavior view, modeled by states and state 
transitions with a simplified statechart semantics 
(notation: rounded rectangles for states, arrows 
for transitions);  

 The user interaction view, which models the 
interaction between system components and ex-
ternal actors with decomposable, type-level sce-
narios (notation: ovals for scenarios); 

 The external view, representing the system con-
text (notation: hexagons for external actors); 

 The aspect view, describing crosscutting concerns 
separately as aspects and denoting the places 
where they apply with explicit join relationships 
(notation: rectangles with two beveled corners 
represent aspects, dashed arrows stand for join 
relationships). 

Displaying all these facets together in a single dia-
gram results in visualizations that contain much more 
information than a classic, single facet diagram (such 
as, for example, a UML class diagram). Such compre-
hensive diagrams are rather hard to read and under-
stand, hence. 

To handle this problem, ADORA employs horizontal 
abstraction: the model is projected to a single facet or 
to a combination of facets that a modeler is currently 
interested in. Only the model elements belonging to 
these facets are displayed; the rest of the model is hid-
den. For example, end-users of a system might only be 
interested in how they can interact with the system: in 
ADORA, they would select a combination of the user 
interaction view and the external view. On the other 
hand, for getting an overview of the component struc-
ture of a system, the base view combined with the 
external view would be appropriate.  

Figure 1 shows a visualization of the home security 
system that consists of the base view, combined with 
the user view, the aspects and the join relationships. 
With respect to product line modeling, the commonal-
ity of the home security system consists of the object 
Electronic Home Security System (which is decomposed 
into the objects Alarm Module, Main Module, and Door 
Control), the Log object and the external actor House 
Owner. The variability is modeled with aspects and join 



 

relationships. The scenario unlock door, for example, 
has three possible sub-scenarios: unlock door by mag-
netic card, unlock door by keypad, and unlock door by fin-
gerprint reader. This is defined by the join relationships 
crosscutting the unlock door scenario, and by the weav-
ing type “after”. If more than one of these sub-scenar-
ios will be realized in the application system, House 
Owner has to select one of them. This is indicated by 
the symbol “O” in these scenarios. After connecting a 
keypad, House Owner can unlock the door multiple 
times before disconnecting it again, which is indicated 
by the “*” in the respective scenarios.  
 

 
Figure 1. The running example: displaying only the 
external actors, variability as aspects, and user in-
teraction view. 
 
In this model, the corresponding variability decision 
items and variability constraints are not visualized. 
Note that, when hiding or unhiding particular views, 
the model layout automatically adapts to the new situa-
tion. The new layout preserves the user’s mental map 
of the model and, at the same time, it minimizes free 
space, in order to display the model efficiently [15]. 

 
2.3. Vertical Abstractions 

 
In contrast to horizontal abstraction, vertical ab-

straction is not used to hide particular facets of the 
whole model, but to hide all the details for some par-
ticular concerns or parts of the model, which are cur-
rently not in the focus of the user. For our running 
example, Figure 1 and Figure 2 illustrate the principle 
of vertical abstraction. In Figure 1, the variants Econ-
omy System, High-End System and Logging, as well as the 
object Log are not in the current focus, hence their de-
tails are hidden from this view. An ellipsis after the 
name marks such abstractions. In Figure 2, the Logging 

variant is now in the focus of interest; hence, its details 
are included in the view. 

Figure 2 also illustrates the effect of horizontal ab-
straction: the behavior view, which was hidden in 
Figure 1, is now included. 

The behavior of the Logging variant is no complete 
statechart, but a fragment, a so-called behavior chunk. 
If the Logging variant is chosen, this behavior chunk is 
woven, for example, into three transitions of the state-
chart that models the Touchscreen Keypad behavior. For 
details of the weaving semantics, see [10]. 

Note that precise join relationships can only be dis-
played when both the source and the target are dis-
played in detail (for example, Logging and Touchscreen 
Keypad in Figure 2). If the source or target is hidden 
due to horizontal or vertical abstraction, a so-called 
abstract join relationship must be drawn from or to the 
component containing the source or the target (for 
example, from Economy System to Main Module or from 
begin logging to Fingerprint Reader). 

 

 
Figure 2. The running example: displaying all de-
tails of the commonality, the keypad plug-in, the 
touchscreen keypad and the logging, and hiding the 
details of the other concerns.  

 
As demonstrated in Figure 1 and Figure 2, horizontal 
and vertical abstraction can be combined when visual-
izing a model. This capability allows modelers as well 
as model readers to focus and to explore specific parts 
and concerns of the model, without being overloaded 
by lots of detail that are irrelevant in the current con-
text.  
When working with vertical abstraction, the layout will 
also be automatically adapted when an abstraction 
operation is performed  [15] [16]. 
 



 

3. Visualization Support for Product Deri-
vation 

 
Besides benefiting from the previously developed 

visualization mechanisms of ADORA, we have also 
developed some additional visualization concepts, 
which aim especially at supporting product lines and 
product derivation. We describe these in the following 
subsections. 

Before we can proceed, we must briefly introduce 
the decision table, which is our central concept for 
handling product line variability in ADORA, besides 
using aspects to describe the variability. The decision 
table describes the properties and constraints of the 
variability and records actual decisions when deriving 
products. The rows of the decision table represent the 
decisions to be taken when binding the variability: 
every row is a decision item, containing all information 
for making a variability decision and recording the 
actual decision when it is taken. 

Every decision item in the decision table maps to 
one join relationship in the graphical product line 
model, except in cases where different elements of an 
aspect need to be woven at different places in the core 
model. Conversely, every single join relationship out-
going from a variability1 is annotated with the number 
of a decision item, in order to handle the details of its 
variability (see Figure 3).  
 
Table 1. The decision table for the running exam-
ple, with decision item D4 currently selected. 

 
 

Table 1 shows an excerpt from the decision table 
for our running example. The columns describing the 
variability constraints and decision support are sup-
pressed, because this is not in the focus of this paper. 
For our subsequent visualization examples, we only 
need the following information about constraints: De-
cision items D3, D4, D5 form a variation point 
VP2(1:2), which means that at least one and at most 
two of these decision items have to be chosen when 
deriving a product. In the same way, D6 and D7 form a 
variation point VP3(1:1). Decision item D5 includes 

                                                             
1 Note that a model can also contain aspects representing crosscutting 
concerns that have nothing to do with variability. Hence, not every 
join relationship is annotated with a decision item number, but only 
those that represent variability. 

D2, which means that D5 can only be chosen when D2 
has been chosen, too. On the other hand, D5 is ex-
cluded by D6, which means that D5 cannot be chosen 
if D6 is chosen. 

 
3.1. Visual Traceability between Decision Items 
and Variable Join Relationships 

 
For working efficiently with the graphic model and 

the decision table, we need visual traceability between 
the two. This is easy to provide in a tool: When a deci-
sion item is selected in the decision table (for example, 
D4 in Table 1), the corresponding join relationship in 
the graphic model is highlighted (Figure 3). Vice-
versa, when selecting a join relationship that is labeled 
with a decision item number, the corresponding row in 
the decision table is highlighted. Thus, the user has 
always visual pointers to the corresponding locations 
in the graphic model and in the decision table where he 
or she is currently working on. 

 
Figure 3. An abstract view on the variability with 
decision item D4 currently highlighted. 
 

Because all the details of the variant aspects are 
hidden in Figure 3, some of the displayed join relation-
ships are abstractions of more than one join relation-
ship. These are labeled with the numbers of the deci-
sion items that the abstracted join relationships are 
associated with. For example, the label “D8-D10” of 
the join relationship from Logging to Hardware Keypad 
means that in a fully expanded view, there are three 
join relationships from elements in Logging to elements 
in Hardware Keypad, which correspond to decision items 
D8, D9, and D10. 

 
3.2. Selective Graphical Visualization of Vari-
ability Constraints 

 
An important and usually quite difficult part in 

product line engineering is handling the variability 
constraints. Such constraints are, for example, cardi-



 

nality constraints over multiple decision items or inter-
dependencies between decision items such as include 
and exclude relationships. As described above, we 
capture the constraints in the decision table. However, 
when working with a variability model, particularly 
during product derivation, it is essential that constraints 
can also be displayed visually. In traditional feature 
trees, all constraints for all features are represented 
visually [7] [1]. As we work with richer models that 
not only model features as abstract boxes, but also the 
variants themselves, such a visualization would over-
load the view. Instead, we decided to display constraint 
information selectively, just for those decision items 
that a user is currently working on. 

Figure 4 and Figure 5 illustrate our approach. 
Figure 4 shows how all the variability constraints for a 
particular variable join relationship can directly be 
visualized within the graphical model. This kind of 
selective displaying of the variability constraints in the 
graphical model is invoked by selecting the variable 
join relationship with the mouse pointer. The main 
benefits from such a selective constraint visualization 
is to keep the added visual complexity small, while still 
displaying a complete set of constraints for a particular 
decision item. 

 

 
Figure 4. Selective visualization of variability con-
straints in the graphic model. 

 
In our example, two constraints are displayed: (a) a 

cardinality constraint, stating that D3, D4, and D5 form 
a variation point VP2 with cardinality (1:2), and (b) an 
interdependency, stating that choosing a Fingerprint 
Reader implies configuring a High-End System. 

More concretely, the cardinality (1:2) for variation 
point VP2 states that at least one device for unlocking 
the door (a keypad, a fingerprint reader, or a magnetic 
card reader) must be chosen and that not more than two 
devices are allowed in a valid configuration. 

Other than directly visualizing the variability con-
straints in the graphical model, we also allow for a 
selective constraints visualization triggered by a selec-
tion in the decision table. When stakeholders negotiate 
a particular decision item in the decision table, then a 
selective visualization of all the related variability 
constraints in the graphical model might be signifi-
cantly easier to argue about than the textual constraint 
representation in the table. 

Figure 5, shows an example: when decision item D4 
is selected in the decision table, the corresponding join 
relationship is highlighted and all associated con-
straints are displayed. When stakeholders negotiate this 
variability, they can easily see that decision item D4 is 
rather independent: there is only a single cardinality 
constraint to be obeyed when deciding whether or not 
to include the Keypad Plug-In in a product. The 
stakeholders can also easily see what would be the 
alternative choices if they don’t want a keypad. 
 

 
Figure 5.  Tracing the selection and visualization of 
the variability constraints for decision item D4 se-
lected in the decision table. 

 
3.3. Dynamic Weaving at Derivation Time 

 
So far we have described concepts for visualization 

support when negotiating variability decisions. In this 
subsection we discuss the visualization support when 
actually taking the decisions. 

In our approach of product line engineering based 
on aspects, we are deriving products by adding the 
chosen variants to the model of the commonality. 
Technically, the model elements of the chosen aspects 
are woven into the core model. We do this not only in 
the underlying repository (i.e. in XML data structures) 
as done in other aspect-oriented modeling approaches 
[18] [3] [9] [6], but weave also the actual graphical 
representation, using the weaving capabilities of the  
ADORA tool. 



 

Weaving is dynamic, i.e. when a decision to include 
a variant in a product is made (technically, the value in 
the Decision column for a decision item is set to “true” 
in the decision table), the corresponding aspect is 
woven into the product model. A decision to exclude a 
variant from the product (technically, setting the value 
in the Decision column for a decision item to “false”) 
results in removing the corresponding join relationship 
from the model. If this removal yields isolated aspects 
(i.e. aspects that have no outgoing join relationship), 
the aspect and its incoming join relationships are also 
removed from the model. 

With dynamic weaving, we keep the graphic model 
and the decision table always consistent during the 
whole product derivation process. Dynamic weaving 
also allows users to try a decision and explore what 
happens in the resulting model. If unwanted effects 
occur, the decision and the subsequent dynamic weav-
ing can be easily undone by re-setting the value in the 
Decision column for the respective decision item to 
“not decided”. The visual layout is restored exactly to 
what it looked before taking the decision. 

Figure 6 shows a dynamically woven model during 
the product derivation process, where nearly all deci-
sions have already been taken, except for the finger-
print reader (which could still be used as a second un-
locking mechanism) and the logging possibilities for 
the touchscreen keypad and fingerprint reader, respec-
tively. Table 2 shows the corresponding state of the 
decision table.  

Suppose that the stakeholders are currently deciding 
about the necessity of logging for various events, as 
indicated by the current selection of decision item D17 
in Table 2. Figure 6 shows how this decision is also 
highlighted in the partially woven, graphical model. So 
it is easy for the stakeholders to discuss this decision 
item also in context of the integrated requirements 
model at hand.  

 
Figure 6.  A partially woven product model during 
product derivation, with decision item D17 high-
lighted. 
 

Table 2.  A partially decided decision table during 
product derivation, with decision item D17 selected. 

 
 

3.4. Visual Traceability of Variability Decision 
Impact to Woven Product Models 

 
The final visualization aid mechanism, other than 

the impact views we describe in Section 4, is the visual 
traceability of the effects of a variability decision in the 
woven product model. 

Especially when dealing with big models, it be-
comes hard for the users to keep track of the effects 
that the previous decisions in the product derivation 
process had. This is mainly due to the fact that all de-
cided variability is immediately woven into the core 
model and can no longer be viewed separately. When a 
user wants to reflect about some parts of the product 
model, he or she might not be able to recall exactly 
which decision item caused the insertion of some spe-
cific model element. 

We solve this problem by providing a visual tracing 
mechanism for decisions that have been taken. SEQ 
demonstrates our approach. Suppose that a user has 
decided to include decision item D4 (cf. Table 3) and 
the corresponding variability has been woven into the 
product model. If decision item D4 is now selected in 
the decision table, the model elements that were in-
serted into the product model due to this decision can 
be highlighted as shown in SEQ. So a user can see all 
the effects of a decision in the product model. Tracing 
in the opposite direction is also possible: when a user 
would select the element connect keypad in the graphic 
representation shown in Figure 8, the corresponding 
decision item D4 would be highlighted in the decision 
table. 

We expect that this tracing mechanism will be par-
ticularly useful when dealing with large models in 
practice. 

 
Table 3.  A decision table with one decision item D4 
currently selected and decided with “true”. 

 



 

 
Figure 7.  A partially woven product model, with 
the variability decision impact of decision item D4 
highlighted in the core model. 
 

 
3.5. Combined Visualization 

 
A combination of the visualization aids introduced 

in the previous subsections is possible and will be use-
ful in many situations. 

As an example, we demonstrate a combination of 
selecting a model element, tracing the selection to the 
corresponding decision item in the decision table, and 
selectively visualizing closely related variability con-
straints for one join relationship. 

 

 
Figure 8.  Combining a selection of one particular 
model element and a selective visualization of vari-
ability constraints. 

 
Suppose a user wants to analyze the scenario con-

nect keypad in the partially woven product model given 
in Figure 8. Selecting this scenario in the graphic 
model will highlight the corresponding decision item 
D4 in the decision table (see Table 3), so the user 
knows where this element comes from. When addi-
tionally selecting one of the incoming join relation-
ships, the corresponding constraints appear. Thus, the 
user gets the context information he or she needs for 
taking further decisions about the keypad options. 

 

4. Impact Views: An Additional Aid for 
Tracing Decisions 

 
The techniques introduced in the previous section 

are very helpful for small and medium-sized models, as 
demonstrated in the examples. 

For large models, however, visualizing traceability 
and constraint information in the graphic model runs 
into scaling problems as soon as the information to be 
visualized requires more space than the user's display 
screen provides: the user is forced to scroll for finding 
the relevant information. This is particularly the case 
when visually tracing the effects of a decision in the 
product model as described in Section 3.4. 

Imagine a situation where a high-level variant X is 
chosen and woven into the product model. In the sub-
sequent process of product derivation, several lower-
level variants are chosen that lead to the insertion of 
model elements into those parts of the product model 
that originate from the high-level variant X. When a 
user now decides to trace the effects of choosing X in 
the graphic model, using the technique described in 
Section 3.4, the highlighted model elements will lie far 
apart in the graphic model, making it very hard to view 
them all. 

Figure 9 and Table 4 illustrate such a situation. 
When visualizing the effects of choosing decision item 
D4 in the graphic model of Figure 9, the region with 
highlighted model elements exceeds the size of the 
available screen, forcing the user to scroll the entire 
model in order not to miss any of the highlighted ele-
ments. 

To solve this problem, and to enable a user to iden-
tify all the model elements belonging to a specific de-
cision quickly, we introduce separately generated so-
called impact views. An impact view of a variant that 
has been woven into the product model only contains 
the model elements belonging to this variant plus the 
direct context of these elements. The model elements 
that actually belong to the variant are highlighted as 
usual. For every decision item in the decision table 
where the value in the Decision column has been set to 
“true”, an impact view can be generated in a separate 
tab window when the user selects such a decision item 
and issues a “generate impact view” command in the 
tool. 

Figure 10 shows an example of an impact view for 
decision item D4 (see Table 4) in a situation where the 
current product model looks like the one given in 
Figure 9. 

Impact view generation is a mechanism for a simple 
and ad hoc creation of a separate graphical model that 
only represents particular model elements. Impact 
views are not stored anywhere with the actual product 



 

or partially woven product line model. They only serve 
as additional ad hoc visualization aids that are just 
created for temporary viewing.  

Impact views are particularly helpful when the 
model elements to be traced are scattered all over the 
model and when users have to work with small-size 
screens. 

 

 
Figure 9.  A fully woven product model, with im-
pact of decision item D4 visually traced, and the 
currently visible area (e.g. in the editor tool) as a 
thick dashed line. 

 
Table 4.  A decision table with all decisions taken 
and decision item D4 currently selected. 

 
 

 
Figure 10.  A generated view, to visualize only the 
directly relevant model elements of decision item 
D4, and the directly relevant context less empha-
sized. 

 

 
5. Conclusions 

 
5.1 Related work 

 
Feature trees [7] [1] visualize all variability con-

straints graphically in the feature model. However, 
they lack abstraction capabilities and don’t provide 
tracing from the variability description in the feature 
tree to the actual models describing the variants. 

Several approaches extend UML with product line 
modeling capabilities. For example, the Orthogonal 
Variability Model (OVM) by Pohl et al. [12] describes 
variability constraints in a separate model and defines 
which model elements map to which variants. How-
ever, OVM does not provide visual support for tracing 
variability and product derivation. 

Czarnecki et al. [2] propose an approach which has 
similarities to our one. They combine feature models 
with UML diagrams and provide traceability from 
features to model artifacts by so-called superimposed 
variants. To realize such mappings, they assign all 
variable model elements to features in a separate fea-
ture tree, where they also handle all the variability 
constraints and the product derivation. In the product 
derivation process, they provide visual support by 
dynamically adapting the corresponding UML dia-
grams for the product depending on the current state of 
derivation. This means, whenever a decision is taken, 
the model is pruned dynamically by removing variable 
elements that are not chosen. Further, they provide 
visual traceability of features by coloring. All variable 
model elements contain so-called presence conditions, 
which link them to the feature tree. In the graphical 
model, features are colored according to these presence 
conditions. Thus, they provide the capability to trace 
the impact of feature variability directly to require-
ments and design models. 

The biggest disadvantage of the approach by 
Czarnecki et al. is information scattering: the relevant 
information is distributed over several diagrams. For 
example, it is impossible to see the effects of a vari-
ability decision in a single diagram as we do with vis-
ual impact tracing and impact views. Furthermore, they 
do not visualize global constraints. Finally, their para-
digm for modeling variability is different from our one: 
they use a subtractive paradigm, where all variants are 
included in the domain model. In product derivation, 
the omitted variants are removed from the model. Our 
modeling paradigm is additive: the core model contains 
the commonality only; variability is modeled sepa-
rately as aspects. In product derivation, the chosen 
variants are added to the core model. 



 

Gomaa et al. [5] also propose an approach that com-
bines UML and feature trees. They mention the use of 
coloring to support product derivation, but their vari-
ability visualization concept is considerably less so-
phisticated that the one by Czarnecki et al. [2]. 

Kästner et al. [8] introduce a colored integrated de-
velopment environment (CIDE) that can visualize fea-
tures within source code by adding different back-
ground colors. However, they neither use visual mod-
els nor have any visual product derivation concepts. 

 
5.2 Summary and Discussion 

 
In this paper we have shown how we can visualize 

software product line models that are based on aspects. 
For the basic visualization features, in particular hori-
zontal and vertical abstraction, we rely on the capabili-
ties of the ADORA tool. Additionally, we have intro-
duced four basic visualization aids that support  trace-
ability, the visualization of constraints, and model 
analysis during the process of product derivation: 
• Visual traceability of particular decision items 

between the graphical model and the decision ta-
ble; this supports better understanding of the vari-
ability; 

• Visualizing variability constraints for single vari-
able join relations; this helps estimate the impact 
of a decision on other decisions; 

• Dynamic weaving of variability at derivation 
time; this is a powerful mechanism to explore 
how variability will be realized in the derived 
product; 

• Visual traceability of decision impact, that means 
tracing the effects of including or omitting a vari-
ant in the woven graphical product model (both in 
the entire model and in specific impact views); 
this is a useful aid for users to recall which model 
elements in the woven model belong to which 
variability decision. 

Impact views are particularly useful for analyzing 
the effects of a decision in the woven product model: 
they avoid annoying scrolling activity when the visual 
model elements belonging to a particular decision item 
are spread all over a large product model. 

In summary, all these visualization aids and con-
cepts together provide advanced visualization support 
for product line models in general and for product 
derivation in particular.  

 
5.3 State of Tool Implementation 

 
The abstraction mechanisms described in Section 2 

have been fully implemented in the ADORA tool. A 

basic aspect weaving mechanism has also been imple-
mented, but still needs improvement. 

For product lines, we have implemented most of the 
decision model and the traceability of selections be-
tween the decision table and the graphic model. 

The visualization of variability constraints within 
the graphical model is currently under implementation. 
The remaining concepts described in this paper are not 
yet implemented; see below. 

 
5.4 Future Work 
 

We plan to implement all the concepts described in 
this paper on a research prototype level.  

The implementation of variability constraint visu-
alization has to be completed. 

Dynamic weaving for product derivation will re-
quire considerable improvement of our existing aspect 
weaving implementation, especially for the graphical 
layout adaptations when an aspect injects new elements 
to an existing graphical model. Further we will work 
on optimizing the usability of the decision table within 
the editor.  

Other conceptual work that we intend to tackle in 
the future will concern the scoping of the product line 
model. There, we aim at automatically identifying and 
adding all the improved and newly added model ele-
ments to the product line domain model. The im-
provements that are made during application engi-
neering would be included directly in the product line 
domain model, while the new requirements would be 
added as new aspects, with respective join relation-
ships in the domain model. 
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