

Visualization Support for Software Product Line Modeling

Reinhard Stoiber, Tobias Reinhard, Martin Glinz
Department of Informatics, University of Zurich, Switzerland

{ stoiber | reinhard | glinz } @ifi.uzh.ch

Abstract

Product derivation from a product line model is a

central activity in product line requirements engineer-
ing. A product line framework and/or approach should
provide sophisticated visualization and product deriva-
tion support, otherwise large product lines become
very hard to handle. In this paper we first present how
we can benefit from existing single-system visualiza-
tion techniques in product lines. Then we introduce
new visualization aids and concepts that support the
analysis of variability and the derivation of products in
software product line engineering. We expect that
these new visual support mechanisms will significantly
ease the work of stakeholders and requirements engi-
neers when negotiating a new product based on a
software product line.

1. Introduction

Software product line engineering (SPLE) is a soft-
ware engineering paradigm that has gained more and
more attention in research and industry over the last
years. The main goals and promises of SPLE are to
maximize the amount of reuse of existing software
artifacts, thus reducing development cost and time as
well as increasing product quality [12].

A central activity in SPLE is product derivation,
which deals with creating concrete application prod-
ucts from the product line. In product derivation,
stakeholders (in particular, requirements engineers and
customers) usually sit together, discuss the product’s
common and variable elements, and decide which vari-
able parts shall be included in the concrete product and
which ones shall not. Furthermore, new requirements
might also be identified in this process. Primarily, such
requirements will have to be modeled for completing
the concrete product specification. Later, some of them
will be added also to the product line domain.

When dealing with large requirements models, the
task of understanding and visualizing the relevant in-

formation is essential for supporting stakeholder nego-
tiations. Especially when concrete decisions have to be
taken in the variability model, the deciding
stakeholders need mechanisms for
(1) generating views that show the relevant parts of the

model only,
(2) visualizing the structure of the variability and the

dependencies between variable items,
(3) visualizing the effects and the impact when taking a

decision during product derivation.
We are developing a new approach for integrated
product line modeling and product derivation [17]
which is based on a combination of the aspect model-
ing capabilities of the ADORA language and tool [4]
[11] [15] and a specialized form of decision tables.
The commonality is modeled as a plain vanilla ADORA
model (called the core model), while variants are mod-
eled as aspects. All information about the variability
constraints and decision support is kept in a decision
table. When a variant is selected during product deriva-
tion, it is added to the core model by weaving the
corresponding aspect into the core model.
The ADORA tool features sophisticated visualization
mechanisms for hierarchical and aspectual graphic
models [4] [15] [11], including smart layout adaptation
[16] [14], line routing [13] and view generation [15].
In this paper, we focus on specific product line visuali-
zation mechanisms for meeting the requirements (1)-
(3) stated above which build upon the existing ADORA
visualization techniques.

We first describe how we can benefit from the al-
ready established visualization mechanisms in ADORA
when handling a product line. These include vertical
abstractions (fisheye views) and horizontal abstractions
(visualizing and/or hiding different views of the inte-
grated model). Then we introduce new visualization
aids. These include selective visualization of variability
constraints, visual tracing of selections between the
graphical model and the decision table, partial weaving
(which considerably eases the task of product deriva-
tion), and visual traceability of the effects of including
or omitting variants in the resulting product application

model. Additionally, we introduce impact views,
which is a new concept for tracing the effects of bind-
ing a variant in large, industrial product lines. Impact
views are generated views showing only the model
elements directly impacted by a decision plus their
surrounding context.

The remainder of the paper is organized as follows:
Section 2 describes a running example of a simple
product line and how our existing visualization tech-
niques can help visualize the model. Section 3 focuses
on variability analysis and product derivation, in par-
ticular, traceability between decisions and graphical
model elements, selective variability constraint visuali-
zation, dynamic weaving, and traceability of decision
impact in woven product models. Section 4 describes
impact views as a visualization aid for large product
models. In Section 5 we conclude with a discussion of
related work, a summary of our results, the state of our
work, and future plans.

2. Visualization of Graphical Product Line
Models

For the ADORA language we have developed many
advanced visualization techniques to better visualize
and handle the integrated models. These techniques
provide significant benefit when working with single
system models. But we can also benefit from them
equally well when modeling product lines. In the fol-
lowing subsections we will briefly introduce a running
example and then demonstrate how visualization can
help to understand these models better.

2.1. Running Example

As a running example we use a simple electronic

home security system. We have already used a pre-
liminary version of this in previous work [17].

The electronic home security system consists of an
alarm module, a main module, and a door control
module. For the alarm module there won’t be any
variation. For the main module there are two alterna-
tives: an economy system and a high-end system. For
the door control module there are three basic mecha-
nisms to unlock the door: a magnetic card reader, a
fingerprint reader, and a keypad plug-in. Two alterna-
tive types of keypads can be connected to the keypad
plug-in: a hardware keypad and a touchscreen keypad.
An optional logging mechanism can be used to write
log entries for selected events.

2.2. Horizontal Abstractions

In an integrated model, the various facets of a system
are all described within one modeling language. In the
ADORA language [4], these facets, which are called
views in ADORA, include:
 The base view, which represents the hierarchy of

components and objects a system is comprised of
(notation: nested rectangles);

 The structural view, describing static associations
between objects (notation: lines connecting rec-
tangles);

 The behavior view, modeled by states and state
transitions with a simplified statechart semantics
(notation: rounded rectangles for states, arrows
for transitions);

 The user interaction view, which models the
interaction between system components and ex-
ternal actors with decomposable, type-level sce-
narios (notation: ovals for scenarios);

 The external view, representing the system con-
text (notation: hexagons for external actors);

 The aspect view, describing crosscutting concerns
separately as aspects and denoting the places
where they apply with explicit join relationships
(notation: rectangles with two beveled corners
represent aspects, dashed arrows stand for join
relationships).

Displaying all these facets together in a single dia-
gram results in visualizations that contain much more
information than a classic, single facet diagram (such
as, for example, a UML class diagram). Such compre-
hensive diagrams are rather hard to read and under-
stand, hence.

To handle this problem, ADORA employs horizontal
abstraction: the model is projected to a single facet or
to a combination of facets that a modeler is currently
interested in. Only the model elements belonging to
these facets are displayed; the rest of the model is hid-
den. For example, end-users of a system might only be
interested in how they can interact with the system: in
ADORA, they would select a combination of the user
interaction view and the external view. On the other
hand, for getting an overview of the component struc-
ture of a system, the base view combined with the
external view would be appropriate.

Figure 1 shows a visualization of the home security
system that consists of the base view, combined with
the user view, the aspects and the join relationships.
With respect to product line modeling, the commonal-
ity of the home security system consists of the object
Electronic Home Security System (which is decomposed
into the objects Alarm Module, Main Module, and Door
Control), the Log object and the external actor House
Owner. The variability is modeled with aspects and join

relationships. The scenario unlock door, for example,
has three possible sub-scenarios: unlock door by mag-
netic card, unlock door by keypad, and unlock door by fin-
gerprint reader. This is defined by the join relationships
crosscutting the unlock door scenario, and by the weav-
ing type “after”. If more than one of these sub-scenar-
ios will be realized in the application system, House
Owner has to select one of them. This is indicated by
the symbol “O” in these scenarios. After connecting a
keypad, House Owner can unlock the door multiple
times before disconnecting it again, which is indicated
by the “*” in the respective scenarios.

Figure 1. The running example: displaying only the
external actors, variability as aspects, and user in-
teraction view.

In this model, the corresponding variability decision
items and variability constraints are not visualized.
Note that, when hiding or unhiding particular views,
the model layout automatically adapts to the new situa-
tion. The new layout preserves the user’s mental map
of the model and, at the same time, it minimizes free
space, in order to display the model efficiently [15].

2.3. Vertical Abstractions

In contrast to horizontal abstraction, vertical ab-

straction is not used to hide particular facets of the
whole model, but to hide all the details for some par-
ticular concerns or parts of the model, which are cur-
rently not in the focus of the user. For our running
example, Figure 1 and Figure 2 illustrate the principle
of vertical abstraction. In Figure 1, the variants Econ-
omy System, High-End System and Logging, as well as the
object Log are not in the current focus, hence their de-
tails are hidden from this view. An ellipsis after the
name marks such abstractions. In Figure 2, the Logging

variant is now in the focus of interest; hence, its details
are included in the view.

Figure 2 also illustrates the effect of horizontal ab-
straction: the behavior view, which was hidden in
Figure 1, is now included.

The behavior of the Logging variant is no complete
statechart, but a fragment, a so-called behavior chunk.
If the Logging variant is chosen, this behavior chunk is
woven, for example, into three transitions of the state-
chart that models the Touchscreen Keypad behavior. For
details of the weaving semantics, see [10].

Note that precise join relationships can only be dis-
played when both the source and the target are dis-
played in detail (for example, Logging and Touchscreen
Keypad in Figure 2). If the source or target is hidden
due to horizontal or vertical abstraction, a so-called
abstract join relationship must be drawn from or to the
component containing the source or the target (for
example, from Economy System to Main Module or from
begin logging to Fingerprint Reader).

Figure 2. The running example: displaying all de-
tails of the commonality, the keypad plug-in, the
touchscreen keypad and the logging, and hiding the
details of the other concerns.

As demonstrated in Figure 1 and Figure 2, horizontal
and vertical abstraction can be combined when visual-
izing a model. This capability allows modelers as well
as model readers to focus and to explore specific parts
and concerns of the model, without being overloaded
by lots of detail that are irrelevant in the current con-
text.
When working with vertical abstraction, the layout will
also be automatically adapted when an abstraction
operation is performed [15] [16].

3. Visualization Support for Product Deri-
vation

Besides benefiting from the previously developed

visualization mechanisms of ADORA, we have also
developed some additional visualization concepts,
which aim especially at supporting product lines and
product derivation. We describe these in the following
subsections.

Before we can proceed, we must briefly introduce
the decision table, which is our central concept for
handling product line variability in ADORA, besides
using aspects to describe the variability. The decision
table describes the properties and constraints of the
variability and records actual decisions when deriving
products. The rows of the decision table represent the
decisions to be taken when binding the variability:
every row is a decision item, containing all information
for making a variability decision and recording the
actual decision when it is taken.

Every decision item in the decision table maps to
one join relationship in the graphical product line
model, except in cases where different elements of an
aspect need to be woven at different places in the core
model. Conversely, every single join relationship out-
going from a variability1 is annotated with the number
of a decision item, in order to handle the details of its
variability (see Figure 3).

Table 1. The decision table for the running exam-
ple, with decision item D4 currently selected.

Table 1 shows an excerpt from the decision table
for our running example. The columns describing the
variability constraints and decision support are sup-
pressed, because this is not in the focus of this paper.
For our subsequent visualization examples, we only
need the following information about constraints: De-
cision items D3, D4, D5 form a variation point
VP2(1:2), which means that at least one and at most
two of these decision items have to be chosen when
deriving a product. In the same way, D6 and D7 form a
variation point VP3(1:1). Decision item D5 includes

1 Note that a model can also contain aspects representing crosscutting
concerns that have nothing to do with variability. Hence, not every
join relationship is annotated with a decision item number, but only
those that represent variability.

D2, which means that D5 can only be chosen when D2
has been chosen, too. On the other hand, D5 is ex-
cluded by D6, which means that D5 cannot be chosen
if D6 is chosen.

3.1. Visual Traceability between Decision Items
and Variable Join Relationships

For working efficiently with the graphic model and

the decision table, we need visual traceability between
the two. This is easy to provide in a tool: When a deci-
sion item is selected in the decision table (for example,
D4 in Table 1), the corresponding join relationship in
the graphic model is highlighted (Figure 3). Vice-
versa, when selecting a join relationship that is labeled
with a decision item number, the corresponding row in
the decision table is highlighted. Thus, the user has
always visual pointers to the corresponding locations
in the graphic model and in the decision table where he
or she is currently working on.

Figure 3. An abstract view on the variability with
decision item D4 currently highlighted.

Because all the details of the variant aspects are
hidden in Figure 3, some of the displayed join relation-
ships are abstractions of more than one join relation-
ship. These are labeled with the numbers of the deci-
sion items that the abstracted join relationships are
associated with. For example, the label “D8-D10” of
the join relationship from Logging to Hardware Keypad
means that in a fully expanded view, there are three
join relationships from elements in Logging to elements
in Hardware Keypad, which correspond to decision items
D8, D9, and D10.

3.2. Selective Graphical Visualization of Vari-
ability Constraints

An important and usually quite difficult part in

product line engineering is handling the variability
constraints. Such constraints are, for example, cardi-

nality constraints over multiple decision items or inter-
dependencies between decision items such as include
and exclude relationships. As described above, we
capture the constraints in the decision table. However,
when working with a variability model, particularly
during product derivation, it is essential that constraints
can also be displayed visually. In traditional feature
trees, all constraints for all features are represented
visually [7] [1]. As we work with richer models that
not only model features as abstract boxes, but also the
variants themselves, such a visualization would over-
load the view. Instead, we decided to display constraint
information selectively, just for those decision items
that a user is currently working on.

Figure 4 and Figure 5 illustrate our approach.
Figure 4 shows how all the variability constraints for a
particular variable join relationship can directly be
visualized within the graphical model. This kind of
selective displaying of the variability constraints in the
graphical model is invoked by selecting the variable
join relationship with the mouse pointer. The main
benefits from such a selective constraint visualization
is to keep the added visual complexity small, while still
displaying a complete set of constraints for a particular
decision item.

Figure 4. Selective visualization of variability con-
straints in the graphic model.

In our example, two constraints are displayed: (a) a

cardinality constraint, stating that D3, D4, and D5 form
a variation point VP2 with cardinality (1:2), and (b) an
interdependency, stating that choosing a Fingerprint
Reader implies configuring a High-End System.

More concretely, the cardinality (1:2) for variation
point VP2 states that at least one device for unlocking
the door (a keypad, a fingerprint reader, or a magnetic
card reader) must be chosen and that not more than two
devices are allowed in a valid configuration.

Other than directly visualizing the variability con-
straints in the graphical model, we also allow for a
selective constraints visualization triggered by a selec-
tion in the decision table. When stakeholders negotiate
a particular decision item in the decision table, then a
selective visualization of all the related variability
constraints in the graphical model might be signifi-
cantly easier to argue about than the textual constraint
representation in the table.

Figure 5, shows an example: when decision item D4
is selected in the decision table, the corresponding join
relationship is highlighted and all associated con-
straints are displayed. When stakeholders negotiate this
variability, they can easily see that decision item D4 is
rather independent: there is only a single cardinality
constraint to be obeyed when deciding whether or not
to include the Keypad Plug-In in a product. The
stakeholders can also easily see what would be the
alternative choices if they don’t want a keypad.

Figure 5. Tracing the selection and visualization of
the variability constraints for decision item D4 se-
lected in the decision table.

3.3. Dynamic Weaving at Derivation Time

So far we have described concepts for visualization

support when negotiating variability decisions. In this
subsection we discuss the visualization support when
actually taking the decisions.

In our approach of product line engineering based
on aspects, we are deriving products by adding the
chosen variants to the model of the commonality.
Technically, the model elements of the chosen aspects
are woven into the core model. We do this not only in
the underlying repository (i.e. in XML data structures)
as done in other aspect-oriented modeling approaches
[18] [3] [9] [6], but weave also the actual graphical
representation, using the weaving capabilities of the
ADORA tool.

Weaving is dynamic, i.e. when a decision to include
a variant in a product is made (technically, the value in
the Decision column for a decision item is set to “true”
in the decision table), the corresponding aspect is
woven into the product model. A decision to exclude a
variant from the product (technically, setting the value
in the Decision column for a decision item to “false”)
results in removing the corresponding join relationship
from the model. If this removal yields isolated aspects
(i.e. aspects that have no outgoing join relationship),
the aspect and its incoming join relationships are also
removed from the model.

With dynamic weaving, we keep the graphic model
and the decision table always consistent during the
whole product derivation process. Dynamic weaving
also allows users to try a decision and explore what
happens in the resulting model. If unwanted effects
occur, the decision and the subsequent dynamic weav-
ing can be easily undone by re-setting the value in the
Decision column for the respective decision item to
“not decided”. The visual layout is restored exactly to
what it looked before taking the decision.

Figure 6 shows a dynamically woven model during
the product derivation process, where nearly all deci-
sions have already been taken, except for the finger-
print reader (which could still be used as a second un-
locking mechanism) and the logging possibilities for
the touchscreen keypad and fingerprint reader, respec-
tively. Table 2 shows the corresponding state of the
decision table.

Suppose that the stakeholders are currently deciding
about the necessity of logging for various events, as
indicated by the current selection of decision item D17
in Table 2. Figure 6 shows how this decision is also
highlighted in the partially woven, graphical model. So
it is easy for the stakeholders to discuss this decision
item also in context of the integrated requirements
model at hand.

Figure 6. A partially woven product model during
product derivation, with decision item D17 high-
lighted.

Table 2. A partially decided decision table during
product derivation, with decision item D17 selected.

3.4. Visual Traceability of Variability Decision
Impact to Woven Product Models

The final visualization aid mechanism, other than

the impact views we describe in Section 4, is the visual
traceability of the effects of a variability decision in the
woven product model.

Especially when dealing with big models, it be-
comes hard for the users to keep track of the effects
that the previous decisions in the product derivation
process had. This is mainly due to the fact that all de-
cided variability is immediately woven into the core
model and can no longer be viewed separately. When a
user wants to reflect about some parts of the product
model, he or she might not be able to recall exactly
which decision item caused the insertion of some spe-
cific model element.

We solve this problem by providing a visual tracing
mechanism for decisions that have been taken. SEQ
demonstrates our approach. Suppose that a user has
decided to include decision item D4 (cf. Table 3) and
the corresponding variability has been woven into the
product model. If decision item D4 is now selected in
the decision table, the model elements that were in-
serted into the product model due to this decision can
be highlighted as shown in SEQ. So a user can see all
the effects of a decision in the product model. Tracing
in the opposite direction is also possible: when a user
would select the element connect keypad in the graphic
representation shown in Figure 8, the corresponding
decision item D4 would be highlighted in the decision
table.

We expect that this tracing mechanism will be par-
ticularly useful when dealing with large models in
practice.

Table 3. A decision table with one decision item D4
currently selected and decided with “true”.

Figure 7. A partially woven product model, with
the variability decision impact of decision item D4
highlighted in the core model.

3.5. Combined Visualization

A combination of the visualization aids introduced

in the previous subsections is possible and will be use-
ful in many situations.

As an example, we demonstrate a combination of
selecting a model element, tracing the selection to the
corresponding decision item in the decision table, and
selectively visualizing closely related variability con-
straints for one join relationship.

Figure 8. Combining a selection of one particular
model element and a selective visualization of vari-
ability constraints.

Suppose a user wants to analyze the scenario con-

nect keypad in the partially woven product model given
in Figure 8. Selecting this scenario in the graphic
model will highlight the corresponding decision item
D4 in the decision table (see Table 3), so the user
knows where this element comes from. When addi-
tionally selecting one of the incoming join relation-
ships, the corresponding constraints appear. Thus, the
user gets the context information he or she needs for
taking further decisions about the keypad options.

4. Impact Views: An Additional Aid for
Tracing Decisions

The techniques introduced in the previous section

are very helpful for small and medium-sized models, as
demonstrated in the examples.

For large models, however, visualizing traceability
and constraint information in the graphic model runs
into scaling problems as soon as the information to be
visualized requires more space than the user's display
screen provides: the user is forced to scroll for finding
the relevant information. This is particularly the case
when visually tracing the effects of a decision in the
product model as described in Section 3.4.

Imagine a situation where a high-level variant X is
chosen and woven into the product model. In the sub-
sequent process of product derivation, several lower-
level variants are chosen that lead to the insertion of
model elements into those parts of the product model
that originate from the high-level variant X. When a
user now decides to trace the effects of choosing X in
the graphic model, using the technique described in
Section 3.4, the highlighted model elements will lie far
apart in the graphic model, making it very hard to view
them all.

Figure 9 and Table 4 illustrate such a situation.
When visualizing the effects of choosing decision item
D4 in the graphic model of Figure 9, the region with
highlighted model elements exceeds the size of the
available screen, forcing the user to scroll the entire
model in order not to miss any of the highlighted ele-
ments.

To solve this problem, and to enable a user to iden-
tify all the model elements belonging to a specific de-
cision quickly, we introduce separately generated so-
called impact views. An impact view of a variant that
has been woven into the product model only contains
the model elements belonging to this variant plus the
direct context of these elements. The model elements
that actually belong to the variant are highlighted as
usual. For every decision item in the decision table
where the value in the Decision column has been set to
“true”, an impact view can be generated in a separate
tab window when the user selects such a decision item
and issues a “generate impact view” command in the
tool.

Figure 10 shows an example of an impact view for
decision item D4 (see Table 4) in a situation where the
current product model looks like the one given in
Figure 9.

Impact view generation is a mechanism for a simple
and ad hoc creation of a separate graphical model that
only represents particular model elements. Impact
views are not stored anywhere with the actual product

or partially woven product line model. They only serve
as additional ad hoc visualization aids that are just
created for temporary viewing.

Impact views are particularly helpful when the
model elements to be traced are scattered all over the
model and when users have to work with small-size
screens.

Figure 9. A fully woven product model, with im-
pact of decision item D4 visually traced, and the
currently visible area (e.g. in the editor tool) as a
thick dashed line.

Table 4. A decision table with all decisions taken
and decision item D4 currently selected.

Figure 10. A generated view, to visualize only the
directly relevant model elements of decision item
D4, and the directly relevant context less empha-
sized.

5. Conclusions

5.1 Related work

Feature trees [7] [1] visualize all variability con-

straints graphically in the feature model. However,
they lack abstraction capabilities and don’t provide
tracing from the variability description in the feature
tree to the actual models describing the variants.

Several approaches extend UML with product line
modeling capabilities. For example, the Orthogonal
Variability Model (OVM) by Pohl et al. [12] describes
variability constraints in a separate model and defines
which model elements map to which variants. How-
ever, OVM does not provide visual support for tracing
variability and product derivation.

Czarnecki et al. [2] propose an approach which has
similarities to our one. They combine feature models
with UML diagrams and provide traceability from
features to model artifacts by so-called superimposed
variants. To realize such mappings, they assign all
variable model elements to features in a separate fea-
ture tree, where they also handle all the variability
constraints and the product derivation. In the product
derivation process, they provide visual support by
dynamically adapting the corresponding UML dia-
grams for the product depending on the current state of
derivation. This means, whenever a decision is taken,
the model is pruned dynamically by removing variable
elements that are not chosen. Further, they provide
visual traceability of features by coloring. All variable
model elements contain so-called presence conditions,
which link them to the feature tree. In the graphical
model, features are colored according to these presence
conditions. Thus, they provide the capability to trace
the impact of feature variability directly to require-
ments and design models.

The biggest disadvantage of the approach by
Czarnecki et al. is information scattering: the relevant
information is distributed over several diagrams. For
example, it is impossible to see the effects of a vari-
ability decision in a single diagram as we do with vis-
ual impact tracing and impact views. Furthermore, they
do not visualize global constraints. Finally, their para-
digm for modeling variability is different from our one:
they use a subtractive paradigm, where all variants are
included in the domain model. In product derivation,
the omitted variants are removed from the model. Our
modeling paradigm is additive: the core model contains
the commonality only; variability is modeled sepa-
rately as aspects. In product derivation, the chosen
variants are added to the core model.

Gomaa et al. [5] also propose an approach that com-
bines UML and feature trees. They mention the use of
coloring to support product derivation, but their vari-
ability visualization concept is considerably less so-
phisticated that the one by Czarnecki et al. [2].

Kästner et al. [8] introduce a colored integrated de-
velopment environment (CIDE) that can visualize fea-
tures within source code by adding different back-
ground colors. However, they neither use visual mod-
els nor have any visual product derivation concepts.

5.2 Summary and Discussion

In this paper we have shown how we can visualize

software product line models that are based on aspects.
For the basic visualization features, in particular hori-
zontal and vertical abstraction, we rely on the capabili-
ties of the ADORA tool. Additionally, we have intro-
duced four basic visualization aids that support trace-
ability, the visualization of constraints, and model
analysis during the process of product derivation:
• Visual traceability of particular decision items

between the graphical model and the decision ta-
ble; this supports better understanding of the vari-
ability;

• Visualizing variability constraints for single vari-
able join relations; this helps estimate the impact
of a decision on other decisions;

• Dynamic weaving of variability at derivation
time; this is a powerful mechanism to explore
how variability will be realized in the derived
product;

• Visual traceability of decision impact, that means
tracing the effects of including or omitting a vari-
ant in the woven graphical product model (both in
the entire model and in specific impact views);
this is a useful aid for users to recall which model
elements in the woven model belong to which
variability decision.

Impact views are particularly useful for analyzing
the effects of a decision in the woven product model:
they avoid annoying scrolling activity when the visual
model elements belonging to a particular decision item
are spread all over a large product model.

In summary, all these visualization aids and con-
cepts together provide advanced visualization support
for product line models in general and for product
derivation in particular.

5.3 State of Tool Implementation

The abstraction mechanisms described in Section 2

have been fully implemented in the ADORA tool. A

basic aspect weaving mechanism has also been imple-
mented, but still needs improvement.

For product lines, we have implemented most of the
decision model and the traceability of selections be-
tween the decision table and the graphic model.

The visualization of variability constraints within
the graphical model is currently under implementation.
The remaining concepts described in this paper are not
yet implemented; see below.

5.4 Future Work

We plan to implement all the concepts described in
this paper on a research prototype level.

The implementation of variability constraint visu-
alization has to be completed.

Dynamic weaving for product derivation will re-
quire considerable improvement of our existing aspect
weaving implementation, especially for the graphical
layout adaptations when an aspect injects new elements
to an existing graphical model. Further we will work
on optimizing the usability of the decision table within
the editor.

Other conceptual work that we intend to tackle in
the future will concern the scoping of the product line
model. There, we aim at automatically identifying and
adding all the improved and newly added model ele-
ments to the product line domain model. The im-
provements that are made during application engi-
neering would be included directly in the product line
domain model, while the new requirements would be
added as new aspects, with respective join relation-
ships in the domain model.

6. Acknowledgements

We thank Cédric Jeanneret for the lively discus-
sions and comments on earlier drafts of the paper.

References

[1] Czarnecki, K., S. Helsen, and U. Eisenecker (2005). For-
malizing Cardinality-based Feature Models and their Spe-
cialization. Software Process Improvement and Practice,
special issue of best papers from SPLC04, 10(1), pp. 7 - 29

[2] Czarnecki, K., M. Antkiewicz (2005). Mapping Features
to Models: A Template Approach Based on Superimposed
Variants. In Proceedings of the 4th International Conference
on Generative Programming and Component Engineering
(GPCE'05). Tallinn, Estonia.

[3] France, R., F. Fleurey, R. Reddy, B. Baudry, and S.
Ghosh (2007). Providing Support for Model Composition in

Metamodels. In EDOC’07: Proceedings of the 11th IEEE
International Enterprise Computing Conference.

[4] Glinz, M., S. Berner, S. Joos (2002). Object-oriented
modeling with Adora. Information Systems 27, 6. 425-444.

[5] Gomaa, H. and M.E. Shin (2007). Automated Software
Product Line Engineering and Product Derivation. Proc.
Hawaii International Conference on System Sciences,
Hawaii.

[6] Jayaraman, P. K., J. Whittle, A. M. Elkhodary, and H.
Gomaa (2007). Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair Analysis. In
Proceedings of MoDELS’07, LNCS, page 15, Nashville TN
USA.

[7] Kang, K., S. Cohen, J. Hess, W. Novak, A. Peterson
(1990). Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-021. Carne-
gie Mellon University.

[8] Kästner, C., S. Apel, M. Kuhlemann (2008). Granularity
in Software Product Lines. In Proceedings of the 30th Inter-
national Conference on Software Engineering (ICSE). Leip-
zig, Germany, pages 311-320.

[9] Lahire, P., B. Morin, G. Vanwormhoudt, A. Gaignard, O.
Barais, and J. M. Jézéquel (2007). Introducing Variability
into Aspect-Oriented Modeling Approaches. In Proceedings
of MoDELS’07, LNCS, pages 498–513, Nashville TN USA.

[10] Meier, S., T. Reinhard, C. Seybold, M. Glinz (2006).
Aspect-Oriented Modeling with Integrated Object Models.
Modellierung 2006. Innsbruck, Austria. GI-Edition - Lecture
Notes in Informatics, Vol. P-82. 129-144.

[11] Meier, S., T. Reinhard, R. Stoiber, M. Glinz (2007).
Modeling and Evolving Crosscutting Concerns in Adora.
Proceedings of the 11th Workshop on Early Aspects at
ICSE’07, Minneapolis, USA.

[12] Pohl, K., G. Böckle (2005). van der Linden, F.: Software
Product Line Engineering – Foundations, Principles, and
Techniques. Springer, Heidelberg.

[13] Reinhard, T., C. Seybold, S. Meier, M. Glinz, N. Merlo-
Schett (2006). Human-Friendly Line Routing for Hierarchi-
cal Diagrams. Proceedings of the 21st IEEE International
Conference on Automated Software Engineering (ASE'06),
Tokyo, Japan. 273-276.

[14] Reinhard, T., S. Meier, M. Glinz (2007). An Improved
Fisheye Zoom Algorithm for Visualizing and Editing
Graphical Models. Proceedings of the 2nd International
Workshop on Requirements Engineering Visualization
(REV'07) at RE’07. New Delhi, India.

[15] Reinhard, T, S. Meier, R. Stoiber, C. Cramer, M. Glinz
(2008). Tool Support for the Navigation in Graphical Mod-
els. Formal Research Demo at 30th International Conference
on Software Engineering (ICSE 2008), Leipzig, Germany.

[16] Seybold, C., M. Glinz, S. Meier, N. Merlo-Schett
(2003). An Effective Layout Adaptation Technique for a
Graphical Modeling Tool. Proceedings of the 2003 Interna-
tional Conference on Software Engineering (ICSE 2003),
Portland. 826-827.

[17] Stoiber, R., S. Meier, M. Glinz (2007). Visualizing
Product Line Domain Variability by Aspect-Oriented Mod-
eling. Proceedings of the 2nd Int. Workshop on Requirements
Engineering Visualization (REV'07) at RE’07. New Delhi,
India.

[18] Voelter, M., I. Groher (2007). Product Line Implementa-
tion using Aspect-Oriented and Mode-Driven Software De-
velopment. 11th International Conference of Software Prod-
uct Line Conference. Kyoto, Japan.

