
Supporting Stepwise, Incremental Product Derivation in
Product Line Requirements Engineering

Reinhard Stoiber, Martin Glinz
Department of Informatics, University of Zurich, Switzerland

Email: {stoiber, glinz}@ifi.uzh.ch

Abstract—Deriving products from a software product line
is difficult, particularly when there are many constraints in
the variability of the product line. Understanding the impact
of variability binding decisions (i.e. of selecting or dismissing
features) is a particular challenge: (i) the decisions taken must
not violate any variability constraint, and (ii) the effects and
consequences of every variability decision need to be understood
well. This problem can be reduced significantly with good support
both for variability specification and decision making. We have
developed an extension of the ADORA language and tool which
is capable of modeling and visualizing both the functionality and
the variability of a product line in a single model and provides
automated reasoning on the variability space.

In this paper we describe how our approach supports stepwise,
incremental derivation of a product requirements specification
from a product line specification. We visualize what has been de-
rived so far, automatically re-evaluate the variability constraints
and propagate the results as restrictions on the remaining product
derivation options. We demonstrate our approach by showing a
sequence of product derivation steps in an example from the
industrial automation domain. We claim that our approach both
improves the efficiency and quality of the derivation process.

I. INTRODUCTION

Product derivation is the process of defining a single appli-
cation product based on a product line variability model. The
product derivation process begins with a product line domain
variability model, where all variability is unbound and ends
with a single concrete product model. During this process,
all product line variability needs to be bound, i.e. selected or
dismissed.

Product line variability models can become very complex,
particularly when the variability is restricted by many con-
straints. When deriving a product from a product line, an
application engineer is challenged with two problems: (i) the
decisions he or she takes must not violate the variability
constraints, and (ii) he or she needs to understand the effects
and consequences of every variability binding decision in order
to derive a high-quality product configuration.

Existing solutions for product derivation from a product line
variability model mostly build upon feature-oriented domain
analysis [1] or slightly extended versions thereof. However,
feature modeling languages have two significant limitations.
First, feature models can only define rather simple variability
constraints. Schobbens et al. [2] conducted a survey of feature
modeling languages that claimed to improve the expressive-
ness of the original FODA method [1]. According to this sur-
vey, current feature modeling languages support only simple

types of constraints, mostly based on cardinalities, for example
and/or/xor relationships between sub-features with the same
parent feature, and requires, excludes or mutual exclusion
dependencies between features. For complex constraints, this
is too simplistic. For example, a constraint such as F1 implies
F2 or F3 cannot be specified with a single constraint in a fea-
ture model. Second, feature models provide only the names of
the available features, but no detailed information about their
concrete functionality. In order to comprehend the meaning
and impact of a feature, additional documentation or domain
expert knowledge is required. Mannion [3], Jarzabek et al.
[4] and Czarnecki et al. [5] [6] have addressed this limitation
by introducing mappings between features and single textual
requirements, requirements documents and UML models, re-
spectively. Thus, with appropriate tool support, the detailed
impact of a feature can be shown in other documentation, but
this requires a lot of context switching, which is not ideal.

We have developed a new approach to product line re-
quirements modeling that addresses and aims to solve these
two problems. Our approach builds on the graphical object-
oriented requirements specification language ADORA [7],
ADORA’s aspect-oriented modeling capabilities [8] which we
use for modularizing product line variability, and a new
table-based boolean decision modeling concept which we use
for managing the product line variability. Using aspects for
separately modularizing variability (i.e. variable features) and
its composition semantics allows us integrate the variability
model into the graphic requirements model and visualize them
together.

In this paper, we concentrate on describing our approach to
variability decision and constraints modeling and how we can
support stepwise, incremental derivation of products. The main
idea is to encode the constraints in tables with boolean logic.
This allows us to apply existing boolean satisfiability (SAT)
solving tools for automated reasoning and verification during
product derivation. Using an industrial example, we demon-
strate how our techniques enable a stepwise and incremental
approach to product derivation.

The remainder of the paper is organized as follows. In
Section 2 we introduce an industrial product line require-
ments specification as a running example and briefly explain
the ADORA product line modeling approach. In Section 3
we motivate and describe how we support stepwise and
incremental product derivation. In Section 4 we demonstrate
the application of our approach to the example introduced

Proceedings of the Fourth International Workshop on Variability Modeling of Software-intensive Systems (VaMoS’10), Linz, Austria,
January 2010. c©2010 SSE, University of Duisburg-Essen.



Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

Persistency

0:nField 
Engineer

event

1 2
System 

Topology 
and State 
Manager

configure 
system 

topology

Supervisory Unit

Intelligent Field Device

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

Web Interface

transmit 
device 
status

Communication Standard A

Std A 
Server

Std A 
Client

Communication Standard B

Std B 
Server

Std B 
Client

Communication Standard C

Std C 
Server

Std C 
Client

File System
File 

System
Ring Buffer
Ring 

Buffer

No Persistency
No 

Persistency

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

D2 before

D1 before

D6

D3

D3
D4

D4 D5

D5

D7

D8

D9

VP3

VP1

C1

VP2

Communication 
Server Communication 

Client
configure

Object Set

Object

Actor

Association

State

Transition

Scenario

Scenario
Connection

Aspect 
Container

Join 
Relationship

Legend:

 

undecided

undecided
undecided

undecided

undecided
undecided

undecided

Decision

undecided

undecidedD2

¬D6

ifFalse

D1 ¬D6
¬D2

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

¬D1

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

Is a must in some countries.

The automation device platform is used for cost and quality reasons.

File system offer huge amounts of storage space.

Design Rationale

The web interface allows access over the world wide web.

Ring buffers are cheap to implement and fast.

The automation device platform is used for cost and quality reasons.

C is still required by many legacy systems.

Standard A is the newest and most performant one.

Might be interesting for non-critical systems.

Should the automation device be an intelligent field device?

Should the intelligent field device a web interface?
Is there no memory in the automation device?

Should the automation device be a supervisory unit?
Description / Derivation Question

Should the intelligent field device support communic. std. B?
Should the intelligent field device support communic. std. C?

Should the intelligent field device support communic. std. A?

Is there a ring buffer in the automation device?
Is there a file system in the automation device?

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

D7, D8, D9

D1, D2
Decisions Involved

D3, D4, D53
1

1
maxCardminCard

1
1

1
There are three different communication standards to configure a field device: standard A, B, and C. At least one must be chosen.

Description / Rationale
An automation device always can be either a supervisory unit or an intelligend field device.

There exist three different persistency types: no persistency, a ring buffer, or a file system. One of these must be selected.VP3
VP2
VP1
ID

D3 and (D8 or D9)
Consequent

=>
OperatorAntecedent

D6
Description / Rationale

A web interface always requires the communication standard A and a local persistency installed (either ring buffer or FS).C1
ID

Decision Table

Variation Points Table

Constraints Table

Fig. 1. An automation device product line specified in the ADORA language.

above. Section 5 discusses scalability issues, related work and
concludes.

II. PRODUCT LINE DOMAIN MODELING: AN INDUSTRIAL
EXEMPLAR

To demonstrate our approach, we employ a product line
requirements model of industrial automation devices at the
product and components level [9]. Fig. 1 shows the graphical
requirements specification and the decision and constraints
tables of this product line. The graphical notation is briefly
explained in the legend on the right-hand side of the figure.
The commonality is modeled with abstract objects or object
sets and the variable requirements are modularized with aspect
containers and graphical join relationships. Every variable join
relationship is annotated with a decision item. The details of
these decision items are modeled in tables. The subsequent
description gives a very brief overview only. For more details,
see [9].

A. Overview of the example

In our product line example, which is given in Fig. 1, the
commonality of the product line consists of two components:
a set of automation devices and a configuration tool. The
variability is constituted by the following nine variants: there
are two alternatives for the realization of an automation device:
a supervisory unit and an intelligent field device. For an
intelligent field device, an optional web interface may be
added. For the persistency of an automation device, there are
three alternatives. Finally, up to three different communication
standards for supporting the configuration of an intelligent
field device by a configuration tool may be chosen.

In our variability model, every variant is described in detail
by the model elements given in its aspect container. The
structure of the variability (equivalent to the structure in a
feature tree, but only modularizing the variable features) is
given by join relationships from the variants to the model
elements where the variants apply. Every join relationship is
annotated with a boolean decision item. These decision items
and the constraints applying to them are modeled in tables as



follows.
The Decision Table lists all the decisions of the graphic

variability model. The columns of the table provide detailed
information about decisions, such as a description or con-
straints. The rightmost column is used to record decisions
actually taken in the product derivation process. Initially, in
domain modeling, every decision item is undecided by default.
Variation points are specified in the Variation Points Table
with their cardinalities and the decision items involved. Finally,
cross-tree constraints that cannot be expressed just as variation
points are specified in the Constraints Table. Such constraints
can be arbitrarily complex formulas in boolean logic. As
Fig. 1 shows, ADORA is also capable of visualizing variability
constraints graphically in the requirements model [10]. For
example, the solid line connecting the join relationship arrows
labeled D1 and D2 in Fig. 1 visualizes that these two decision
items constitute variation point VP1.

Yet undecided variability is visualized as aspects, according
to Fig. 1. As soon as a variability binding decision is taken
to true, the corresponding variability is woven into the model
at the point(s) designated by the join relationship(s) or, if the
decision was taken to false, removed from the model (see Fig.
4).

B. Automated Constraints Analysis

When working with many constraints, the modeler needs
support for determining how the constraints impact his or
her freedom to take further variability binding decisions.
Particularly, he or she needs to know whether a set of decisions
is compatible and how taking a certain decision influences the
constraints for the remaining, yet undecided decision items.
The ADORA tool is capable of providing such support by
analyzing the constraints and checking the satisfiability of all
currently interesting decision configurations using a boolean
satisfiability (SAT) solving tool. The resulting constraint prop-
agations are listed in the columns ifTrue and ifFalse in the
decision table. Thus, a modeler can immediately see the con-
sequences of any variability binding decision he or she takes.
Moreover, we can guarantee that a partially or fully derived
product always satisfies all constraints. This is very similar
to Don Batory’s idea of building a logic truth maintenance
system (LTMS) [11]. In our solution, we additionally calculate
constraint propagation previews as follows.

To calculate the constraint propagations, we iterate over
all currently undecided decision items in the decision table
and decide them once true and once false. For every of these
partial configurations, we again iterate over all remaining, still
undecided decisions and decide them again once true and once
false. All resulting configurations are checked whether or not
they satisfy all constraints, using a SAT solver. If a configu-
ration is satisfiable, no propagation is needed. Otherwise, we
know that the combination of two decision items violates the
constraints. In this case, we record a constraint propagation:
if the first decision of the violating configuration was true, we
enter the negation of the second decision item into the ifTrue
column of the first decision item, or, if the first decision was

decision
taken

decision
taken

Legend:

decision
taken

... unbound variability; the remaining variability complexity.

... bound variability; woven and with constraints satisfied.

decision
taken

Fig. 2. Stepwise and incremental product derivation in ADORA; with every
new variability binding decision the remaining product line variability gets
reduced and simpler until a valid final product is derived.

false, into the ifFalse column. The propagation of constraints is
transitive, so for every constraint propagation, we also have to
calculate all transitively triggered propagations. This process
continues until all potential decisions have been evaluated.

Whenever a decision is actually taken, all constraint propa-
gations are executed. For example, if we decide decision item
D2 in the model of Fig. 1 to false, we consequently must
decide D1 to true and D6 to false in order to derive a product
that satisfies all constraints.

Although SAT solving can be rather computation-intensive,
we have not yet experienced any major performance problems.
An in-depth performance analysis is subject to future work.

III. STEPWISE AND INCREMENTAL PRODUCT DERIVATION

A. Motivation

A product line domain model contains the full variability
and all the variability constraints. Deriving a product con-
figuration (in our case a requirements specification for an
individual product) from such a domain model in a single
step is almost impossible for any real-size product line: too
many options and constraints have to be considered all at once.
Hence it is rather straightforward to employ a stepwise process
where variability binding decisions are taken one at a time.
Fig. 2 illustrates such a process.

However, any mistake in a stepwise product derivation
process makes all subsequent steps invalid and, hence, useless.
Typical mistakes include decisions that yield an inconsistent
configuration or lead into a dead end (i.e. a configuration
that can’t be further evolved towards the desired product).
Consequently, a stepwise product derivation process requires
sophisticated tool support, particularly for ensuring consistent
intermediate configurations and for analyzing the impact of
variability binding decisions, with respect to (i) the effects
that the chosen or dismissed variability has on the final
product requirements specification, and (ii) the extent to which
the current decision restricts the options for the remaining
decisions. Furthermore, a tool should also support reverting
already taken decisions.

In the subsequent subsection, we describe how we provide
such support in ADORA.



Awaiting user 
decision

Propagate 
constraints

(ifTrue or ifFalse 
for this decision)

Partially weave 
the graphic 

requirements 
model

Minimize, 
generalize or hide 
these constraints

Re-calculate 
propagations (ifTrue, 

ifFalse for all 
unbound decisions)

engineer
takes a
derivation
decision

decisions involved in
constraints changed

| update 
ifTrue, ifFalse

| re-visualize these 
graphical constraints

decisions involved
in no constraint

weaving
completed

Fig. 3. A statechart describing the behavior of the ADORA tool when
executing a variability binding decision taken in a product derivation process.

B. Stepwise and Incremental Product Derivation with ADORA

Product derivation in ADORA is an incremental, step-by-
step process. Every time a new variability binding decision is
taken or an already taken decision is reverted, the ADORA
tool (i) executes the constraint propagations that are asso-
ciated with this decision, (ii) adapts and re-visualizes all
involved graphic variability constraints, (iii) partially weaves
the graphic model to reflect the new variability configuration,
and (iv) re-calculates the constraint propagations for all still
unbound variability decision items (Fig. 3). The derivation
process continues until all variability is bound and a concrete
product requirements specification has been defined. Note that
our current implementation supports forward decision making
only. Support for reverting decisions is a part of our ongoing
research.

In the remainder of this section, we explain the tasks
executed by the ADORA tool in a derivation step (Fig. 3) more
in detail. Note that this procedure is fully automatic.

When an engineer takes a decision in the derivation process,
the corresponding decision item in the decision table (cf.
Fig. 1) is set to true or false. The decision is recorded in the
Decision column of the decision table. ADORA now executes
the tasks described in Fig. 3.

The first task is to propagate the constraints: depending
on the truth value of the decision, the decisions listed in
the ifTrue or in the ifFalse columns of the decision table
are taken automatically. These decisions transitively propagate
their constraints in the same way. All taken decisions are
recorded in a decision history. This allows undoing constraint
propagations when a decision is undone.

Taking a decision may affect the graphic visualization of
variability constraints. For example, if a constraint states that
at least one of three options must be selected and a decision
is taken that selects one of these options, the constraint is
satisfied and no longer needs to be visualized. Therefore, after
taking a decision, ADORA needs to minimize constraints that
are partially satisfied by the decision taken and hide those

that are fully satisfied. On the other hand, when a taken
decision is reverted, the graphic constraint visualizations need
to be generalized (i.e. restored to their previous state). As the
latter is not yet implemented, we focus on the techniques for
minimizing and hiding constraints in this paper.

For cardinality based constraints (as listed in the variation
points), the minimization of constraints is rather easy and
straightforward. For example, if in Fig. 1 one of the decision
items D7, D8 or D9 is taken with false, then the variation point
VP3 will still be a restriction for the remaining variability
configuration space and thus still needs to be displayed for
the remaining two decision items. If, on the other hand, one
of these three decision items is decided to true, then the other
two decision items need to be set to false due to constraint
propagations. As a consequence, the VP3 constraint is fully
satisfied and will not be visualized any longer.

For the other constraints (as listed in the constraints table),
the adaptation is more difficult, since these constraints (i) are
defined as implications and (ii) may be arbitrarily complex
boolean logic formulas that can span over a large set of
decision items. In our example shown in Fig. 1, constraint
C1 is such a non-trivial cross-tree constraint. If all involved
decision items for such a constraint are undecided and one of
these decision items gets bound, then ADORA automatically
checks if the constraint is still only partially satisfied, and thus
needs to be minimized, or if the constraint is already fully
satisfied and thus needs to be hidden from the graphic model.
Deciding decision item D6 to false in Fig. 1 is an example for
the latter case: the antecedent of constraint C1 becomes false
and thus the consequent of this constraint does not need to be
enforced anymore. This means that the constraint is satisfied
and will be hidden from the graphic model. If we leave D6
undecided and decide D3 to true instead, we have an example
for the first case, where constraint C1 needs to be minimized:
the logical and operand in the consequent of the constraint is
now satisfied and thus this clause needs to be removed from
the constraint. This yields the following minimized form of
C1: D6 => D8 or D9.

In the ADORA tool we have solved and implemented the
minimization problem with an existing algorithm. Out of
several possible algorithms, we chose the Quine McCluskey
algorithm [12] that is well known from computer hardware
design for simplifying digital circuits. This algorithm is simple
to implement and always finds a minimized form of the
given constraint. The only disadvantage is that this algorithm
computes only one minimized form of the constraint, even
when there exist several ones. It could be that a different but
equally minimal form of the constraint would be more intuitive
to display in the graphical model. This, however, did not turn
out as a considerable limitation yet, since it may occur only
with very complex constraints.

After the minimizations of the graphical constraints have
been computed, the ADORA tool weaves or removes all aspect
containers and join relationships associated with the decision
taken by the engineer as well as those aspect containers and
join relationships associated with the decisions taken due to



constraint propagations. The weaving semantics builds on a
slightly extended form of the weaving semantics introduced
in [8], which focuses on modularizing cross-cutting concerns
with aspects in ADORA. The details of the weaving semantics
are beyond the scope of this paper. Examples are provided in
the next section, see Fig. 4.

Finally, as Fig. 3 shows, the last task is re-calculating the
constraint propagations as described above in subsection II B
and updating the ifTrue and ifFalse columns of the decision
table accordingly .

As a final result, ADORA displays a new partially (or fully)
woven product line variability model which has less variability
than before and is consistent with all constraints. The engineer
can now continue with further variability binding decisions in
the derivation process.

IV. EXAMPLE: SEMI-AUTOMATED STEPWISE AND
INCREMENTAL PRODUCT DERIVATION WITH ADORA

In Fig. 4 we show an incremental, stepwise product deriva-
tion in five steps, as implemented in the ADORA tool. As
an example, we use the automation devices product line that
we introduced in section 2. Fig. 1 presents the fully unbound
product line domain model which is the basis for this product
derivation process. We assume that a group of engineers
wants to derive the requirements specification for a concrete
automation device from this product line.

Let’s assume that the engineers want the product to be
an intelligent field device. As they can see from the product
line domain model (cf. Fig. 1), selecting this variant requires
to dismiss the variant Supervisory Unit (ifTrue column of
decision D2 and the graphical constraint VP1). The engineers
choose to select this variant and set the decision value of
the decision item D2 to true in the ADORA tool. As a
consequence, the ADORA tool propagates the constraint in
the ifTrue column of decision item D2 and sets decision
item D1 to true. Then the tool hides the variation point
constraint VP1 because it is now satisfied. Next, the tool
performs the weaving operations associated with D2 and D1:
The model fragment contained in the Intelligent Field Device
aspect is woven into the Automation Device object set. The
Supervisory Unit aspect and the join relationship labeled D1
are removed from the model because D1 has been set to
false as a constraint propagation. Weaving the Intelligent Field
Device aspect further requires a redirection of all its incoming
join relationships (i.e. the join relationships of the sub-variants
of this variant). These join relationships receive new target join
points, which are now inside the Automation Device object
set. Finally, ADORA re-calculates the constraint propagations
for all remaining decision items. In this case there are no
changes, except that the ifTrue and ifFalse values disappear for
decision items D1 and D2 as they have been decided in this
step. Diagram 1 in Fig. 4 shows the result of this first product
derivation step. All concerned aspects and join relationships
are highlighted. Removed items are marked with a cross. Note
that these markups are not done by the ADORA tool, but have
been added manually here for convenience of the reader.

In the second step, the engineers decide to choose the
communication standard B to be part of their product and thus
set decision item D4 to true. For this decision, no constraint
propagations are necessary, because decision item D4 has no
values in the ifTrue and ifFalse columns. However, D4 is
involved in the variation point constraint VP2. This constraint
(minCard 1, maxCard 3 on D3, D4, D5) is satisfied when D4
is decided to true and will be hidden, hence. Next the aspect
Communication Standard B is woven into the Automation
Device object set and into the Configuration Tool object,
according to the join relationships associated with D4 in
Diagram 1 in Fig. 4. Finally, the constraint propagations are
re-calculated – again there are no changes. Diagram 2 in Fig. 4
shows the resulting intermediate model after step 2.

In step 3 the engineers decide not to choose the Ring Buffer
variant for an implementation of the persistency component
and set decision item D8 to false. This decision again does
not trigger any constraint propagation. However, it is involved
in two variability constraints which both need to be minimized.
The variation point constraint VP3 still puts a restriction
on the remaining two variants, which now is an alternative.
The global constraint C1 is reduced to D6 => D3 and
D9. This means that if the Web Interface variant is chosen
in a subsequent step, the Communication Standard A and
the File System variants must also be chosen. After these
minimizations, the join relationship annotated with D8 is
removed from the graphical model and the related aspect
is removed as well. Finally, the constraint propagations are
re-calculated. This time, the values for the decision items
D6, D7 and D9 are modified. D7 and D9 (the File System
persistency and the No Persistency options) are now mutually
exclusive alternatives and, as a consequence of constraint C1,
D6 (the Web Interface variant) definitely requires both D3
(Communication Standard A) and D9 (File System persistency)
to be selected. Conversely, the value in the ifFalse column of
decision item D3 tells the engineers that if they would decide
not to select Communication Standard A in a subsequent step,
the Web Interface variant could not be chosen anymore.

In step 4 the engineers can already reason on the basis of
this newer and simplified decision table and graphical model.
They decide to choose the Web Interface variant to be part
of the derived product and set D6 to true. This consequently
triggers three constraint propagations: D3 and D9 are set to
true because of constraint C1, and D7 is set to false as a
transitive consequence of setting D9 to true. All variability
constraints are now satisfied and thus hidden from the graphic
model. Then the weaving operations are performed and the
constraint propagations re-calculated. In the resulting model,
only D5 is still undecided.

In step 5 the engineers recognize that only the Communica-
tion Standard C variant is left as an option in this nearly full
configuration. As there are no more constraints, the engineers
can freely choose or dismiss this option. Here they decide
that they don’t need Communication Standard C and set the
decision item D5 to false. Consequently the tool removes
this aspect and the corresponding join relationship from the



write 
settings

start-up 
field device

Settings 
Server

1

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

Persistency

0:nField 
Engineer

event

2

3

Web 
Server

Web Interface

transmit 
device 
status

Communication Standard A

Std A 
Server

Std A 
Client

Communication Standard B

Std B 
Server

Std B 
Client

Communication Standard C

Std C 
Server

Std C 
Client

File System
File 

System
Ring Buffer
Ring 

Buffer

No Persistency
No 

Persistency

Configuration Tool
download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

D6

D3
D3 D4 D4 D5

D5

D7

D8

D9

VP3

C1

VP2

Communication 
Client

configure

Communication 
Server

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

Persistency

0:nField 
Engineer

event

2

3

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

Web Interface

transmit 
device 
status

Communication Standard A

Std A 
Server

Std A 
Client

Communication Standard C

Std C 
Server

Std C 
Client

File System
File 

System Ring Buffer
Ring 

Buffer

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

D6

D3

D3 D5D5

D8

D9

VP3

configure

1

Std B 
Server

Communication Server

C1

Communication Client

Std B 
Client

true

undecided
undecided

undecided

undecided
true

undecided

Decision

undecided

false-

¬D6

ifFalse

-

-

-

-

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

-

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

No Persistency
No 

Persistency

D7

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

Persistency

0:nField 
Engineer

event

2

3

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

Web Interface

transmit 
device 
status

Communication Standard A

Std A 
Server

Std A 
Client

Communication Standard C

Std C 
Server

Std C 
Client

File System
File 

System

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

D6

D3
D3 D5D5

D9

VP3

configure

1

Std B 
Server

Communication Server

C1

Communication Client

Std B 
Client

true

undecided
undecided

false

undecided
true

undecided

Decision

undecided

false-

¬D6

ifFalse

D9

-

-

-
¬D6 D7

-

-

¬D6 ¬D9
-

ifTrue

D3 ¬D7 D9

-

¬D7

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

No Persistency
No 

Persistency

D7

true

false
true

false

true
true

true

Decision

undecided

false-

-

ifFalse

-
-

-

-

-
-

-

-

-
-

ifTrue

-

-
-

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

0:nField 
Engineer

event

2

3

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

transmit 
device 
status

Communication Standard C

Std C 
Server

Std C 
Client

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

D5D5

configure

1

Std B 
Server

Communication Server

Communication Client

Std B 
Client

Persistency

File 
System

Std A 
Server

Std A 
Client

true

undecided
undecided

undecided

undecided
undecided

undecided

Decision

undecided

false-

¬D6

ifFalse

-
-

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

-

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

true

false
true

false

true
true

true

Decision

false

false-

-

ifFalse

-
-
-

-

-

-
-

-

-

-

-

-

ifTrue

-

-
-

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

0:nField 
Engineer

event

2

3

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

transmit 
device 
status

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

configure

1

Std B 
Server

Communication Server

Communication Client

Std B 
Client

Persistency

File 
System

Std A 
Server

Std A 
Client

5

1 2

3 4

true

false
true

false

true
true

true

Decision

false

false
ifFalse

-

ifTrue

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage 
device and 

subscriptions

manage 
subscriptions 

towards server

manage 
subscriptions 
from clients

Event 
Logger

0:nField 
Engineer

event

2

3

write 
settings

start-up 
field device

Settings 
Server

Web 
Server

transmit 
device 
status

Configuration Tool

download 
settings

Device 
Type Data

manage 
settings

Field 
Engineer

configure

1

Std B 
Server

Communication Server

Communication Client

Std B 
Client

Persistency

File 
System

Std A 
Server

Std A 
Client

6

--
--
--
--
--
--
--
--

Fig. 4. An exemplary stepwise, incremental product derivation from the product line variability model of Fig. 1. Diagrams 1-5 show how the model changed
after the respective derivation step. Diagram 6 shows the final product model. The yellow elements (light grey in B/W prints) and the crosses are only added
for illustration purposes.



model. The result is a fully configured product requirements
model which is correct (in terms of satisfying all constraints)
by construction. Diagram 6 in Fig. 4 shows the final product
model.

V. DISCUSSION AND CONCLUSION

A. Scalability

The ADORA language allows modeling the structure, be-
havior and user interaction of a software system in a single
integrated hierarchical diagram. Using only one diagram for
modeling a complete system requires sophisticated visualiza-
tion techniques in order to scale, i.e. to keep large models
comprehensible for humans users. In our previous work, we
have developed such techniques, for example, fisheye zooming
[13] [14], intelligent line-routing [15] and aspect-oriented
modeling [8]. In [10] we have argued how these techniques
can also be used for product line modeling in ADORA.

Concerning the runtime performance, our current imple-
mentation of partial weaving in the ADORA tool is not yet
satisfactory for large models, while the performance of our
SAT solving implementation doesn’t seem to be a problem so
far. We plan to do more detailed performance analyses and
optimizations both for the our satisfiability solving solution
and the aspect weaving in the ADORA tool.

B. Related Work

Stepwise and incremental product derivation is not entirely
new. For example, Czarnecki et al. [5] [6] introduced a
stepwise derivation process called ’specialization and multi-
level configuration of feature models’. In comparison to our
approach, this solution has two disadvantages. Firstly, the
model elements describing a single feature are scattered over
several diagrams (the approach relies on UML). Secondly,
feature modeling allows only rather simplistic types of cross-
tree constraints, as we argued in the introduction section.

Other authors have addressed the problem of automatic
reasoning to leverage the complexity of variability modeling.
Thüm et al. [16], for example, recently introduced a grounded
framework for reasoning about edits to feature models. They
define four particular types of edits that can be made in a
feature model. One of them is specialization, which we also
use for product derivation. Since they build on the foundations
of Batory’s work [11], their feature modeling solution allows
arbitrarily complex constraints. However, their work so far
focuses on feature modeling only. They do not provide any
solution to integrate variability modeling with more detailed
modeling of the functionality.

White et al. [17] presented a solution that creates map-
pings between variability models and equivalent constraint
satisfaction problems (CSPs) and uses these CSPs for an
automated calculation of a sequence of minimal feature adap-
tations between two different application feature models. As
application feature models they typically consider an original
feature configuration and a new one that has evolved during
the development. White et al. focus on the evolution of an

already derived product configuration, while we focus on the
product derivation itself in the first place.

Furthermore, there is a range of commercial and open
source tools for feature modeling which also support product
derivation. However, in terms of feature modeling and auto-
mated reasoning, these solutions are less advanced than the
one of Thüm et al. [16] and they also have at least the same
limitations as Czarnecki et al.’s feature modeling approach [6].

C. Conclusion

We have developed a new variability modeling approach
that allows an inherently integrated modeling of features
and requirements by building on aspect-oriented modeling,
a new table-based boolean decision modeling solution and
the ADORA language [7]. Our solution allows the descrip-
tion of arbitrarily complex variability constraints, implements
an automated analysis and constraint propagation of these
variability constraints and supports incremental and stepwise
product derivation. This significantly reduces the complexity
and the cognitive load for the model users and improves the
understanding of the consequences and the impact of concrete
variability binding decisions by human engineers involved in
the product derivation process. We claim that already for
intermediately complex product lines, such a stepwise and
incremental approach to product derivation becomes necessary
in order to enable an efficient and intuitive derivation of
consistent and valid products.

In our current tool implementation, we have fully imple-
mented the support for stepwise and incremental product
derivation that we described in this paper. However, there is
still room for improvements and extensions. For example, the
generation of human-friendly graphical layouts with our weav-
ing implementation is still a challenge. We did not yet find
any really suitable algorithms that always generate satisfying
layouts. Further, for our automated reasoning and constraints
propagation solution, we do not yet calculate adequate intuitive
and minimal sets of constraint propagations needed when
already bound decisions are reverted. This is challenging be-
cause also the order of the previously taken decisions and their
constraint propagations need to be taken into account. The
runtime performance of our tool implementation, in particular
when weaving models, also needs improvement. Finally, we
plan to do empirical evaluations in the near future in order
to validate the usefulness of our approach and the support
that ADORA provides for real-world product line modeling
problems.

ACKNOWLEDGMENT

We would like to thank Ivo Vigan for his programming work
and his advice for implementing a SAT solver for ADORA.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep., November
1990.



[2] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Comput. Netw., vol. 51, no. 2, pp. 456–
479, 2007.

[3] M. Mannion, “Using first-order logic for product line model validation,”
in SPLC’02: Proceedings of the Second Software Product Line Confer-
ence., ser. Lecture Notes in Computer Science, G. J. Chastek, Ed., vol.
2379. Springer, 2002, pp. 176–187.

[4] S. Jarzabek, W. C. Ong, and H. Zhang, “Handling variant requirements
in domain modeling,” J. Syst. Softw., vol. 68, no. 3, pp. 171–182, 2003.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[6] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek,
“fmp and fmp2rsm: Eclipse plug-ins for modeling features using model
templates,” in OOPSLA Companion, 2005, pp. 200–201.

[7] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with
ADORA,” Inf. Syst., vol. 27, no. 6, pp. 425–444, 2002.

[8] S. Meier, T. Reinhard, R. Stoiber, and M. Glinz, “Modeling and evolving
crosscutting concerns in ADORA,” in Aspect-Oriented Requirements
Engineering and Architecture Design, 2007. Early Aspects at ICSE:
Workshops in, May 2007.

[9] R. Stoiber and M. Glinz, “Modeling and managing tacit product line
requirements knowledge.” in 2nd International Workshop on Managing
Requirements Engineering Knowledge (MaRK’09). IEEE CS, 2009.

[10] R. Stoiber, T. Reinhard, and M. Glinz, “Visualization support for
software product line modeling,” in Proceedings of SPLC’08 (Second

Volume). 2nd International Workshop on Visualisation in Software
Product Line Engineering (ViSPLE’08)., 2008, pp. 313–322.

[11] D. S. Batory, “Feature models, grammars, and propositional formulas,”
in SPLC’05: Proceedings of the 9th International Software Product Line
Conference., ser. Lecture Notes in Computer Science, J. H. Obbink and
K. Pohl, Eds., vol. 3714. Springer, 2005, pp. 7–20.

[12] E. J. McCluskey, “Minimization of boolean functions.” Bell System
Technology Journal., vol. 35, no. 5, pp. 1417–1444, 1956.

[13] C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett, “An effective
layout adaptation technique for a graphical modeling tool,” in ICSE’03:
Proceedings of the 25th International Conference on Software Engineer-
ing., May 2003, pp. 826–827.

[14] T. Reinhard, S. Meier, R. Stoiber, C. Cramer, and M. Glinz, “Tool sup-
port for the navigation in graphical models,” in ICSE ’08: Proceedings
of the 30th International Conference on Software Engineering, 2008,
pp. 823–826.

[15] T. Reinhard, C. Seybold, S. Meier, M. Glinz, and N. Merlo-Schett,
“Human-friendly line routing for hierarchical diagrams,” in ASE ’06:
Proceedings of the 21st International Conference on Automated Software
Engineering., Sept. 2006, pp. 273–276.

[16] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature
models,” in ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering., 2009, pp. 254–264.

[17] J. White, D. Benavides, B. Dougherty, and D. C. Schmidt, “Automated
reasoning for multi-step software product-line configuration problems.”
in SPLC’09: Proceedings of the 13th International Software Product
Line Conference. IEEE CS, 2009.


