
GI Working Group “Scenario-based Requirements Engineering” 1

Survey on the Scenario Use in
Twelve Selected Industrial Projects

M. Arnold1, M. Erdmann2, M. Glinz3,

P. Haumer4, R. Knoll5, B. Paech6, K. Pohl4,

J. Ryser3, R. Studer2, K. Weidenhaupt4

GI FG 2.1.6 - - Working Group on
Scenario-based Requirements Engineering

Chair: Klaus Pohl
RWTH Aachen, InformatikV, 52056 Aachen

email: pohl@informatik.rwth-aachen.de

1
FIDES Informatik, Zürich, Switzerland;

2
University of Karlsruhe, Germany;

3
University of Zürich, Switzerland;

4
RWTH Aachen, Germany;

5
RWG GmbH, Stuttgart, Germany;

6
Technical University of Munich, Germany

2 GI Working Group “Scenario-based Requirements Engineering”

Table of Content

I. Introduction ...3

I.1 Overview...3
I.2 Classification Taxonomy...3
I.3 Structure of the Report..4

1 Project Properties ..5

1.1 Domain / Application...6
1.2 Project Size ..6
1.3 Project Type...8
1.4 Stakeholder Experience ...9
1.5 Scenario Team Structure ...10
1.6 Summary and Findings..11

2 Scenario Content and Presentation ..13

2.1 Kinds of Scenarios ...14
2.2 Content of Scenarios..14
2.3 Representation of Scenarios ..17
2.4 Scenario Figures..21
2.5 Summary and Findings..22

3 Goals of Scenario Use...25

3.1 Purpose..25
3.2 Main Objectives ...30
3.3 Summary and Findings..31

4 Process...33

4.1 Process Context ...33
4.2 Relationship of Scenarios to Artefacts...38
4.3 Used Requirements Engineering Method ..39
4.4 Scenario Lifecycle..39
4.5 Tools used ..43
4.6 Summary and Findings..45
4.7 Scenario Usage Highlights ..46

5 Benefits, Problems, Needs, and Future Plans ..49

5.1 Benefits ..50
5.2 Problems..50
5.3 Future Plans ..52
5.4 Summary and Findings..53

6 Summary ...55

6.1 Commonalties of the visited projects ...55
6.2 Further general observations ..56
6.3 Conclusion ...57

7 References ...58

GI Working Group “Scenario-based Requirements Engineering” 3

I. Introduction
Scenario-based requirements engineering approaches stress the use of examples, scenes, and
narrative descriptions of context from a usage-oriented perspective, complementing the de-
velopment of abstract conceptual models. In the past years, scenarios have been attracting in-
creasing interest in both requirements engineering (RE) research and practice. However, due
to the immaturity of the field, little consensus has been reached so far on how to treat
scenarios as products and how to use scenarios throughout the requirements engineering proc-
ess or even the whole software life cycle.

I.1 Overview
To highlight the current activities on scenario-based RE in Germany and Switzerland, in Janu-
ary 1997 the working group ”Scenario-Based Requirements Engineering” within the special
interest group 2.1.6 “Requirements Engineering” of the German Informatics Society was
founded. This working group comprises participants from both, universities and software
companies.

The first objective of the working group was to investigate the current state of practice in
scenario-based RE in German and Swiss software organisations as a complementary activity
to the European-wide survey described in [Weidenhaupt et al., 1998].

In this paper, we report on the results of these industrial investigations. Altogether, twelve
projects in nine German and three Swiss software organisations were examined during half- to
one-day site visits. We did not select the projects randomly, but chose those projects from
which we knew that scenario use played a significant role.

I.2 Classification Taxonomy
For making the results of the site-visits comparable, we developed a comprehensive classifi-
cation taxonomy. This taxonomy was used to guide through the interviews and to evaluate the
results of the site-visits according to a common scheme. To avoid bias, we let our interview
partners talk freely about their overall development process, scenario usage, and experiences
and used the taxonomy mainly as a checklist for asking additional questions as to not omit
crucial information.

When developing the classification taxonomy we took a framework for scenario-based RE
approaches described in [Roland et al., 1998] as a starting point. This classification frame-
work, however, was developed to classify scenario approaches described in literature and ne-
glects specific properties which are relevant for representing scenario usage in the context of
industrial projects. In contrast, our taxonomy takes into account a set of project characteristics
as well as experiences gained in the projects to enable a better understanding and assessment
of the concrete scenario usage in the examined projects. In comparison to the evaluation
framework underlying the European-wide survey described in [Weidenhaupt et al., 1998], our
taxonomy has a richer and more formal structure. It is also noteworthy, that during the discus-
sion about the site visit results the classification taxonomy was progressively refined to better
reflect the results until it got its final form described in this report. The development of the
classification taxonomy can hence be seen as an effort on its own, since it helped to make the
role of scenarios within real RE processes (and software development processes in general)
much clearer. The refinement of the classification taxonomy caused the need to re-interview
some of our interview partners in order to elicit omitted information.

4 GI Working Group “Scenario-based Requirements Engineering”

The taxonomy is structured into five major sections. Each section is further subdivided into
divisions, which consist of several related facets covering an individual property. In some
cases the facets are subdivided into characteristics. The five sections consider:

1. Project Properties. We examined several project properties which can significantly influ-
ence the way how scenarios are used and managed: project size and type, application do-
main, as well as the background and roles of the people involved in the project teams
(Section 1);

2. Scenario Contents and Representation. We analysed the properties of scenarios as
products, i.e. which kinds of scenarios are used, what content do they express, and which
representations and structuring constructs are used (Section 2);

3. Goals. This section deals with the overall objective underlying the use of scenarios and the
specific purposes with respect to other artefacts used in the process (Section 3);

4. Process. We took a detailed look at the projects’ process. We classified the establishment
of relationships of scenarios to other software artefacts, the overall methodological con-
text, the creation, usage, maintenance and quality control of scenarios as well as the tools
used for manipulating scenarios (Section 4);

5. Experiences and Expectations. Finally, we summarised general project findings like bene-
fits, problems, needs, and expectations from the interviewees’ viewpoint (Section 5).

The individual facets are typed according to the possible values they can carry, e.g. INTEGER
for the number of persons involved in a scenario team or TEXT for describing the main pur-
pose of scenario usage. For facets where a discrete qualitative assessment is adequate, we
have introduced the type VALUE that comprises the following qualitative values:

! Plus sign (+): this property is true or is of major importance for the project;

! Circle (O): the property holds partially or is of medium importance.

! Minus sign (-): this property does not hold or is of no importance for the project;,

In addition, we added the following values which cover different cases where an assessment
using the (+),(O) or (-) was not applicable:

! Blank (” ”): the interviewee did not mention this property.

! Slash (/): the property was not applicable in the examined project.

! Question mark (?): the information on the property was not available or unknown to the
interviewee.

I.3 Structure of the Report
 The results of the project classification are presented in section 1-5, which correspond to the
respective sections of the classification taxonomy.

 Each section starts with an introduction describing the scope of the section and giving an
overview of the taxonomy covered in this section. Then the evaluation results of the projects
according to the facets are presented division by division, mostly condensed in tabular form.
The meaning of each facet is explained in detail and, if not self-explaining, the occurring facet
values as well. Moreover, we describe how the data concerning a certain facet were elicited,
e.g. if they were explicitly mentioned by the interviewee or if they were the result of our inter-
pretations of the information obtained from the interviewee. Finally, we summarise the main
findings of each section.

GI Working Group “Scenario-based Requirements Engineering” 5

1 Project Properties
 Besides collecting information about scenario characteristics, we are also interested in classi-
fying the projects themselves to better understand scenario properties and usage in a broader
context. To represent this information the classification taxonomy differentiates the project’s
domain and the application background (Div. 1.1), project size (Div. 1.2) and type (Div. 1.3).
In addition, we inquired information about the people involved in the project, because a major
application of scenarios is to support the communication of different stakeholders. Thus, we
classified the stakeholders’ level of education (Div. 1.4) as well as the team structures of the
project (Div. 1.5).

 Before describing the project characteristics in detail, we first give a short overview of the
twelve examined projects in Tab. 1. Most interview partners asked us to anonymise the infor-
mation obtained from them. We therefore cannot name the companies we interviewed nor can
we give too detailed information about the projects, which might allow insiders to identify
them. Rather, we introduce a unique identifier reflecting the projects domain (e.g., INS1 for
insurance project No. 1, MED for medical system etc.) for each project which is used as refer-
ence instead.

Tab. 1: Short Description of the Examined Projects

 Project Description

 NET1 The aim of the project was to develop a management system for heterogeneous (with respect to
three dimensions: producer, OSI-level, technology) VLAN (virtual local area network) based on an
existing network management platform (the customer was the supplier of the platform). This platform
offers API for events, database, graphical user interface and management protocols like SNMP and
OSI).

 INS1 The project had to deliver a requirements specification for a particular department of a large
insurance company. The department handles credits and securities. The system will substitute a very
simple existing IS. The main difficulty is to find flexible computerised support for the many specific
ways of handling the different customers and credits and securities. The system is now being
implemented by the customer

 SALES At a large production company (cars) an existing sales support system is replaced. It deals with all
special sales cases (like sales to employees). Therefore a lot of different departments are affected.
The project is divided into 5 subprojects handling e.g. the ordering (including configuration of cars),
plant specific sales and company cars.

 MED The aim the project was to develop a medical information system, which is delivered as a supply
product for a portable measuring device for diabetes patients. The main functions of the software
component were to keep a patient diary, to support the assessment of the patient’s medical history
and the evaluation of the patient data.

 NET2 The project takes place in the context of the privatisation of the telecommunication market in
Germany. The project aims at building administration software for the management, monitoring, and
billing of telecommunication network services. The background is that the customer, a consortium of
large companies, intends to use its existing network infrastructure for public telecommunication
services. This involves a lot of new functionality about which the customer has nearly no prior
experience.

 PUB1 The aim of the project is to build common software to be used by all authorities of a specific sector in
the 16 German states. The vision is that the currently individual and only partial interoperable
systems are finally replaced by an integrated system.

 INS2 The project takes place at the life insurance department of a large insurance company. The goal is to
build an integrated information system, which supports all services performed at the workplace of the
insurance employees. The new system replaces an old, poorly integrated system.

6 GI Working Group “Scenario-based Requirements Engineering”

 Project Description

 DEV The project is conducted at an international provider of railway systems and rail transportation and
aims at the development of a software system with tools supporting project management and
development of software for rail transportation systems and signal & traffic control systems.

 PUB2 The project aims at building an emergency and security task force guidance system for public
administration and services (e.g. police, fire department, ambulance / medical emergency services).
The system is being built by a consultant firm, established as an IT consulting, training and solution
provider.

 BANK1 The goal of this project is the development of a system that should manage the transfer (especially
the lending) of financial papers between different German banks. The system replaces the current
manual practice and should be able to maintain the stocks of different papers, to whom or from
whom they were lent etc. The system does not contain knowledge about actions; it is only used for
bookkeeping.

 BANK2 In this project at a large German bank a system that should help to manage, control and monitor all
necessary activities for the introduction of the Euro, e.g. printing new forms, developing new or
changing existing systems, offering new services, is being developed. The project affects all
departments of the bank.

 BANK3 The project at a large Swiss bank is the development of a new work platform supporting employees
of the bank who are working in the corporate customer business.

1.1 Domain / Application
 For this division, we differentiate the facets application domain (Facet. 1.1.1), system type
(Facet 1.1.2) and the importance of static and dynamic properties, respectively (Facet 1.1.3).

 We initially let the interviewees name suitable categories for the application domain and sys-
tem type of their projects. To enable a better comparison of the projects, we then generalised
the mentioned categories. For the application domain, the current values are communication,
financial, medical, public (emergency) service, sales, and software development. This set can
be extended if necessary, e.g. to classify a control room project. The system type facet is
assigned to information system, management system, and CASE tool. Facet 1.1.3 (importance
of static/dynamic properties) is classified using the VALUE type. The entries for this facet
were directly asked from the interviewees.

 Tab. 2 summarises the results for Div. 1.1. The majority of the examined projects (8 out of 12)
are concerned with the development of information systems, mostly for administrative do-
mains like financial, sales, and public service. Management systems, which are distinguished
from information systems by their more active nature, are developed in 3 projects. Two of
them deal with management of network communication facilities, one with the management
of public emergency services.

 The prevalence of information systems partly explains the major importance of static proper-
ties: in 10 projects static aspects were regarded as important as opposed to 6 projects which
emphasise the relevance of dynamic aspects. For example, only one information system
project (INS1) stresses the importance of dynamic aspects over static ones.

1.2 Project Size
 Since the project size may significantly influence how scenarios are applied, we captured the
project duration (measured in years) as well as the effort spent (measured in person years).
Seven out of 12 projects were not yet finalised when we conducted our study so that we dif-
ferentiate between the elapsed duration at the time when conducting the interview (1.2.1) and

GI Working Group “Scenario-based Requirements Engineering” 7

the (estimated) duration in total (1.2.2). In addition, the (estimated) total effort is captured in
person years (1.2.3). We asked this information directly from the interviewees.

Tab. 2: Domain/Application

 1.1.3. Importance of Project 1.1.1
Application domain

 1.1.2
System type 1.1.3.1

static properties
 1.1.3.2
dynamic properties

 NET1 communication management system + +

 INS1 financial information system O +1

 SALES sales information system + O

 MED medical information system + O

 NET2 communication management system + O2

 PUB1 public service information system + +

 INS2 financial information system + O

 DEV software development CASE Tool – +

 PUB2 public emergency
service

 management system + +

 BANK1 financial information system + -

 BANK2 financial information system + O

 BANK3 financial information system + +

Tab. 3: Project Size

 Project 1.2.1
Duration elapsed (years)

 1.2.2
Duration total (years)

 1.2.3
Effort total (person years)

 NET1 1 1 3

 INS1 0.66 0.66 4

 SALES 2 5 200

 MED 3 3 15

 NET2 2 5 20

 PUB1 2 10 1000

 INS2 2 4 16

 DEV 5 6 45

 PUB2 2.5 3 18

 BANK1 0.75 0.75 2.25

 BANK2 0.5 0.5 2.5

 BANK3 1 1.5 16

 1 Focus in dynamics, since mainly business processes were described.
 2 Focus on data was a specific choice of the project.

8 GI Working Group “Scenario-based Requirements Engineering”

 Tab. 3 summarises the duration and effort values of the examined projects. The majority falls
into the small (less then 2 years duration, less than 5 person years) and medium (between 2
and 5 years duration, between 5 and 20 person years) categories. Exceptions are the projects
PUB1 (1000 person years), SALES (200 person years) and DEV (45 person years).

1.3 Project Type
 Div. 1.3 of the taxonomy accumulates more specific properties of the projects. In Facet 1.3.1
the experience of involved customers and suppliers in the application domain of the project is
evaluated using the type VALUE. Facet 1.3.2 indicates whether the project was carried out by
an in-house data processing department of the customer or an external supplier. In Facet 1.3.3
we classify the systems to be built as individual solutions, as market-driven products or as
prototype developments. For Facet 1.3.4, we differentiate the type of system development in
the projects, i.e. whether they develop a new system (with no predecessor), build upon an
existing platform, or replace an existing system. Finally, we state in Facet 1.3.5 the absolute
number of companies (or more general: profit centres) involved in the projects as customer,
supplier or consultant.

Tab. 4: Project Type

 1.3.1
Experience in
application domain

 1.3.5
Companies/ profit centres
involved

 Project

 1.3.1.1
Customer

 1.3.1.2
Supplier

 1.3.2
Type of
cus-
tomer

 1.3.3.
Type of
resulting
system

 1.3.4
Type of
development

 1.3.5.1
Customer

 1.3.5.2
Supplier

 1.3.5.3
Consultant

 NET1 O O in-house individual new,
existing platform

 1 2 0

 INS1 O O extern individual replacement 1 1 0

 SAL + O in-house individual replacement >1 2 1

 MED + – extern individual new 1 1 0

 NET2 O – extern individual new 1 1 0

 PUB1 + + in-house individual replacement 1 1 1

 INS2 + + in-house individual replacement 1 13 1

 DEV + + in-house individual4 replacement 4 6 1

 PUB2 + + extern market
(individual5)

 replacement O6 2 1

 BANK1 O O in-house prototype new 1 1 17

 BANK2 + O extern individual new 1 1 1

 BANK3 + + in-house individual,
prototype

 replacement 4 1 1

 3 supplier = IT-department of customer company
4 some components purchased
5 in parallel to the market-oriented development, the system is individually customized for some pilot customers
to minimise the risk for market introduction
 6 not directly involved because of market development
 7 OO-Coach for the IT-department

GI Working Group “Scenario-based Requirements Engineering” 9

 Tab. 4 summarises the project type aspects of the examined projects. In 8 projects the
customer has significant experience in the application domain, in 4 projects he has a medium
familiarity. In 8 cases, the experience of the supplier is about the same level as the experience
of the customer. This is mostly explained by the fact that in 6 of these cases the development
of the software is performed as an in-house development.

 In 4 cases the supplier has a slightly lower experience. Most systems developed in the projects
were individual in-house applications replacing existing systems. 4 of the 5 cases where
customer and supplier experience differ are projects, which are conducted by an external
supplier.

 The huge majority of the projects develop individual or even prototypical solutions. Only in
project PUB2 a market-driven system is developed. In 7 projects, an existing system is re-
placed, while 5 projects build a new system (one of them utilising an existing platform).

 In 7 cases, the contractual structure of the projects only involves one customer, one supplier
party and partially a consultant. 4 projects comprise more than one customer or more than one
supplier party, respectively. Altogether, 8 projects are supported by a consultant.

Tab. 5: Stakeholder Experience in Software Development

 Project 1.4.1.A
End-user
representative

 1.4.1.B
Project manager

 1.4.1.C
Software
engineer

 1.4.1.D
Consultant

 1.4.1.E
Domain expert

 NET1 / O + / +8

 INS1 – + + / –9

 SALES / + + + O

 MED / + + / O

 NET2 – + + / –

 PUB1 – + + + –

 INS2 – + + + –

 DEV + + +9 + +9

 PUB2 – + + + –

 BANK1 – + + + –

 BANK2 / + + + –

 BANK3 – + + –10 –

1.4 Stakeholder Experience
 Using the VALUE type, we classify the experience of the different stakeholders involved con-
cerning software development in general (Tab. 5) and scenario use in particular (Tab. 6). The
considered roles are end-user representative, project manager, software engineer, consultant,
and domain expert. Note that in some projects certain stakeholders do not occur (indicated by

 8 same as software engineer
 9 same as end-user
 10 one of the domain experts

10 GI Working Group “Scenario-based Requirements Engineering”

a slash ”/”), i.e. here a classification was not applicable. Sometimes the same person(s) play(s)
the role of different stakeholders (see footnotes). The information about stakeholder
experience was directly provided by the interviewees (who were mostly the project managers)
and thus, of course, represents a subjective assessment.

 The usage of scenarios in the projects is justified by the low level of experience that end-users
and domain experts have with software development as indicated in Tab. 5. Most of the end-
users (if involved in the development at all) had no previous experience and were therefore
not able to understand more formal representations. Nearly the same holds for the partially
overlapping group of domain experts, who are only in two cases familiar with software
development techniques. The project DEV is an exception to this trend, since it develops
CASE tools, i.e. the end-users are software engineers themselves. As expected, project
managers, software engineers and consultants have in nearly all cases significant experiences
with software development (except project managers in project NET1).

Tab. 6: Stakeholder Experience in Scenario Use

 Project 1.4.2.A
End-user
representative

 1.4.2.B
Project manager

 1.4.2.C
Software
engineer

 1.4.2.D
Consultant

 1.4.2.E
Domain expert

 NET1 / – – / –11

 INS1 – O O / –9

 SALES / – – O –

 MED / + O / –

 NET2 – + O / –

 PUB1 – O – + –

 INS2 – O O + –

 DEV O O O9 – O9

 PUB2 – O O O –

 BANK1 – – + – –

 BANK2 / O O O –

 BANK3 – O O – –

 In Tab. 6 it becomes apparent that scenario use is quite a new field with still a low level of
experience in all stakeholder groups. Only in project BANK1 the software developers have an
over-average experience in scenario use. In the projects NET2, MED, PUB1 and INS2 the
project manager and the consultants, respectively, introduced scenario-based techniques into
the projects.

1.5 Scenario Team Structure
 In this division, we consider the formation of the teams working with scenarios in the projects.

 11 same as software engineer

GI Working Group “Scenario-based Requirements Engineering” 11

 Facet 1.5.1 counts the number of people, which are involved in the treatment of a single sce-
nario. In Facet 1.5.2 we additionally differentiate the number of people from each stakeholder
group. In Facet 5.3 we consider the total number of people which are involved in scenario
creation or usage.

 Although Tab. 7 shows that the total number of persons involved in the individual projects
varies widely, an average of 3-5 people constructing and working with a single scenario at a
time is quite stable among all projects. Exceptions are the projects MED, in which work is
done in a larger team (up to 9 people), and BANK1 where scenarios are developed and used
by only one or two persons. Typically 1-2 end-user representatives or domain experts and 1-3
software engineers are drawn into a scenario team.

Tab. 7: Scenario Team Structure

 Project 1.5.2
Team structure for treating a single scenario

 1.5.1
Average size of
team for
treating a single
scenario

 1.5.2.1
End user
repr.

 1.5.2.2
Project
manager

 1.5.2.3
Software
Engineer

 1.5.2.4
Consultant

 1.5.2.5
Domain
expert

 1.5.3
Total number of persons
involved in scenario
creation and usage

 NET1 4 0 0 3 0 212 4

 INS1 5-6 4 1 1 0 0 7

 SALES 3-4 0 1 1-2 0 1 24

 MED 5-9 0 0-1 2-3 0 2-5 10-12

 NET2 3-5 1-2 0-1 1-2 0 1-213 10-14

 PUB1 3-5 1-2 0 1-2 0-114 1-213 ~ 70

 INS2 2-3 1-2 0-1 1-2 0-114 1-215 3-4

 DEV 3 0 0 3 0 0 5 at visited site
15 in total

 PUB2 4 0 0 2 1 1 6

 BANK1 1-2 0 2 116 116 116 2

 BANK2 4 0 1 3 116 1 5

 BANK3 3 1 0 2 1 (1)17 5 at visited site
9 in total

1.6 Summary and Findings
 Section 1 of the classification taxonomy captures a set of important project properties, which
enable a better understanding of the scenario use in the concrete project context. The general
findings from the project characterisation can be summarised as follows:

 12 One of them identical with one of the SW engineers.
 13 Partially identical with user representatives.
 14 Only for spot checks.
 15 Mostly identical with user representatives.
 16 Identical with project manager.
 17 Consultant is identical with domain expert.

12 GI Working Group “Scenario-based Requirements Engineering”

! Information systems projects prevalent: The majority of the projects to which we had
access are concerned with the development of information systems in the administrative
area. It should be noted that we did not consider process control or embedded systems.
This does not necessarily mean that scenarios are not suitable for these kinds of projects.

! Emphasis on static properties: The stress on static properties might, at first glance,
appear surprising, since scenarios have traditionally been regarded as a means to elicit
behavioural aspects. However, it will be shown in the following section that scenarios also
play an important role for determining the dynamic aspects of the systems to be built.

! Large variance/diversity in project size: The size of projects utilising scenarios varies
widely from very small projects (0.5 years with 2.5 person years) to huge projects span-
ning a time frame of 10 years with about 100 people involved. This can be seen as an indi-
cator for the scalability of scenario-based techniques. The majority of the projects, how-
ever, belong to the small and medium category.

! Differences in Experience (in external development projects): In the projects carried
out by an external supplier, the supplier lacks familiarity with the application domain in
comparison to the customer. In in-house projects, the customer and supplier parties have
nearly the same experience in the application domain.

! Small scenario team sizes: The average team size for a single scenario treatment nor-
mally does not exceed 5 members. Besides the software engineers, usually one or two end-
user representatives and/or domain experts participate in a scenario team. This underlines
the interdisciplinary nature of scenario-based software development which was also ob-
served in [Weidenhaupt et al., 1998].

GI Working Group “Scenario-based Requirements Engineering” 13

2 Scenario Content and Presentation
In this section, we focus on scenarios as artefacts produced in the examined projects, i.e. we
highlight various product properties of scenarios.
We first briefly describe the various kinds of scenarios used in our sample set of projects (Div.
2.1). In Div. 2.2, we consider the scenario content, i.e. what kind of information do scenarios
convey, what viewpoints are reflected, what scope and granularity do the scenarios have and
on what level of abstraction are they modelled?
Div 2.3 deals with the representation formats used, in particular: What primitives (building
blocks) and structuring mechanisms are used to build scenarios? What kind of language and
style is used to write scenarios? How formal is the representation?
Finally, we elicit two characteristic size metrics, namely the number of scenarios in each
project and the typical size of a single scenario.

Tab. 8: Kinds of Scenarios

Project 2.1
Short description of kinds of scenarios used in the project

NET1 a)
b)

Textual description of the services of the VLAN to be managed
Textual description of the services of the management system

INS1 Description of business processes
SALES a)

b)
c)

Description of business processes
Uses cases (interaction with the system)
Event traces (interaction between classes)

MED a)
b)
c)

Informal scripts of typical system usage
CRC cards
UI centred use cases describing a certain task/working step performed through an
individual UI dialogue

NET2 Use case descriptions closely related to UI prototype forms generated from an EER
data model

PUB1 a)

b)

Use cases describing system functionality for supporting a business process from a
user’s perspective
Scenarios representing single threads through a use case

INS2 a)

b)

Use cases describing system functionality for supporting a business process from a
user’s perspective
Scenarios representing single threads through a use case

DEV Design scenarios: Textual descriptions of interaction and (complicated) dialogue
sequences

PUB2 Textual descriptions of interaction sequences from a user’s perspective, augmented
by use case overview diagrams

BANK1 Textual descriptions of interactions between users and system, and system
responses

BANK2 Textual descriptions of envisaged system functionality; closely related to UI
BANK3 a)

b)

Textual scenarios augmented with co-operation diagrams describing the application
domain as is.
Textual scenarios (called visions) with tables to depict relationships and pictures
(screenshots of interface elements and masks) describing the desired state

14 GI Working Group “Scenario-based Requirements Engineering”

2.1 Kinds of Scenarios
Div. 2.1 of the taxonomy provides a short description of the different kinds of scenarios used
in the projects under consideration. In inquiring about different kinds of scenarios we did not
directly ask “What kind(s) of scenarios do/did you use in your project?” Most interviewed
persons would not have been able to answer this question. Instead, we formulated the entries
when evaluating the interview data and by examining sample scenario documents. The data
for Div. 2.1 are thus a condensate of information collected in the interviews.

Tab. 8 summarises the corresponding answers, as extracted from the interview data. In several
projects, scenarios of more than one kind are used. This is indicated by the sub-rows a), b), c)
in column one of Tab. 8 and in all subsequent tables.

In summary, scenarios describe services and functionality (NET1, MED b, PUB1 a, INS2,
BANK2), processes (INS1, SALES a, partially PUB1 a, INS2 a), user interfaces and dialogue
sequences (MED c, partially NET2, DEV), and system usage (SALE b, MED a, NET2, PUB1
a+b, INS2 a+b, PUB2, BANK1, BANK3 a+b, DEV in parts). They model the system as is, as
desired/required, and as designed. Scenario types include (and are as different as) event traces,
scripts, textual descriptions and CRC cards. The variety of the observed scenario kinds will be
presented in more detail in the subsequent divisions of this section.

2.2 Content of Scenarios
This division considers the information conveyed by the scenarios used in the projects. The
content of scenarios on an abstract level is described by the:

1. Main modelling focus (Facet 2.2.1); i.e. is the
! current situation modelled primarily (analysis of the concrete or conceptual existing

system),
! desired new system modelled (focus on the problem to be solved, requirements of the

desired system are modelled) or
! solution modelled (the design of the desired system is specified and defined)?

2. Scope (Facet 2.2.2); are scenarios used to describe
! system internal behaviour and sequences of actions (internal scope),
! the interaction of the system with users and other systems or the environment

respectively (interaction scope),
! the associations, relations and connections between any parts of the environment as

well as between the system and its environment (contextual scope).
3. Abstraction level (Facet 2.2.3); i.e. are scenarios described at the

! instance level (John Doe does ..., then he ...);
! type level (the operator does ..., then she ...)?

4. Modelling viewpoints (Facet 2.2.4); i.e. do the scenarios centre around
! static aspects (data);
! dynamic aspects (behaviour) or
! non-functional requirements (e.g., performance, reliability, security, safety etc.)?

5. Granularity (Facet 2.2.5); i.e. are scenarios described at the level of
! business processes (business processes describe tasks and relationships among them);
! tasks (tasks describe working steps and relationships among them);
! working steps (working steps consist of elementary interactions)?

6. Cases being modelled (Facet 2.2.6); i.e. are scenarios used to model the
! normal flow of actions;
! exceptional flows?

GI Working Group “Scenario-based Requirements Engineering” 15

The criteria of Div. 2.2 are not entirely unrelated or orthogonal. Scope and granularity in par-
ticular are not independent facets. Characteristics are not mutually exclusive; scenarios can
cover more than one characteristic in all facets. For example, it is perfectly feasible that the
same kind of scenarios is used to model the current situation as well as to capture and docu-
ment the requirements.

The entries were elicited partly through direct questions, partly the entries were condensed and
formulated after the interviews. In any case the answers were enhanced and reconciled with
our observations and findings in sample scenarios. The information found in Facet 2.2.4
relates to the question of how important the different aspects of data (static view), behaviour
(dynamic view) and non-functional requirements are in the projects described.

Tab. 9: Scenario Content I

Project 2.2.1
Scenarios used to model

2.2.2
Scope

2.2.3
Abstraction

2.2.1.1
Current
situation

2.2.1.2
Requirem.
(problem)

2.2.1.3
Design
(solution)

2.2.2.1
Internal

2.2.2.2
Inter-
action

2.2.2.3
Context

2.2.3.1
Instance

2.2.3.2
Type

NET1 a)
b)

–
–

+18

+
–
–

O
+

+
O

O
O

–
O

+
O

INS1 – + – O – O O +

SALES a)
b)
c)

+
–
–

+
+
–

–
–
+

–
–
+

–
+
–

+
–
–

O
O
–

+
+
+

MED a)
b)
c)

–
–
–

+
+
O

O
O
+

–
–
–

+
+
+

O
–
–

+
–
–

O
+
+

NET2 – + O – + – – +

PUB1 a)
b)

O
+

+
O

O
–

–
–

+
+

O
O

–
+

+
–

INS2 a)
b)

O
O

+
+

–
–

–
–

+
+

–
–

O
+

+
O

DEV – O + + + – O +

PUB2 – + O O + – O +

BANK1 – + O O + – – +

BANK2 – + O O + – – +

BANK3 a)
b)

+
–

– (O)
+

–
–

O
O

+
+

+
+

O19

–
+
+

Tab. 9 summarises the data for the facets main modelling focus (Facet 2.2.1), scope (Facet
2.2.2), and abstraction level (Facet 2.2.3).

! As indicated by the data for Facet 2.2.1, the modelling of requirements20 prevails. All but
one project (DEV) use scenarios heavily to capture and model requirements. Only in few

18 Requirements of the LAN to be managed.
19 Instance scenarios were partially used to elicit type scenarios, they were not documented though.

16 GI Working Group “Scenario-based Requirements Engineering”

projects (3 out of 12), they make a significant contribution to design solutions and/or are
used to model the current situation. In projects that utilise more than one kind of scenario,
the different types of scenario have different characteristics, too. For example, in project
PUB1 one type is mainly used to model the current situation, the other to specify the
requirements.

! The scope of scenarios (Facet 2.2.2) lies mainly on the boundaries between user and sys-
tem (facet 2.2.2). All projects but one use at least one kind of scenarios to model inter-
action between user and system. Yet, almost half of the projects use scenarios comple-
mentary also on a contextual level or to model system internal interactions, respectively.

! Scenarios capture requirements on both, the instance and the type level (Facet 2.2.3). Even
though all projects use scenarios at the type level, yet instance level scenarios are also used
at least partially. In many projects they are used to complement type level scenarios (e.g.
in project PUB1 and INS2): They help the user to relate to specific situations. Some
projects use instance scenarios at the beginning of requirements elicitation and scenario
creation. Later on they abstract from the instance level and use type level scenarios.

Tab. 10: Scenario Content II

Project 2.2.4
Viewpoints

2.2.5
Granularity

2.2.6
Cases being modelled

2.2.4.1
Static

2.2.4.2
Dynamic

2.2.4.3
NFR

2.2.5.1
Business
process

2.2.5.2
Task

2.2.5.3
Working
step

2.2.6.1
Normal
Cases

2.2.6.2
Exceptions

NET1 a)
b)

O
O

+
+

+
O

+
–

O
O

–
+

+
+

–
–

INS1 – + + + O – + +

SALES a)
b)
c)

+
+
+

O
+
+

–
–
–

O
–
–

+
–
–

–
+
+

+
+
+

–
–
–

MED a)
b)
c)

+
+
+

O
+
O

–
–
O

–
–
–

+
+
+

O
O
O

+
+
+

O
O
O

NET2 + O – – O + O +

PUB1 a)
b)

O
O

+
+

–
–

+
+

O
O

–
–

+
O

O
+

INS2 a)
b)

+
+

+
+

–
–

+
+

+
+

O
O

+
+

O
+

DEV – + O – + + + O

PUB2 O + O O + O + O

BANK1 + O – – + – + O

BANK2 + O O – + O + –

BANK3 a)
b)

– (O)
(O) +

+
+

–
–

+
+

+
+

–
+

+
+

–
O

20 The term requirements in this facet (2.2.1) denotes the artefact(s) capturing required functionality and qualities
of a future envisioned system, the target aimed for, as opposed to facet 3.1.3 where the term is used to denote the
system specification.

GI Working Group “Scenario-based Requirements Engineering” 17

Tab. 10 summarises the data for the facets viewpoint (Facet 2.2.4), granularity (Facet 2.2.5),
and cases being modelled (Facet 2.2.6).

! The data for Facet 2.2.4 (viewpoints) shows that in all the projects, the dynamic viewpoint
is important and is captured through scenarios. But scenarios are also heavily related to the
static viewpoint: in 17 out of 20 scenario types data is included or plays a vital role. Non-
functional requirements (NFR)21 on the other hand play only a minor role within the
examined scenarios: They are heavily considered only in the projects NET1 and SALES
and to lesser extent in five further projects.

! Scenarios are used on all levels of granularity (Facet 2.2.5). We find scenarios to be
mostly describing tasks (8 out of 12 projects, 12 out of 20 scenario types), but significant
fractions model business processes and/or single working steps, too.

! Scenarios are partial models (Facet 2.2.6) inasmuch as they capture predominantly the
normal flow of actions; alternative and exceptional flows are modelled only partially: All
scenario types model the normal flow of actions, but only four out of 20 scenario types
fully model exceptional flows.

2.3 Representation of Scenarios
Div. 2.3 of the taxonomy deals with the representational aspects of the scenarios used in the
projects under consideration.
In Facet 2.3.1, we examine the underlying ontology by which the knowledge captured in the
scenarios is expressed. This facet is subdivided into the following characteristics:

! Key primitives: what are the building blocks of scenarios (e.g. actors, use cases, objects,
events or messages)?

! Structuring constructs: to which degree are certain structuring mechanisms (sequence,
iteration, alternative, composition) and abstraction constructs (type abstraction,
hierarchical decomposition) employed to organise the knowledge captured in the
scenarios? Is there some kind of graphical overview representation?

! Formality: are the scenarios represented in a formal, semiformal or informal language22.

Facet 2.3.2 deals with the notation used for the scenarios. We differentiate the following cate-
gories:

! Free text: We consider flow-text having only little structure like chapters, subchapters,
sections, pages and paragraphs to be free text.

! Structured text: If a structure, a layout and/or fixed definite parts are given, that need to be
filled and specified, we speak of structured text. Usually a template is given; often selec-
tions, values to choose from and ranges are specified and the process of filling the tem-
plate might even be machine-supported. Certain constructs might be marked by keywords;
for example, “if ... then ... else ...” or “while ... do ...”.

21 excepting the user interface and related requirements
22 We define a scenario that uses primarily free text and only some tables, pictures and/or diagrams to be infor-
mal. A scenario that is presented in a concise and syntactically as well as semantically defined graphical repre-
sentation, but includes natural language text as in annotations and the like, is considered to be semiformal. A
scenario with a syntactically and semantically completely defined notation is formal.

18 GI Working Group “Scenario-based Requirements Engineering”

! Restricted text: If keywords are specified and the language to describe scenarios is
restricted we speak of restricted text. For example, restrictions may concern precise
meanings of words such as ‘and’ (logical conjunction) or ‘then’ (temporal sequence). The
language could also be constrained to use program-like structures only (for example,
sequence, alternative and iteration). In its extreme, restricted text is a programming
language.

! Table: Scenarios are represented in a tabular form or tables are added to the text of the
scenarios23. Tables added could be decision tables, flow of action tables and the like.

! Diagram: Graphical representations help in conveying the overall picture and the connec-
tions that exist among scenarios, objects and other modelling artefacts. Examples are
message sequence charts, interaction diagrams, state-transition diagrams and so on.

! Image: Images might be pictures of the desired UI, screenshots and the like.

It should be noted that these categories are not exclusive, e.g. textual scenarios may be
enriched by tables, diagrams and images.

In Facet 2.3.3, we consider the presentation style of the scenarios, which we differentiate into

! static;

! interactive (UI-models);

! animated.

The data for Div 2.3 were extracted primarily from samples of scenarios shown to us as used
in the different projects. They also represent a condensate of the answers to questions con-
cerning notation, structuring mechanisms and abstractions used for scenarios. Thus they blend
answers to direct questions with our own observations in sample scenarios.

Tab. 11: Representation I

Project 2.3.1
Ontology

2.3.1.124

Primitives
2.3.1.225

Structuring/abstraction constructs
2.3.1.3
Formality26

sequ. iteration alterna-
tive

compo-
sition

overview
diagram

type
abstr.

hier.
decomp
.

NET1 a)
b)

keywords for views
none

–
–

–
–

–
–

–
–

–
–

–
–

–
–

IF
IF

INS1 events, activities,
actors, control flow

+ – + – + + + SF

23 Often structured text can be presented as a table, yet to keep tables easily comprehensible, expressive and of
manageable size the values in table fields are often restricted.
24 Primitives are listed in arbitrary sequence. Their place in the list neither implies a valuation of their importance
in scenarios nor the frequency of their appearance and use in scenario descriptions.
25 Most scenarios are written in natural language and natural language per se provides for most structures like
sequence, alternative and iteration. So the values presented for the characteristic “Structuring/ abstraction con-
structs” are somewhat arbitrary.
26 F = Formal, SF = Semiformal, IF = Informal

GI Working Group “Scenario-based Requirements Engineering” 19

Project 2.3.1
Ontology

2.3.1.124

Primitives
2.3.1.225

Structuring/abstraction constructs
2.3.1.3
Formality26

sequ. iteration alterna-
tive

compo-
sition

overview
diagram

type
abstr.

hier.
decomp
.

SALES a)
b)
c)

activities, dataflow
actors, use case
actors, messages

+
–
+

–
–
+

+
–
+

–
+
–

+
+
–

+
+
–

+
–
–

SF

MED a)

b)

c)

actors, actions,
objects, use cases
classes,
responsibilities,
collaborations
data fields,
constraints, events,
(button) effects

–

+

+

–

–

–

–

–

O

–

–

–

–

–

–

O

+

+

–

–

–

IF

SF

IF - SF

NET2 data fields,
constraints, events,
button effects,
deviations from
standard behaviour

+ – O – – + – IF

PUB1 a)

b)

both for a) and b): use
case/scenario id,
owner, version,
overview, event,
precondition, action,
result, postcondition,
exception, comments,
sources

+

+

+

O

+

–

O

O

+

–

+27

+

O

–

IF

IF

INS2 a)

b)

both for a) and b): use
case id, goal, actor,
event, objects,
precondition, action,
postcondition,
exception

+

+

O

O

O

–

O

O

+

–

+

+

O

–

IF

IF

DEV use cases, objects,
events, actions

– – + –- O + O IF

PUB2 use case diagram,
actors, use cases,
partially pre- and post-
conditions, events,
GUI-elements
(windows), data fields

O – + – + + O IF

BANK1 user role, pre/
postcondition,
predecessor use case,
successor use case

– – – – – – – IF

BANK2 actor, pre/ post
condition, triggered
by, triggers

– – – – – – – IF - SF

BANK3 a)
b)

for a) and b): no
explicit, specific
primitives

–
–

–
–

–
–

–
–

O
–

–
–

O
O

IF
IF

27 Scenarios of type b) are regarded as instances of a).

20 GI Working Group “Scenario-based Requirements Engineering”

Tab. 11 summarises the data for the facet ontology (Facet 2.3.1).

! The primitives used for expressing scenarios (Characteristic 2.3.1.1) vary widely among
the various scenario types. However, certain primitives are rather common, such as the
concept of actors or objects which occur in 8 out of 20 scenario types or event which is
used in 5 scenario types. Pre/post-conditions are also frequently represented (6 scenario
types). It should be noted that in most cases there is no explicit metamodel of the primi-
tives to be used in the scenario such as in, e.g., UML message sequence charts. Rather the
primitives are merely headings of the sections of a textual scenario template.

! Most scenarios make only little use of structuring mechanisms (Characteristic 2.3.1.2). In
our sample only few scenario types utilised structuring mechanisms like sequence (used in
10 out of 20 scenario types), iteration (2 out of 20) and alternative (6 out of 20). Only one
scenario type utilises an explicit composition mechanism.

! Abstraction mechanisms are not commonly used either. Even though an overview diagram
is part of use case modelling in many methodologies, in the sample projects reflected in
this paper only five out of 12 projects used overview diagrams. Even less provided an
explicit mechanism for hierarchical decomposition (two scenario types out of 20).

! Scenarios are mainly informal or at most semiformal models; no formal models are used
(characteristic 2.3.1.3). More precisely, all scenarios are informal (13 out of 20 scenario
types), informal including some semiformal aspects (2 out of 20) or semiformal (5 out of
20).

! Tab. 12 condenses the data concerning the notation (Facet 2.3.2) and presentation (Facet
2.3.3) of the scenarios found in the projects.

! Natural language is the dominant means of notation. (Facet 2.3.2) All but one project in
the sample use free or structured text to describe scenarios. The one exception uses a dia-
grammatic notation (in project SALES). Restricted text is used in only four projects. Dia-
grams and images are used to enhance textual descriptions. Images (for example screen-
shots, mock-ups or sketches of the user interface) are used in seven projects as a support-
ing means to the other notations applied. Only in three projects images are more than just
an extra.

! The presentation of the scenarios is static throughout all projects (Facet 2.3.3). No project
uses any form of animation and only one scenario kind engages some form of interactivity
(SALES b).

GI Working Group “Scenario-based Requirements Engineering” 21

Tab. 12: Representation II

Project 2.3.2
Notation

2.3.3
Presentation

2.3.2.1
Free
Text

2.3.2.2
Struct.
Text

2.3.2.3
Restr.
Text

2.3.2.4
Table

2.3.2.5
Diagram

2.3.2.6
Image

2.3.3.1
Static

2.3.3.2
Inter-
active

2.3.3.3
Anima-
ted

NET1 a)
b)

+
+

+
–

–
–

–
–

O
O

–
O

+
+

–
–

–
–

INS1 + + – – + – + – –

SALES a)
b)
c)

–
–
–

–
–
–

O28

O
O

–
–
–

+
+
+

–
+
–

+
+
+

–
+
–

–
–
–

MED a)
b)
c)

+
–
–

–
–
+

–
–
–

–
+
–

–
–
–

–
–
+

+
+
+

–
–
–

–
–
–

NET2 O + – – – + + – –

PUB1 a)
b)

O
O

+
+

–
–

–
–

O
–

–
O

+
+

–
–

–
–

INS2 a)
b)

O
O

+
+

–
–

–
–

O
O

O
O

+
+

–
–

–
–

DEV + O O – – O + – –

PUB2 + O – O O – + – –

BANK1 + + – – – – + – –

BANK2 + + – – – – + – –

BANK3 a)
b)

+
+

–
O

–
–

O
O

O
–

O
O

+
+

–
–

–
–

2.4 Scenario Figures
Div. 2.4 captures two size metrics for each scenario type: the total number of scenarios and
the typical size of a single scenario. Size is measured in pages A4 of text, as there is no suit-
able measure available to evaluate the size of a scenario. Both numbers were asked for
directly. In some cases, they are estimates by the project managers.

Tab. 13 shows the data concerning the number and size of the scenarios encountered in the
projects. The main observation is that the number and size of scenarios is relative small.
Although the number ranges from 10 to 2000 (Facet 2.4.1), only in two of the 20 projects,
more than 100 scenarios of one type were created (PUB1, PUB229). The typical size of a
scenario is 1-3 pages, but again size varies significantly across projects ranging from a few
sentences up to 30 pages (Facet 2.4.2).

28 Text associated with the diagram elements (by the diagram tool).
29 Project PUB1 is huge: Total effort when finished will be 1000 person years and an estimated 2000 scenarios
will have been written by the time.

22 GI Working Group “Scenario-based Requirements Engineering”

Tab. 13: Scenario Figures

Project 2.4.1
Total number of scenarios

2.4.2
Typical size of a single scenario

NET1 a)
b)

10
24

1-2 pages
1 sentence - 1 page

INS1 4030 2-5 pages
SALES a)

b)
c)

50 - 70
?
?

?
?
?

MED a)
b)
c)

20
?
40

1-3 pages
1 page
1-3 pages

NET2 6031 1-2 pages
PUB1 a)

b)
35032

1400 - 200033
3-8 pages
5-10 pages

INS2 a)
b)

534

25
3 pages
3-6 pages

DEV 50 1 page
PUB2 170 1-2 pages
BANK1 20 max. 1.5 pages
BANK2 20 1-2 pages
BANK3 a)

b)
10
23

2-3 pages
5-30 pages

2.5 Summary and Findings
In Section 2, we have highlighted the product properties of the scenarios used in the examined
projects concerning their content, their representation and their size and number. The main
findings about the content expressed in the scenarios can be summarised as follows:

! Modelling of requirements prevails (Facet 2.2.1): Scenarios are mainly used to capture
and model requirements. Only in few projects they are applied to design solutions and
even less to model the current situation.

! Scope of scenarios lies on interaction (Facet 2.2.2).

! Type level scenarios are predominant (Facet 2.2.3) but frequently complemented by
instance level scenarios.

! Scenarios capture not only behaviour, but also data aspects (Facet 2.2.4): In all the
projects, behaviour – be it on an internal or an external level – is important and is captured
through scenarios. But scenarios are also heavily related to the data viewpoint.

! Scenarios are medium grained (Facet 2.2.5): we find scenarios to be mostly describing
tasks, but significant fractions model business processes and/or single working steps, too.

! Scenarios are partial models (Facet 2.2.6): the by far predominant fraction of the
projects only capture normal cases in scenarios which is somewhat contradicting to what

30 20-25 of them self-contained.
31 In general 2-4 per domain object.
32 So far, ~ 1000 expected.
33 Each business process is documented by a use case (a). For each use case 4-6 scenarios (b) are developed.
34 So far, 27 expected.

GI Working Group “Scenario-based Requirements Engineering” 23

is often claimed in research literature, namely that scenario are ideal means to explore
exceptional situations (e.g. [Maiden et al., 1998]).

From the representational point of view, the main findings of Section 2 are:

! Little use of structuring mechanisms (Characteristic 2.3.1.2): only few projects
employed structuring mechanisms like sequence, iteration and alternative or even an
explicit composition mechanism.

! Abstraction mechanisms are restricted to overview diagrams (Characteristic 2.3.1.2):
Few projects utilised overview diagrams known from well-known object-oriented
methodologies, even less provided an explicit mechanism for hierarchical decomposition.

! Scenarios are mainly informal or at most semiformal models (Characteristic 2.3.1.3);
no formal models are used. One reason is that scenarios serve as a means to elicit, docu-
ment and validate requirements. They facilitate and enhance communication between
users and requirements engineers (see section 3 in this paper). As they are used to elicit
and validate requirements, they have to be understandable to users who might be unac-
quainted with or unwilling to learn (graphical) semiformal or formal languages.

! Text dominates as notation (Facet 2.3.2). This is also an indicator that scenarios have to
be communicable. However, most projects feel the need for at least some structure and
hence often impose a template format upon the scenario documents. Diagrams and images
are sometimes used to enhance textual descriptions.

! Presentation is static (Facet 2.3.3); advanced animated or even interactive presentation
styles are not state of current practice.

! From the size metrics that have been raised, the following conclusions can be drawn:
Small scenario size (Facet 2.4.2): The typical size of a scenario is 1-3 pages, but size
varies significantly across projects ranging from a few sentences up to 30 pages.

! Small number of scenarios (Facet 2.4.1): The same is true for the total number of sce-
narios: It ranges from 10 to 2000. It has to be noted though, that in only two of the 20
projects, more than 100 scenarios of one type were created (PUB1, PUB235).

As most of the observed projects are in the range of 10 to 60 scenarios (14 out of 17), the con-
clusion may be drawn that it is reasonable to divide bigger projects into manageable
subprojects of about this size (up to 100 scenarios). Projects bigger than that are increasingly
hard to manage: There is a lack of C&V management tools suited for use with scenarios. As a
consequence two third of all the projects report that they had problems in managing scenario
documents (see section 4 and 5).

A general finding from this section is that many projects claim to use scenarios according to
the Jacobson OOSE approach. These scenarios are mostly informal and use very little struc-
turing constructs and abstractions. However, the scenarios observed vary very widely in terms
of their content, representation and size, even within a single project. This can be seen as an
indicator that current methodologies leave (too) much room for interpretation and call for
specific adaptations of the scenario approach used in the projects.

35 Project PUB1 is huge: Total effort when finished will be 1000 person years and an estimated 2000 scenarios
will have been written by the time

24 GI Working Group “Scenario-based Requirements Engineering”

GI Working Group “Scenario-based Requirements Engineering” 25

3 Goals of Scenario Use
This section deals with the main goals underlying the use of scenarios in software develop-
ment projects. We are particularly interested in those reasons that can be inferred from real
life development experiences and go beyond those described in the scenario-oriented research
papers and textbooks, e.g. the high comprehensiveness for developers and clients/users, the
role as a communication medium for system requirements [Jacobson, 1995; Potts et. al.,
1994], or as a means to model and possibly reengineer business processes [Jacobson et al.,
1995]. Nevertheless, these standard purposes have been mentioned as relevant for some of the
inspected projects as well. We are also interested in whether scenarios are used to describe the
current situation or to create a vision of a future system. The data to answer questions like
these are presented in this section.

3.1 Purpose
Div. 3.1 highlights the different purposes underlying the use of scenarios. After reviewing the
interview material gathered from twelve projects, it became obvious that the objectives for
using scenarios in software development projects can be characterised by an activity associ-
ated with a subject. To structure the objectives for using scenarios we classified the insights
gained in a two dimensional matrix (cf. Figure 3.1). The matrix pairs certain activities (form-
ing the columns) with certain subjects (the rows), e.g. understanding the application domain,
eliciting the requirements, or negotiating the contract. We discovered four important subject
groups relevant for understanding the objectives for using scenarios:

! the application domain describing the environment the system will be installed in;

! the vision of the projected system describing the product to be developed;

! the software artefacts created during the development process and

! the contract between software developers and software procurers.

Subjects / Activity :
VALUE

Understanding Elicitation Validation Documentation Mediation/
Negotiation

Application Domain
Business Process
Terminology
Domain Knowledge
...

System Vision
Software Artefacts

Requirements
Architecture
Code
Test Cases
Interface
...

Legal Issues
Contract
...

...

Figure 3.1: Activity/Subject Matrix for the Division “Purpose”

26 GI Working Group “Scenario-based Requirements Engineering”

Besides the subjects, we identified five important activities on these subjects:

! understanding, i.e. the creation of a mental model in the minds of (typically) the
developers;

! elicitation, i.e. the process of making knowledge about the subject explicit;

! validation, i.e. the capability to judge about the subject’s correctness or adequacy;

! documentation, i.e. the storage of knowledge on a persistant medium, and

! mediation/negotiation, i.e. the process of communication between client and developer to
convey the subject.

The pairs of the matrix are instantiated with the VALUE type to indicate strong, weaker, or no
relevance of the appropriate subject/activity pair for the current project. The data presented
below has been derived from the interviews, without explicitly asking about the relation of
scenarios to certain subjects and certain activities (through interpretation of the data). There-
fore, an empty cell indicates that the interviewee did not explicitly mention the corresponding
purpose.

The following tables represent all 12 projects and contain the facets of the above presented
taxonomy. To allow for an easier comparison of projects the tables have been reorganised.
Each row contains data of one project and each column represents one subject/activity pair.

3.1.1 Scenario Purposes with respect to Application Domain
First, we present the gathered data concerning the relationship between scenarios and the
application domain. This facet has been divided into business process, domain terminology,
and domain knowledge to increase the level of detail.

Tab. 14 (covering the characteristics 3.1.1. A – C) describes the relationship between
scenarios and aspects of the application domain. It is obvious that all 12 projects use scenarios
to understand the application domain knowledge; 9 projects use scenarios to understand the
domain terminology, and 7 projects use scenarios to understand business processes. Thus,
understanding aspects of the application domain is one main purpose for using scenarios. The
activities elicitation and documentation are similarly important for all subtopics of the appli-
cation domain (6 to 10 projects out of 12). In the projects PUB1 and INS2 scenarios are used
for nearly all mentioned activities with a stress on understanding and documenting business
processes and the domain knowledge.

3.1.2 Scenario Purposes with respect to System Vision
The next table deals with the system vision, i.e. descriptions of the functionality of the system
that should be built in the project, and in which way scenarios are used to understand, elicit, or
document this vision.

GI Working Group “Scenario-based Requirements Engineering” 27

Tab. 14: Scenarios Purposes with respect to Application Domain

3.1.1.A
Application domain:
business process

3.1.1.B
Application domain:
terminology

3.1.1.C
Application domain:
domain knowledge

Project

Un
de

rs
ta

nd
in

g

El
ic

ita
tio

n

Va
lid

at
io

n

Do
cu

m
en

ta
tio

n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g

El
ic

ita
tio

n

Va
lid

at
io

n

Do
cu

m
en

ta
tio

n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g

El
ic

ita
tio

n

Va
lid

at
io

n

Do
cu

m
en

ta
tio

n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

NET1 a)
b)

+ O + + O + + O +

INS1 + + + + + + + + + + + +

SALES a)
b)
c)

+
+
+

+
+
+

O
O
O

+
+
+

+
+
+

+
+
+

MED a)
b)
c)

O O O
O O

+
O

+
O

O

+
O

+
O

O

NET2 O O O O O O O

PUB1 a)
b)

+
+

+
+

O
O

+
+

+
+

O36

O
O
O

O
O

O
O

O
O

+
+

+
+

O
O

+
+

+
+

INS2 a)
b)

+
+

O
O

O
O

+
+

O
O

+
+

O
O

O
O

O
O

O
O

+
+

+
+

O
O

+
+

DEV O O O

PUB2 + O O O + + O O

BANK137 O O

BANK238 O O O O

BANK3 a)
b)

+
O

+
O

+
O

O
O

+
O

+
O

+
O

O
O

+
O

+
O

+
O

O
-

As can be seen in Tab. 15 most projects (9 of 12) use scenarios to understand the system
vision or to elicit, document, and mediate/ negotiate it (each 8 of 12). Exactly those projects
use scenarios to document the system vision that also use them to mediate and negotiate it,
and vice versa. A similar strong correlation can be found between understanding and eliciting
the vision (except for project NET1). 10 out of 12 projects mentioned one or more activities
related to the system vision as an objective for using scenarios, thus this subject is one main
reason for using scenarios in the visited projects. The only exceptions are projects SALE and
NET2.

36 in conjunction with a glossary.
37 The interviewees explicitly mentioned that scenarios were not used in relation to business processes at all. The
application domain terminology has been acquired in an earlier project without the use of scenarios.
38 The interviewees explicitly mentioned, scenarios were not used in relation to business processes at all.

28 GI Working Group “Scenario-based Requirements Engineering”

Tab. 15: Scenario Purpose with respect to System Vision

3.1.2
System Vision

Project

Understanding Elicitation Validation Documentatio
n

Mediation/
Negotiation

NET1 a)
b)

+ O +

INS1 O O O O
SALES a)

b)
c)

MED a)
b)
c)

O

O

+

NET2
PUB1 a)

b)
+
O

+
O

O
+

+
O

+
O

INS2 a)
b)

O
O

+
+

+
+

+
+

O
O

DEV O O
PUB2 O + - + O
BANK1 + + + + +
BANK2 + + + +
BANK3 a)

b)
-
+

-
O

-
+

3.1.3 Scenario Purposes with respect to Software Artifacts
Because several rather different software artefacts were mentioned as reasons for using
scenarios they are discussed individually in the following table (3.1.3.A-E).

Tab. 16 (covering the characteristics 3.1.3. A - E) shows how software artefacts represent rea-
sons for using scenarios. The gathered data reveal significant differences concerning the
different artefacts. Scenarios were used to a large extent to understand, to elicit, to validate, to
document, and to mediate/ negotiate requirements and the software interface. The projects
NET1 and INS1 are exceptions to this trend, since hardly any relationship between scenarios
and software artefacts are documented. The reason is that these projects stopped before devel-
oping these artefacts. In addition, the project PUB1 uses scenarios for the acquisition of
requirements but does not use them in relation to the interface.

The relation between scenarios and requirements is very close. 11 out of 12 projects use
scenarios to document requirements, 8 projects use scenarios to understand, to medi-
ate/negotiate and to validate requirements, and 7 projects use scenarios for the elicitation of
requirements. A similar but weaker relationship holds between scenario use and interfaces.
Here the main purpose of scenarios lies in understanding and validating user interfaces (7 of
12). The elicitation and the documentation facet is relevant in 6 of 12 projects.

The tables show very weak relationships between scenario use and the code or the software
architecture. Only project SALE mentioned documentation of code as an objective for the use
of scenarios. In the project DEV the main objective for scenario use is their relationship to the
software architecture, since scenarios were used to elicit, to understand, to negotiate, to docu-
ment, and to validate the software architecture.

GI Working Group “Scenario-based Requirements Engineering” 29

The relationship between scenarios and test cases is of medium importance as shown in table
3.1.3.D. Only 4 projects use scenarios to elicit or to document test cases. Only the project
BANK1 shows a tight relationship between scenarios and test cases, since scenarios were used
to elicit, to document, to negotiate, and to validate test cases.

Tab. 16: Scenario Purposes with respect to Software Artefacts
3.1.3.A
software artefacts:
requirements

3.1.3.B
software artefacts:
architecture

3.1.3.C
software artefacts:
code

3.1.3.D
software artefacts:
test cases

3.1.3.E
software artefacts:
interface

Project

Un
de

rs
ta

nd
in

g
El

ic
ita

tio
n

Va
lid

at
io

n
Do

cu
m

en
ta

tio
n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g
El

ic
ita

tio
n

Va
lid

at
io

n
Do

cu
m

en
ta

tio
n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g
El

ic
ita

tio
n

Va
lid

at
io

n
Do

cu
m

en
ta

tio
n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g
El

ic
ita

tio
n

Va
lid

at
io

n
Do

cu
m

en
ta

tio
n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

Un
de

rs
ta

nd
in

g
El

ic
ita

tio
n

Va
lid

at
io

n
Do

cu
m

en
ta

tio
n

M
ed

ia
tio

n/
Ne

go
tia

tio
n

NET1 a)
b) +

INS1
SALES a)

b)
c)

+
+
+

+
+
+

O
O
O

+
+

+
+
+

+
+
+

+
+
+

+
+
+

+
+
+

MED a)
b)
c)

O
O
O

+
+

+
+

+

O
O
O

O
O

O
O

+
+

+
+

+
NET2 + O + +
PUB1 a)

b)
+
+

+
+

+
+

+
+

O
O

INS2 a)
b)

+
+

+
+

+
+

+
+

O
O

O
O

O
O

O
O

O
O

DEV O O O O + + O O O + O O
PUB2 + + + + + O O O O O
BANK1 + + + + + + + + + + + + +
BANK2 + + + + O O O + + O O
BANK3 a)

b)
O
+

O
+

O
+

O
+

-
O

-
O

-
O

3.1.4 Scenario Purposes with respect to Legal Issues
Tab. 17 highlights the role scenarios play wrt. to the contract between supplier and customer.

In 2 of the analysed projects scenarios are heavily used to document the contract between the
system procurers and the system developers, i.e. the scenario descriptions become a part of the
contract. In five other projects, scenarios serve to a lesser extent for documenting the contract.
The project BANK2 also uses scenarios as a mediation and negotiation means when it comes
to fixing a contract. Other purposes with respect to legal issues play no or only a minor role.

30 GI Working Group “Scenario-based Requirements Engineering”

Tab. 17 : Scenario Purposes with respect to Legal Issues

3.1.4
Legal issues: contract

Project

Understanding Elicitation Validation Documentatio
n

Mediation/
Negotiation

NET1 a)
b)

+

INS1
SALES a)

b)
c)

MED a)
b)
c) O O O

NET2 O
PUB1 a)

b)
INS2 a)

b)
O
O

DEV
PUB2 O O
BANK1
BANK2 + +
BANK3 a)

b)
-
O

-
O

3.2 Main Objectives
Because not all relevant rationales for using scenarios in software development projects can
be classified according to a rigid scheme as that of Figure 3.1, another division of the taxon-
omy summarises the main objectives for using scenarios. The data gathered in interviews con-
cerning the main objectives represent explicit statements about the objectives for using sce-
narios in the concrete projects. Thus, the data may partly overlap with that classified with the
classification scheme of Figure 3.1.

Tab. 18 contains some explicit statements about the objectives for using scenarios in the
concrete projects. These statements are partly reflected in the discreticized tables 14-17. But
they also contain some additional viewpoints, e.g. in project MED scenarios have been used to
structure the understanding of the future system. In PUB1 scenarios were used to manage the
complexity of the application domain and project DEV employs scenarios to document and
communicate design decisions. This use of scenarios in project DEV is an explanation for the
special role this project plays in some of the presented tables of this section, e.g. in DEV
scenarios are not mentioned at all in relation to the application domain.

GI Working Group “Scenario-based Requirements Engineering” 31

Tab. 18: Main Objectives of Scenario Use

Project 3.2
Main Objectives of Scenario Use

NET1 a)
b)

! understand domain
! fix requirements

INS1 ! understand and document future handling
! improve communication with customer

SALES a)
b)
c)

in all cases: understand processes and document them

MED a)

b)
c)

! document and structure software engineer’s understanding of future system
! validation through user
! intermediary step between scenario of a) and class model
! documenting system functionality from user perspective, communicating system

functions to user
NET2 ! communicate underlying data-model to user/domain expert, thereby, enabling a

validation
! isolate and document non-standard features apart from generated standard

behaviour of prototype
PUB1 a)

b)

! identify, understand, and document business processes, transferring domain
knowledge from user to sw eng., manage complexity of application domain

! - dito -
INS2 a)

b)

! identify, understand, and document business processes, transferring domain
knowledge from user to software engineer

! - dito -
DEV ! document and communicate design decisions
PUB2 ! communication means between developer and domain experts, specify reqs from

the user’s perspective
BANK1 ! acquire initial understanding of domain, documentation of user requirements
BANK2 ! enable sw engs. to understand desires of customer, medium for domain experts

to express their vision of the future system without the need for learning a new
notation

BANK 3 a)

b)

! understand the appl. Domain/the business and its context/environment, enable
and improve communication between developers and customer

! develop a vision of the desired system, communicate this vision to customer,
capture requirements of system to be (Requirements specification) down to
system components

3.3 Summary and Findings
The general objectives for using scenarios that were derived from the given tables can be
summarised as follows:

! Scenarios as communication means: Scenarios are mainly used to create a shared
understanding between the different stakeholders by activities such as understanding,
elicitation, and mediation/negotiation. These activities have been mentioned as main
objectives for using scenarios.

! Varying importance of different purposes in different projects: The most important
subjects according to the gathered data are the domain knowledge and terminology, the
system vision, the requirements, the interface, and partly the business processes.

! Scenarios and test cases: The relationship between scenarios and test cases is less
important which is due to maintenance problems of the initial scenarios that do not reflect

32 GI Working Group “Scenario-based Requirements Engineering”

the current requirements at the time when the system is tested (cf. [Weidenhaupt et al.,
1998]).

! Scenarios and architecture: Scenarios play a minor role in relation to the subject
software architecture, except for the project DEV, where the main objective for using
scenarios lies in their ability to document and validate the software architecture and design
decisions.

! Scenarios and code: The software artefact code was only seldom mentioned in the inter-
views.

! Validation only for requirements and interfaces: The activity validation was mentioned
much more seldom than the other activities. If validation was mentioned, the projects use
scenarios to validate requirements and interfaces and partly business processes and the
system vision.

GI Working Group “Scenario-based Requirements Engineering” 33

4 Process
Scenarios can be used in a variety of ways during the software development process. These
are determined on the one hand by the purpose and on the other hand by the software devel-
opment method used. The software development method determines the artefacts capturing
the main decisions regarding requirements, interface, architecture, implementation and test.
Scenarios (and all other kinds of modelling techniques) are used as a medium to understand
and elicit information on which decisions are based and to document, validate and negotiate
these decisions.

The main purpose of scenario usage has been discussed in section 3. Here we concentrate on
the embedding of scenario usage in the software development process. Since it is impossible
to capture all the details of a software development process during a project, this embedding
can only be described very roughly. We therefore split this section into two parts: in subsec-
tions 4.1-4.3 the major facets of scenario based software development processes are described,
in subsection 4.4 we go into detail for particularly interesting elements of such a process. The
latter describe the highlights of the projects.

Regarding the overall software development process we have captured the artefacts and the
modelling techniques used. For requirements engineering we have also been interested in the
following questions: How was the information captured in the scenarios obtained? What kind
of management was applied to the scenario documents? Which tools had been used?

The following list gives an overview of the taxonomy divisions:

! a short description of the overall software development process (Div. 4.1),

! the documented or maintained relationships of scenarios to requirements, architecture,
code, test cases, interface and glossary/object model (Div. 0),

! a characterisation of the requirements engineering method used (Div. 4.3),

! a description of the creation, usage, maintenance , change and quality control activities in
the scenario lifecycle (Div. 4.4), and

! the tools that were used (Div. 4.5).

4.1 Process Context
Div. 4.1 provides a short overview of how scenario generation and usage is embedded in the
overall requirements engineering process. In Tab. 19, we show for each project the artefacts
(depicted as boxes) developed, as well as their relationships: one-way arrows denote deriva-
tion, two-way arrows denote validation against each other. The equality sign between artefacts
denotes the fact that one is a major part of the other, while a thick empty arrow stands for in-
clusion. Dashed arrows denote planned relationships.

34 GI Working Group “Scenario-based Requirements Engineering”

Tab. 19 : Overview of the Scenario Generation and Usage Process

 Project 4.1 Process Context Overview Picture

 NET1 The first kind of scenarios constitute
a major part of the requirements
specification. These were visions for
services of a VLAN and their
management. From that a top-level
design for the management system
was developed. This is detailed into a
system specification consisting of use
cases and a detailed design given by
an object model.

requirements=

top-level
design

system
specification

detailed
design

= =

context
scenarios

object
model

use
cases

 INS1 The project had to deliver a system
specification. First, business process
were defined. After one quarter also
the object model was started and the
two models were validated against
each other. The business processes
were refined into dialogues, which
are part of the system specification.
Validating the object model and the
dialogues against each other also
lead to a refined object model.

dialogues

system
specification

object
model

business
processes

 SALES Business process describing the
current state were derived from the
existing system. From them the
required business processes -
constituting the system specification -
were developed together with the
domain experts. Common activities in
the business processes were
extracted and detailed into use
cases. In parallel the object model
was developed, and use cases and
the object model were validated
against each other. Then use cases
were implemented in a prototype
which was evaluated by end-users.
Prototyping required to fix some
design and implementation details.
These were documented with event
traces.

system
specification

prototype

=

test cases design

code

current
business processes

required
business processes

use
cases

event
traces

object
model

GI Working Group “Scenario-based Requirements Engineering” 35

 Project 4.1 Process Context Overview Picture

 MED Based on a project definition
provided by the customer, informal
scenario scripts were developed
documenting the requirements.
These were structured into CRC
cards from which an initial object
model was developed. To validate
the object model a prototype was
developed. CRC cards and the
scenarios served as test cases for
the prototype. This lead to changes
of both, the object model and the
prototype. User interface centred use
cases were used to document the
system functionality from the point of
the user.

project
definition

future
scenarios

requirements=

prototype

CRC
scenarios

object
model use

cases

 NET2 Starting from a coarse project
specification, a problem specification
was developed in workshops
between the customer and the
developers. The terminology defined
in the workshop was the basis for an
initial EER model. To communicate
the EER model to the customer an
user interface prototype was
generated. Each dialogue was
documented as a use case,
especially deviations from generated
functionality.

problem
specification

user interface
protoype

use
cases

entity/relationship
diagram

 PUB1 First relevant topics were identified
and pre-structured into business
processes. Based on interviews with
domain experts use case
descriptions envisaging the future
system usage are created as well as
instance scenarios. The overall set of
use cases constitutes the system
specification from which further, more
formal conceptual models such as
class diagrams, message trace
diagrams and user interface models
are derived in later development
stages.

business processes

use
cases

instance
scenarios

system
specifciation=

further
conceptual

models
(class models,

message sequence
charts, ...)

36 GI Working Group “Scenario-based Requirements Engineering”

 Project 4.1 Process Context Overview Picture

 INS2 The scenario generation was based
on more than 100 business
processes identified earlier using a
petrinet-based method. These were
restructured into 27 business
processes. Each business process
was elaborated by conducting
interviews with the domain
experts/users and detailed as use
case. The latter were enhanced by 4-
6 instance level scenarios. Use case
and scenarios built the basis for
deriving data flow diagrams and EER
models.

instances

business processes

use
cases data flow

diagram

entity/relationship
diagrammtest cases

 DEV From the system specification an
object model was derived and
detailed into the design. Scenarios
are used in the design stage. There
they help to structure, communicate
and validate complicated dialog
sequences. Also, they are used to
validate the object model.

system
specification

design

object
model

interface
scenarios

 PUB2 First requirements are elicited and
use cases written by the developers.
They are iteratively reviewed and
refined. The final version is part of
the system specification and serves
as basis for the object model.

requirements

system
specification

use
cases

object
model

 BANK1 Starting from an existing system
specification, current and future
business processes were identified to
gain an understanding of the
application domain. Then use cases
were acquired with the domain
experts that result in a system
specification that serves as a major
part of the contract between
developers and customers.

future, current
business processes

use
cases

EPK (system
specification)

system
specification,
contract

 BANK2 Through interviews with domain
experts requirements are identified.
From them the developers create a
first version of use cases. These
were reviewed and refined and serve
as a contract with the customer.

use
cases

requirements

system
specification,

contract

GI Working Group “Scenario-based Requirements Engineering” 37

 Project 4.1 Process Context Overview Picture

 BANK3 Developers observed the work of the
users and interviewed them. On that
basis, scenarios describing the
current application are written by the
developers. Visionary scenarios are
developed which are part of the
system specification.

system
specification

current
context scenarios

future
interaction scenarios

 Legend:

= major part
validation
derivation
inclusion
planned relationships

All projects use scenarios to describe interaction between the user and the software system.
One half of the projects uses additionally either instances or visionary business processes.

In the following, we examine the relationships of scenarios to other artefacts in detail.

! Relationship to requirements and system specification: The relationships of scenarios
to requirements are as diverse as the use of the term requirement itself. In one interpreta-
tion, requirements describe the envisioned effects of the software system on the processes
of its environment. Seven of the projects used scenarios for that (NET1, SALES, INS1,
MED, PUB1, INS2, BANK3), another four just used informal text (NET2, PUB2,
BANK1, BANK2). Requirements often also refer to the system specification, namely the
required system functionality. We found that the majority of projects uses Jacobson’s use
cases or other interaction scenarios for that (NET1, SALES, INS1, PUB1, PUB2, BANK2,
BANK3). Given the exemplary nature of scenarios this is somewhat surprising. We only
found three projects which used other means of system specification (DEV, NET2,
BANK1), while two projects (MED, INS2) had no explicit system specification.

! Relationship to user interface prototype: In the literature, use cases are often proposed
as a means to describe user interaction as input to or validation of user interface prototype
development. This is also reported in [Weidenhaupt et al., 1998] and was the case for two
of our projects (SALES, MED) . Interestingly, in three projects use cases were also gener-
ated from the prototype to document special features (DEV, NET2, MED), e.g. non-
standard functionality.

! Relationship to object model/ data model: 8 projects produce an object model. In two
projects (PUB2, PUB1) scenarios are input to object model development, in two projects
(INS1, SALES, DEV) they are a means of validation. In project MED, CRC-cards are
used for object model development and the prototype for validation. In project NET2 an
EER model was developed from the specification and from that an interface prototype. In
project INS2 scenarios have been used as a front-end to a structured method.

! Relationship to existing system: Requirements are often heavily influenced by existing
systems. In three projects (SALES, BANK1, BANK3) scenarios have been used to model
and understand existing business processes or use cases. In project PUB1 the current sys-
tem has not been documented by scenarios, but the future use cases have been validated
against the existing system.

38 GI Working Group “Scenario-based Requirements Engineering”

For the projects, which used several kinds of scenarios (NET1, SALES, PUB1, MED, INS2),
one kind of scenario was input for the other one: Instances are derived from scenarios on the
type level, or the focus is shifted from current to future processes, or from the software con-
text to the interaction.

Tab. 20: Documented and Maintained Relationships of Scenarios to Artefacts

4.2.1
Require-
ments

4.2.2
Architecture

4.2.3
Code

4.2.4
Test cases

4.2.5
Interface

4.2.6
Glossary /
Obj. model

Project

D39 M40 D M D M D M D M D M

NET1 a)
b)

O
+

–
+

O
O

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
O41

–
O41

INS1 + + – – – – – – O O O41 O41

SALES a)
b)
c)

+
O
–

+
O
–

–
–
+

–
–
+

–
–
–

–
–
–

–
–
–

–
–
–

–
+
–

–
+
–

–
+
–

–
+
–

MED a)
b)
c)

+
+
+

–
–
–

–
–
–

O
O
–

–
–

+ O

O
O
–

–
–

NET2 + – – + O O –

PUB1 a)
b)

+
+

O
O

–
–

–
–

O42 O

INS2 a)
b)

+
+

–
– O

–
– O

–
–

O42

–
–

DEV – – O – – – – – O – O41 –

PUB2 + – – – – – – – O – O41 –

BANK1 – – – – – –

BANK2 – – – – – –

BANK3 a)
b)

–
O

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
O

–
–

–
O41

–
–

4.2 Relationship of Scenarios to Artefacts
In this division, we examine the documented and maintained relationships of scenarios to the
major artefacts in each project, respectively. We call a relationship (e.g. a derivation or vali-
dation relationship) documented if this relationship is explicitly mentioned in the respective
documents. An example is an explicit reference stated in a class diagram to those scenarios
from which a certain class was elicited. Such relationships are regarded as maintained if a

39 D = documented
40 M = maintained
41 Object model
42 Glossary

GI Working Group “Scenario-based Requirements Engineering” 39

change in either the scenarios or the related artefacts is reflected in the respective counterpart,
e.g. that if a scenario is changed the corresponding class model is adapted accordingly, if
necessary. The fact that scenarios are not related to an artefact not necessarily means that there
has been no influence between the two. A reason might be that the project has not yet pro-
duced the artefact.

The data in Tab. 20 were extracted from the process descriptions given by the interviewees
and the sample documents to which we had access.

Not surprisingly, all projects document relationships of scenarios either to the requirements (9
out of 12) or the user interface prototype (8 out of 12). 10 projects also document the relation-
ship to the object model, however only in one project this was a major issue. Documented
relationships to architecture or test cases are much less frequent, and no relationships to code
are documented. The maintenance of these relationships is neglected more often than not.

4.3 Used Requirements Engineering Method
For the used requirements engineering method we distinguished standard methods from non-
standard ones, and also identified the type of the method. Tab. 21 lists the interview data.

Tab. 21: Requirements Engineering Method Used

Project 4.3.1
Standard
method

4.3.2
Which standard method OR
description of in-house method

4.3.3
Type of
method

NET1 a)
b)

No
Yes

(but experience with similar studies)
Jacobson OOSE

OO

INS1 No adaptation of method used in different project in the
same company

OO

SALES a)
b)
c)

Yes
Yes
Yes

OMT, StP as supporting tool OO

MED a)
b)
c)

No
No
No

Isotec (in-house method) OO

NET2 Yes EER + incremental prototyping Data
PUB1 a)

b)
No
No

Based on Jacobson Use Case modelling (OOSE).
Notation based on OMT, now UML

OO

INS2 a)
b)

No Based on Jacobson Use Case modelling and SERM
(derivative of SA)

 Functional/
 Data

DEV No OO
PUB2 Yes Jacobson OOSE OO
BANK1 Yes Jacobson Use Cases and OMT OO
BANK2 No OO
BANK3 a)

b)
No
No

OO

Only one project does not use an object-oriented method. Five of the projects apply a variant
of Jacobson’s use case approach. As reported in [Weidenhaupt et al., 1998] this approach has
been adapted to the project specifics.

4.4 Scenario Lifecycle
Tab. 22 and Tab. 23 summarise the interview data about scenario creation, usage, mainte-
nance, change and quality control and the supporting tools.

40 GI Working Group “Scenario-based Requirements Engineering”

As expected, scenarios are often created based on interviews (INS1, PUB1, INS2, PUB2,
BANK3), on-site observation (PUB2, PUB1, BANK3) or on workshops (INS1, SALES)
together with users and domain experts. For project DEV the scenarios were developed solely
by the software engineers, since they coincide with the domain experts. In four projects
(MED, NET2, BANK1, BANK2) the users were not involved with the first draft of the
scenarios, but in three of them scenarios were reviewed by the users. In that case the source of
information were informal requirements specification, a user interface prototype or an existing
system specification which had to be reworked. Project MED used the prototype as discussion
focus with the user and scenarios only as documentation. The usage data listed in Tab. 22 is
quite diverse, sometimes emphasising the relationships to other artefacts as described in the
process pictures of Div. 4.1 and sometimes putting emphasis on the purpose as described in
Div. 3.1.

Tab. 22: Creation and Usage of Scenarios

Project 4.4.1
Creation

4.4.2
Usage

NET1 a)
b)

! Brainstorming in team
! Documentation according to

guidelines
! Reviews with additional domain

expert

Used for top level design of the MS.
Used for system function specification
and analysis object model.

INS1 Business processes developed based
on
! interviews
! workshops (for critical issues only)

 Used for documenting the new business
processes, for definition of object model
and definition of dialogs.

 SALES a)

b)

c)

Business process derivation from old
system and workshops with domain
experts for new processes.
Extracted and detailed from business
processes.
Created while designing and coding the
prototype.

Used for documenting the new business
processes and for derivation of use
cases.
Used for describing system functions.

Used for design decisions of the
prototype.

MED ! Creation of informal scripts from
project definition.

! Reviews and refinement of scripts.
! Creation of class model using CRC

cards.
! Development of UI prototype.
! Development of use case

descriptions describing (prototype)
UI dialogues.

! Informal scripts used to derive CRC
cards.

! CRC cards are used to derive class
model.

! Informal scripts and CRC used to
validate prototype (and indirectly the
class model).

! Use case descriptions used to docu-
ment system from user view by
describing individual UI dialogues

 NET2 Use cases created by developers after
discussing parts of the prototype
generated from the EER data model
with the customers.

! Use cases mainly used to document
deviations from generated
functionality.

! Means of communication.
! Basis for the implementation of non

standard functionality.

GI Working Group “Scenario-based Requirements Engineering” 41

Project 4.4.1
Creation

4.4.2
Usage

 PUB1 ! Potential use cases identified by
developers from personal domain
knowledge.

! Interviews with the subject matter
experts

! Information collection at the
workplace.

! Discussion of most likely sample
threads through a use case.

! Developers elaborate the
information retrieved into a use
case document.

 Use case model lays the foundation for all
later phases. Project guideline explicitly
states that requirements not covered by
the use cases modelled will not be
considered in the later phases. The
guideline document describes a method
how to derive a ”resource/ responsibility”
model from the use case model

 Scenarios are mainly used for validating
the use case descriptions.

 INS2 Development based on existing
business process model:
! Restructuring ~100 workflows of

existing model to 27 potential use
cases.

! Interviews with domain experts.
! Development of use case

descriptions and 4-6 scenarios of
most likely threads.

! One to two review cycles.

 Use cases and scenarios used as starting
point for developing functional and data
models (i.e. in a McMenamin/Palmer
inspired fashion the scenarios were trans-
formed into physical DFD and ER models
and then consolidated to essential
models).

 DEV Developers are domain experts "
elicitation phase is short and informal
! Development of requi. catalogues.
! Creation of scenarios by developer

during design.
! Validation of scenarios in team

reviews.

 Scenarios used to communicate between
developers, argue about design decisions
and validate dialog sequences.

PUB2 ! Interviews, on-site observation,
present know-how/knowledge and
analysis of existing system used to
determine requirements.

! Creation of scenarios/use cases.
! Validation & refinement of scenarios

during several review cycles.
! Stakeholders agree to a definitive

final version (" requ. spec.).

 Scenarios used to create the OO model.

 BANK1 ! Developers formulate first version of
use cases.

! Use cases discussed with the
domain experts.

 Use cases used to communicate
requirements between domain experts
and developers, served as a basis for the
object model and for UI development.

BANK2 ! SW developers create use cases
! Use cases are reviewed by domain

experts

 Use cases serve as contract between
bank and SW company.

 BANK3 No explicit methods or guidelines
! Observations, interviews (open

questions)
! Scenarios written by developers,

supported by a domain expert in the
team

! Validation by author-critic-cycles

! Based on scenarios and first visions,
the developers create an evolutionary
prototype. Thereby gained
knowledge leads to enhanced
visions, a new prototype is developed
and this process is carried out
iteratively

! Validation of prototype with users
(usability lab)

42 GI Working Group “Scenario-based Requirements Engineering”

As indicated by Tab. 23, scenarios suffer from the same maintenance problems as other
requirements documents: typically, only one version is kept and it is not updated with changes
due to design or implementation considerations. Only, the very large project PUB1, has estab-
lished a library of use cases for reuse (distinguishing public and preliminary use cases) as well
as a formal policy for change. The most prevalent quality assurance technique are reviews.
These are mainly informal. Again, only the big project PUB1 has established a special quality
assurance group. The use of templates for scenario description is another way of establishing
some consistency throughout the documentation.

Tab. 23: Maintenance, Change Control and Quality Control of Scenarios

 Project 4.4.3
Maintenance and change control

 4.4.4
Quality control

 NET1 Different versions kept Reviews
 INS1 None. Reviews by customers
 SALES No versions; managed as part of the

overall project documents; tool support
(StP)

 Only as part of the overall documentation

 MED No systematic change management (not
desired); Basic document versioning as
provided by Word; Use of Word
templates.

 Reviews by domain experts in workshops

 NET2 None. ! Reviews
! Use case descriptions have to follow

a pre-defined template
PUB1 Reuse encouraged, special team

responsible for maintaining a library of all
published and preliminary use cases.
Formal policy for publishing use cases
and negotiating changes in use cases
defined

Project guideline defines the formal struc-
ture of use case descriptions. Word tem-
plates ensure a uniform appearance of all
documents produced. Use cases
reviewed by the subject matter experts
(interviewee) and by communication
partners in the 16 states (Use cases
consistent to different legal conditions or
work procedure). Quality assurance
group ensures formal adherence of use
cases to guidelines (spot checks).

INS2 None. Reviews by domain experts;
No further quality mechanisms or policy.

DEV Maintenance of scenarios is up to
developer. Use cases are not kept up to
date to reflect the last changes in design
or implementation.

Informal reviews in the development team
only.

PUB2 Document version control; use cases are
not versioned.
No tracing
Scenarios are not maintained, changes to
design and code are not incorporated in
scenarios.

Reviews, inspections.
Quality handbook defining formal proce-
dures. Use of templates, check list.

BANK1 None. Direct feedback by domain experts
through reviews. Use of templates.

BANK2 None. Reviews by domain experts, close feed-
back loops. Use of templates.

BANK3 No formal maintenance, no change
control. Document versioning by last two
digits in file names. Release management
is being introduced.

Quality management system does not
exist. Validation by author-critic-cycles,
prototypes and tests in usability lab.

GI Working Group “Scenario-based Requirements Engineering” 43

4.5 Tools used
We distinguished six different kinds of tools: word processor, graphics processor, CASE tool,
hypertext tool, configuration and management tool and GUI builder. Tab. 24 – Tab. 26 show
the corresponding data.

Tab. 24: Graphics and Word Processor Used

4.5.1. Word processor 4.5.2. Graphics processorProject
editing manage-

ment
checking trans-

formation
editing manage-

ment
checking trans-

formation

NET1 a)

b)

+
MS Word

+
MS Word

–

–

–

–

–

–

+
MSPower-

point
+

MSPower
point

–

–

–

–

–

–

INS1 +
MS Word

– – – +
Visio

– – –

SALES a)

b)
c)

+

+
+

–

–
–

–

–
–

–

–
–

+
Visio

–
–

–

–
–

–

–
–

–

–
–

MED a)

b)

c)

+
MS Word

+
MS Word

+
MS Word

O
MS Word

O
MS Word

O
MS Word

–

–

–

–

–

–

+
MS Word

+
MS Word

+
MS Word

–

–

–

–

–

–

–

–

–

 NET2 +
MS Word

O
MS Word

– – – – – –

PUB1 a)

 b)

+
MS Word

+
MS Word

+
MS Word

+
MS Word

–

–

–

–

–

–

–

–

–

–

–

–

INS2 a)

 b)

+
MS Word

+
MS Word

O
MS Word

O
MS Word

–

–

–

–

–

–

–

–

–

–

–

–

 DEV +
MS Word

O O – – – – –

PUB2 +
MS Word

+
MS Word

O
MS Word

– O
Visio

– – –

 BANK1 +
AmiPro

– – – O
Visio

– – –

BANK2 +
MS Word

O
MS Word

– – – – – –

BANK3 a)

 b)

+
MS Word

+
MS Word

+
MS Word

+
MS Word

–

–

–

–

+

+
CorelDraw
Rat. ROSE

–

–

–

–

–

–

44 GI Working Group “Scenario-based Requirements Engineering”

Tab. 25: CASE Tools and Hypertext Tools Used
4.5.3 CASE tool 4.5.4 Hypertext toolProject
editing manage-

ment
checking trans-

formation
editing manage-

ment
checking trans-

formation
NET1 a)

b)
–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

INS1 +
Rat.

Rose43

–
–

–
–

–
–

–
–

–
–

–
–

–
–

SALES a)
b)

c)

–
+

StP
+

StP

–
+

StP
+

StP

–
+

StP
+

StP

–
–

–

–
–

–

–
–

–

–
–

–

–
–

–

MED a)
b)
c)

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

 NET2 +
EER

modelling
tool

(propriet.)

– – – – – – –

PUB1 a)

 b)

+
Paradigm

Plus 44

+
Paradigm

Plus 45

+
Paradigm

Plus
+

Paradigm
Plus

–

–

O
Paradigm

Plus
O

Paradigm
Plus

–

–

–

–

–

–

–

–

INS2 a)
 b)

+
+

O
O

O
O

O
O

–
–

–
–

–
–

–
–

 DEV – – – – – – – –
PUB2 – – – – – – – –
 BANK1 +

Visual Age
C++

– – – – – – –

BANK2 – – – – – – – –
BANK3 a)

 b)
–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

43 for editing object models
44 Rational Rose currently evaluated
45 Rational Rose currently evaluated (Fussnoten zusammenfassen)

GI Working Group “Scenario-based Requirements Engineering” 45

Tab. 26: Configuration and Management Tool or GUI Builder Used
4.5.5
C&V management tool

4.5.6
(G)UI builder

Project

editing manage-
ment

checking trans-
formation

editing manage-
ment

checking trans-
formation

NET1 a)

b)

O
file system

O
file system

–

–

–

–

–

–

–

–

–

–

–

–

–

–

INS1 O
RCS

– – – – – – –

SALES a)
b)
c)

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

–
–
–

MED a)
b)
c)

–
–
–

–
–
–

–
–
–

–
–
–

–
–
O

Visual
Basic

–
–
–

–
–
–

–
–
–

 NET2 – + – – +
UI

prototype
generator
(propriet.)

– O
UI

prototype
generator
(propriet.)

+
UI

prototype
generator
(propriet.)

PUB1 a)
 b)

?
?

?
?

–
–

–
–

–
–

–
–

–
–

–
–

INS2 a)
 b)

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

 DEV – – – – – – – –
PUB2 – O – – – – – –
 BANK1 – – – – – – – –
BANK2 – – – – O

Visual
Builder

– – –

BANK3 a)
 b)

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

From the tables it is obvious, that little support for graphics is used, that CASE-tools mostly
only support editing and that almost no configuration management of scenarios was done.

4.6 Summary and Findings
Facets of the scenarios process can be characterised as follows:

! Scenarios are almost exclusively applied in the early phases of software development:
They are used to develop requirements, system specification, prototypes and object mod-
els. Sometimes they refer to the existing system, but future scenarios prevail.

! Scenario usage is as diverse as the process of requirements capture in general: Some-
times they are part of the very first stage of context understanding and description
(including the existing system), often they constitute the system specification. There is no
standard sequence of the development of prototypes, system specification and scenarios.
Each can be input to or derivation of the development of the others. It is an important is-
sue for further research whether the often exemplary nature of scenarios is adequate to
their use as major constituent of the system specification

! For scenario creation, a whole variety of inputs exists: This depends on the artefacts
developed before scenario creation. With one exception the scenarios were the main focus
of negotiation with the users and domain experts.

46 GI Working Group “Scenario-based Requirements Engineering”

! Scenario maintenance and quality control shows no difference to requirements
documents in general: Mostly only one version is kept, which is not updated systemati-
cally. Reviews are informal.

! No specific tools are used.

4.7 Scenario Usage Highlights
In this subsection we describe for each project process aspects which are particularly interest-
ing.

4.7.1 Project NET1
Project NET1 used visionary scenarios to understand the problem domain as well as use cases
for definition of the system functionality. The latter caused no problem, since the use cases
mostly dealt with one input and one output. Use cases were also related to the object model. A
major difficulty encountered was that use cases do not allow to describe invariants.

4.7.2 Project INS1
Project INS1 mainly aimed at delivering a requirement specification consisting of an object
model and dialogue definitions. Scenarios were used to understand and fix the business
process to be supported by the system. The detailed interaction between system and the user
was not studied. The project reports that the customers at first did not like to spend time on
defining the business processes because they seemed too little related to the requirement
specification. However, it forced the customers to agree on the business processes without
reference to the software functionality. That way the often reported blend of political and
business specific issues with technical issues was avoided. Since the system is now imple-
mented in-house, no data is available whether the defined functionality really fulfils the cus-
tomers’ needs.

4.7.3 Project SALES
Project SALES is the only one using scenarios for describing communication between design
objects. In particular, event traces as supported by the tool SoftwarethroughPictures are devel-
oped. These are helpful to document design options, but the tool does not support relation-
ships to other artefacts. This project also used scenarios for context and interaction descrip-
tion. The main purpose was to understand and document the context and interaction. Due to
the organisation of the company, interaction between users and developers is not emphasised.
By using scenarios for three different purposes a whole lot of documentation was created,
which is difficult to keep consistent. In particular, it is an open issue how to check consistency
between different kinds of scenarios, between scenarios and prototypes or object models. This
project used scenarios as the only means to define system functionality. The basic reason was
that the functional model supported by the tool did not seem adequate. It is an interesting issue
for further research, how scenarios relate to more traditional function models like data flow
diagrams.

4.7.4 Project MED
The most interesting observation in this project was how different scenario techniques were
used in conjunction for both eliciting and validating the class model. First, informal scenarios
of sample system usages and CRC cards were progressively used to populate the class model.
When the prototype was built for validating the class model, the role of these early artefacts
changed in that they acted now as a “guideline” how to use the prototype for validation.

GI Working Group “Scenario-based Requirements Engineering” 47

4.7.5 Project NET2
After having made bad experiences in attempting to talk directly with the customer about the
abstract EER data model, scenarios in the form of prototype usage situations were introduced
as a successful means for validating the data model. Nevertheless, it turned out that it is hard
to elicit scenarios (sample system usage, test cases) from customers if they have only a very
vague impression of the desired functionality. Starting with an abstract data model, an opera-
tional prototype derived from this data model quickly became the central medium for commu-
nication with the customer. First the prototype provided a view on the data model for valida-
tion which was understandable by the customer, and secondly, it was much easier for the cus-
tomers to envision new concrete system functionality through the prototype. Such enhance-
ments of the standard functionality of the prototype were documented in the form of use cases.

4.7.6 Project PUB1
In PUB1 the terms use case and business process were used interchangeably (but considered at
a fine-granular level). Use case modelling is seen as a problem understanding activity to make
the developers familiar with the business processes to be supported by the future system. The
process definition of PUB1 was well defined and due to its scale adapted for specific project
purposes (e.g., distribution of customers, differences in current practices depending on loca-
tion etc.). Special features of the process were its interview based generation technique, its
reviewing and quality assurance procedures, and its systematic reuse of use cases.

4.7.7 Project INS2
A peculiarity of this project was the generation of use cases based on the reuse of workflows
identified in a failed petrinet-based approach. Illustrated by the small number of resulting use
cases (27), it turned out that the use cases were far more abstract than the earlier defined petri-
net-based workflows (more than 100). For each use case five instance-level scenarios repre-
senting typical threads through the use case are described. After checking the scenarios against
the use cases with domain experts Data Flow Diagrams using the classical techniques from
McMenamin and Palmer were derived.

4.7.8 DEV
Most surprising and unique to this project is its use of scenarios as a means not to capture
requirements, but to document design decisions and to serve as a help to better communicate
these decisions among developers. Scenarios are used because of their suitability to structure
complicated dialog sequences. It is the only CASE tool development project in this survey and
as such developers are domain experts and may be future users of the tool themselves.

4.7.9 PUB2
As this is the only project in this survey developing a product for market, it is interesting that -
even though the project does not have an explicit customer - nevertheless use cases were used
to capture functionality. Scenarios were created from interviews with potential future
procurers, on-site observations and know-how from an existing system and were validated
with potential future users.

4.7.10 BANK1
In this project a model of current and future business processes, i.e. an analysis of the applica-
tion domain, already existed. This model is represented in Event-driven Process Chains
(EPK). These EPKs define the context of the development process and support the develop-

48 GI Working Group “Scenario-based Requirements Engineering”

ment team in understanding system requirements. Use cases then, have been acquired to
model the user interactions with the (concrete) system.

4.7.11 BANK2
The system requirements are stated in a set of use cases, that were acquired in several work-
shops with domain experts. The use cases have been altered and refined and new use cases
have been added until the system functionality has been sufficiently specified/documented.
Then, the developed use cases became the core of the contract between the clients and the
software company.

4.7.12 BANK3
Interesting in this project are the two kinds of scenarios used: First, scenarios were utilised to
help developers understand the application domain, capture business processes and to describe
the current state. Based on these scenarios enhanced visions were developed and in an itera-
tive process by use of prototypes these visions were refined. Thus scenarios of the second kind
(visions) were used to capture the desired state serving as the specification of the system.

GI Working Group “Scenario-based Requirements Engineering” 49

5 Benefits, Problems, Needs, and Future Plans
In this section we describe the benefits, problems, needs and future plans related to scenario
usage that the interviewees encountered during the course of their projects. All this informa-
tion is based on explicit statements by the interviewees and therefore represent their subjective
perception. In evaluating their answers we recognised and extracted several common factors
mentioned in many interviews and arranged them in a table. The listed benefits, problems, and
needs were supplemented (esp. the benefits-table) with information gained about the objec-
tives for using scenarios (cf. section 3) in the visited projects.

Tab. 27: Benefits

Project

fo
r c

om
m

un
ica

tio
n

an
d

di
sc

us
sio

n
wi

th
 c

us
to

m
er

re
fle

ct
 u

se
rs

 p
oi

nt
of

 v
ie

w,
 u

se
r i

s
in

vo
lve

d

tra
ns

fe
r,

un
de

r-
st

an
d

do
m

ai
n

kn
ow

le
dg

e

un
de

rs
ta

nd
 a

nd
do

cu
m

en
t b

us
i-

ne
ss

 p
ro

ce
ss

do
cu

m
en

t u
nd

er
-

st
an

di
ng

 o
f f

ut
ur

e
sy

st
em

do
cu

m
en

t/
st

ru
c-

tu
re

 re
qu

ire
m

en
ts further benefits

NET1 + + + + + to write down vague ideas
to describe changes
(functionality)

INS1 + 46 +

SALES + helpful for maintenance and
reengineering

MED + + + + 47 complementary to prototypes

NET2 + + basis for validating data model
less effort in creating specs and
more comprehensible specs

PUB1 + +

INS2 + + + basis for DFD & EER data
model

DEV - document and communicate de-
sign decisions;
structure, validate and
harmonise complicated
dialogue sequences;
focus on essential behaviour;
alternatives can be appended to
normal flows

PUB2 + + o o

BANK1 + + +

BANK2 + + +

BANK3 + + + + + scenarios allow rapidly and suc-
cessfully designing prototypes

46 basis for discussion
47 requirements were early validated

50 GI Working Group “Scenario-based Requirements Engineering”

5.1 Benefits
In this division, we elicited information about the benefits gained from using scenarios.
Because several similar benefits were mentioned in various interviews we categorised them
into a set of six classes. The following table displays the benefits from scenario use, repre-
senting each class as one column. Further benefits that are special to single projects are listed
in the rightmost column.

8 of the 12 projects benefited from the ability of scenarios to transfer domain knowledge from
domain experts to developers and to help the developers understand it. The involvement of the
user/ the client achieved by scenario usage has been mentioned to be an advantage in 6
projects, as was the ability to document and help understand business processes. The other
three benefits apply to 4 or 5 projects, i.e. the support of scenarios in communication and dis-
cussion between developers and customers, their ability to document and structure system
requirements, and their role in documenting the developers’ understanding of the future sys-
tem.

None of the listed advantages was mentioned for the project DEV. This project uses scenarios
during the design phase and thus gains from scenarios through their ability to document and
communicate design decisions and to represent internal and external behaviour.

Besides the described benefits several projects facilitate scenarios for individual purposes, e.g.
to easily derive data models. Two projects mentioned the relationship between scenarios and
prototypes, esp. their complementary character as an advantage --- a point that is also docu-
mented in [Weidenhaupt et al., 1998].

5.2 Problems
Tab. 28 describes the problems that arose during the development and use of scenarios. Each
problem is connected with the wish (or the need) to overcome this problem by some means.
Again, similar problems and needs were mentioned for several projects, so that a tabular rep-
resentation seems appropriate to display which projects have which problems in common.
Further problems and needs, unique for single projects are listed in the two rightmost col-
umns.

The common problems listed in the table are:

! At what level granularity should scenarios be formulated?

! How should/could scenarios be structured?

! How can the completeness of the set of scenarios be determined?

! How can consistency between scenarios and other models be achieved/guaranteed?

! How can the (large) set of (scenario) documents be managed?

! How can traceability be ensured/ handled? (The notion of traceability in this table is rather
broad, it embraces the traceability of models back to the acquired scenarios as well as the
traceability of changes (and their rational) during the development process.)

! How to cope with overlapping of scenarios?

GI Working Group “Scenario-based Requirements Engineering” 51

Tab. 28: Problems and Need

Project

gr
an

ul
ar

ity

ho
w

to
 s

tru
ct

ur
e

sc
en

ar
io

s

co
m

pl
et

en
es

s
of

sc
en

ar
io

s

co
ns

ist
en

cy
 w

ith
ot

he
r m

od
el

s

m
an

ag
em

en
t

of
 s

ce
na

rio
do

cu
m

en
ts

tra
ce

ab
ilit

y

ov
er

la
pp

in
g

sc
en

ar
io

s

further problems further needs

NET1 +48 + + + invariants cannot be
formulated

INS1 + use case did not refer
to software system

requirements were
not clear many
reviews

tool for editing
structured text and
images

SALES + +49 implementation was
not performed in oo-
fashion

MED +50 +51 +

NET2 + + + customer had to be
convinced of scenario
use

mapping of a
scenario to global
architecture

systematic generation
of test cases

PUB1 +52 + + (geographically)
distributed teams

INS2 + + + rework because of
usage oriented
decomposition of
functionality

how to determine
effects of changes

DEV o - use cases should be
used in a broader field
of RE

PUB2 - - o o + GUI and user manual
were not developed in
parallel with
scenarios, thus no
synergies

support in parallel
development of GUI

BANK1 no process model,
only a huge set of
documents

need of a process
model and a tool for it

BANK2 +

BANK3 + o developers partly
ignored scenarios

glossary of terms

48 guidelines needed for how to write scenarios
49 flexible CASE tool needed
50 esp. when using scenarios as test cases
51 tool for scenario management and traceability needed
52 huge number of scenarios

52 GI Working Group “Scenario-based Requirements Engineering”

The main problem mentioned in 8 of 12 projects is the management of scenarios as docu-
ments. Developers need flexible tools that help manage the set of scenarios, esp. in large proj-
ects. Another problem, mentioned as relevant for 5 of 12 projects, is the traceability of sce-
narios.

Closely related to the management of scenario documents and the traceability is a problem
mentioned four times: the consistency between the set of scenarios and other models. To sup-
port the process of checking two models for consistency (or guaranteeing consistency) both
have to be represented explicitly, thus a prerequisite for consistency is the management of
scenario documents.

The needs that follow from the mentioned problems ask for methods and tools to help manage
scenarios and their relationships to other models of the development process. Those methods
should include guidelines for writing scenarios and should enforce or at least support the rep-
resentation of traceability information, e.g. by explicitly relating scenarios to GUI prototypes
or test cases. Tools should allow the creation of textual and graphical documents. They should
be able to manage these documents and relate them to each other or to other models to achieve
traceability.

5.3 Future Plans
The final section of the survey’s taxonomy deals with the question if scenarios will be used in
future projects again.

Tab. 29: Future Plans

Project 5.3 Will scenarios be used again?

NET1 +

INS1 + (for the definition of business processes by the customer)

SALES

MED + (depending on customer and project

NET2 + (depending on customer and project)

PUB1 ? (due to the early stage of the project, no future plans have been made)

INS2 ? (due to the early stage of the project, no future plans have been made)

DEV + (for the design phase, maybe also in RE activities)

PUB2 +

BANK1 +

BANK2 O (probably, to elicit system requirements)

BANK3 + (a glossary would be included)

Tab. 29 shows the explicit answers of our interviewees to this question. Note that three inter-
view partners were not able to answer this question as their projects were in too early a stage.
None of the projects under consideration is going to definitely retract from using scenarios in
future projects. 8 of 12 project managers mentioned that they would continue using scenarios
in further projects, thus in these projects scenarios were found to be satisfactory for the needs

GI Working Group “Scenario-based Requirements Engineering” 53

in software development. One interviewee mentioned that they were planning on extending
scenario use in future projects (DEV). Other projects concretised the way scenarios will be fa-
cilitated in future projects, e.g. to define business processes by the customer (INS1) or to elicit
system requirements (BANK2). Some decisions for scenario usage in future projects included
improvements in relation to the current project, e.g. the use of a glossary (BANK3).

5.4 Summary and Findings
The benefits mainly mentioned refer to the ease understanding of scenarios for developers and
clients, and thus support the process of transferring knowledge to the developers. The role of
scenarios as a communication medium between the two parties is stressed in the list of bene-
fits. It is noticeable that all mentioned benefits apply to scenarios independently of their repre-
sentation medium or formalism. Even if scenarios were written down on paper or on a white
board, these benefits still hold, e.g. the role of scenarios in transferring knowledge, their abil-
ity of documenting several kinds of information, or their degree of user involvement.

The discovered problems mainly call for methods and tools to support and structure the proc-
ess of scenario development and usage, esp. the management of created documents. The inter-
viewees request an environment that is capable of managing scenarios as if they were paper
based and additionally offers a functionality that is only possible in electronic media, e.g. rep-
resent explicit relationships between scenarios and GUI prototypes.

Nevertheless, as the last table shows, even without flexible electronic support the utility “sce-
nario” can be successfully applied to real software development projects.

54 GI Working Group “Scenario-based Requirements Engineering”

GI Working Group “Scenario-based Requirements Engineering” 55

6 Summary
To conclude this report about the use of scenarios in industrial software development projects
we will summarise the findings of the previous chapters and present some observations about
the survey’s results and our interpretation of these findings.

We visited twelve projects in Germany and Switzerland that used scenarios in their software
engineering process in one way or another. Due to the small number and the contingent
selection of projects our survey is not representative in a statistical sense (doing a
representative study would have been beyond the resources and capabilities of our working
group), but as the results presented in this report neither radically deviate from another
recently published survey [Weidenhaupt et al., 1998] nor from our general experience in
software development, we think that we have taken a valid and fairly typical sample of
projects, giving a “snapshot” picture of scenario use in industry.

The visited projects differ in size, in their goals and in many other attributes, yet all of them
use scenarios, but in many different ways. This diversity, the breadth in scenario usage, is
probably the reason why we cannot derive many concise, general findings53. There is no
typical scenario project. Neither is there the one true process to create, maintain and use
scenarios. Thus, our findings are not spectacular. Nevertheless, we find them valuable: Some
of them surprised us, others confirmed “folklore” knowledge as well as our previous
experience with scenario use.

It is quite surprising to see the breadth, both in scope and purpose, of using scenarios, be it in
requirements engineering, in design or in validation and verification activities. The following
two sections present the commonalties we found in the different projects and some general
observations, respectively.

6.1 Commonalties of the visited projects
Even though the projects are quite different54, some interesting commonalties can be
identified.

First of all, the survey confirms the following statements about scenarios:

There is no single purpose for using scenarios. Nevertheless three different main objectives
for using scenarios can be derived from the data collected:

! Improving the communication between software engineers and customers,

! Understanding the application domain, a system vision and/or the system/software
requirements, and

! Writing requirements in a new, convenient way and thus documenting them.

These advantages of scenario-like descriptions are well known from literature and in this
survey they prove to be valid in practice. Although we could identify these three main
objectives, it is not possible to classify projects according to this classification scheme, since
in most projects scenarios fulfil several tasks and cover different objectives.

53 This diversity (of scenario use and in applying the scenario approach) is in itself an interesting finding
54 Only few facets hold for all projects in the survey and probably even less may be applied more generally to any
project, i.e. hold for most other industrial projects and for their use of scenarios as well.

56 GI Working Group “Scenario-based Requirements Engineering”

A second point common to most projects is the use of natural language as the dominant means
for representing scenarios, i.e. scenarios are episodic prose texts. Only few and weak
structuring mechanisms and hardly any abstractions are employed and formal approaches are
not used at all. From our data, it is not clear whether semiformal or formal methods and
appropriate abstraction techniques are not really needed in practice or whether the existing
approaches are insufficient or too complicated for practical use. We think the latter is true
which means that there is substantial need for research in this area.

A hint to why neither formal methods nor abstractions and structuring mechanisms are used is
given by the following observation that is related to the last (dominance of natural language
for representing scenarios) — tool support is lacking almost completely. Among the most
striking findings of this survey is the fact that hardly any special tools for scenario creation,
usage, and maintenance are used in the projects. Most projects use standard word processors
to create, update, and manage scenario documents, possibly supplemented by graphical
editors/drawing tools to create diagrams. Thus, a reason for not using more formal approaches
might be the inappropriateness or lack of utilities to support them.

Most of the projects under consideration use object-oriented methods together with scenarios.
This is not surprising as popular textbooks such as Jacobson et al. (1992) introduce object-
oriented development and scenarios together. Nevertheless, it is remarkable, because
scenarios themselves employ a functional approach and there is no straightforward way of
interconnecting scenarios and object/class models.

Further, we observed (and were surprised by the fact) that scenario management is not – yet?
– an issue in industry: In the projects of our survey, scenario management does not really
happen and it is not even perceived everywhere as a need.

6.2 Further general observations
Scenario-related literature suggests scenarios as an elicitation medium that leads to system
specifications or other more abstract models, i.e. they complement other requirements
specifications. Our experience with the visited projects is quite different. Scenarios here are
often used instead of, and not complementary to, a system specification. They replace more
traditional specifications. Moreover, because scenarios (as used in the projects under
consideration) model to a large extent only normal cases and no exceptional flows, only a
partial specification of the system is being created.

The sample projects differ in many respects. We could not identify a typical process of
creating, using, and maintaining scenarios. As stated above, in some projects scenarios replace
traditional requirements specification and other projects use scenarios to validate already
implemented system prototypes, etc.; thus the lack of a common process is not surprising.
Again the broadness of applicability of scenarios (and their actual usage) hinders general
conclusions.

Our data show that scenarios are used in projects of very different size. This gives evidence
for the usability of scenarios regardless of project size: The scenario approach is scaleable.
However, it should be noted that we have no data about the degree of usefulness depending on
project size.

Scenarios are seen in relation to many artefacts within the projects, but many relationships
only exist implicitly or are not maintained once established. The interviewees did realise the
potential of interconnecting scenarios with other artefacts in the software development
process, but they established neither means to support nor a process to maintain those
relationships. This might have been the case because supporting tools to accomplish this task

GI Working Group “Scenario-based Requirements Engineering” 57

are lacking and/or because the overhead of maintaining the relationships and keeping all
related documents up to date was too large to justify the additional work.

6.3 Conclusion
The survey revealed that scenarios are a flexible and broadly applicable approach. They are
used for many purposes and in different phases of the projects, e.g. during the first phases of
requirements elicitation and specification, as well as during the design phase and for
validation and verification purposes.

The collected data proves scenarios to be applicable in projects of varying size and located in
different domains, e.g. financial or communication.55

These implications are underpinned by the answers of the project managers to the question if
scenarios would be used again in future projects. Nine out of twelve would use them again in
new projects56 and none reported a failure with scenario usage. Thus, one can say that
scenarios are successfully employed in practice.

55 Since the majority of the visited projects develop information systems, no statements can be made about the
applicability of scenarios to other system types.
56 For the other three interviewees it was too early to make a statement about future use of scenarios.

58 GI Working Group “Scenario-based Requirements Engineering”

7 References

[Jacobson, 1995] I. Jacobson: The Use Case Construct in Object-Oriented Software
Engineering. In: J. Carroll (ed.): Scenario-Based Design: Envisioning Work and
Technology in System Development. John Wiley and Sons, New York, 1995. pp. 309-336

[Jacobson et al., 1995] I. Jacobson, M. Ericsson, and A. Jacobson. The Object Advantage:
Business Process Reengineering with Object Technology. ACM Press, Addison-Wesley,
1995.

[Maiden et al., 1998] N. Maiden, S. Minocha, K. Manning, and M. Ryan: CREWS-SAVRE:
Systematic Scenario Generation and Use. In: Proceedings 3rd International Conference on
Requirements Engineering. Colorado Springs, CO, USA, 1998. pp. 148-155

[Potts et al., 1994] C. Potts, K. Takahashi, and A. Anton: Inquiry-Based Requirements
Analysis. In: IEEE Software 11(2), March 1994. pp. 148-155

[Rolland et al., 1998] C. Rolland, C. Ben Achour, C. Cauvet, J. Ralyté, A. Sutcliffe, N.
Maiden, M. Jarke, P. Haumer, K. Pohl, E. Dubois, and P. Heymans: A Proposal for a
Scenario Classification Framework. To appear in: Requirements Engineering Journal,
1998.

[Weidenhaupt et al., 1998] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer: Scenario
Usage in System Development: Current Practice. In: IEEE Software 15(2), 1998. pp. 34-45

GI Working Group “Scenario-based Requirements Engineering” 59

Appendix

Classification Taxonomy

(Version 2.4)

60 GI Working Group “Scenario-based Requirements Engineering”

Survey Data

Project: <Real name or a letter code if confidential> TEXT

Company: <Real name or a letter code if confidential> TEXT

Studied by: <Names of AK members> TEXT

Classification taxonomy: <Version of class. tax. (2.4 in this case)> INTEGER

Classification version: <Version of the class. of the specific project> INTEGER

Date(s) of interview(s): DATE

Date of classification: DATE

1 Project properties
<short description of organization and project> : TEXT

1.1 Domain / Application
1.1.1 Application domain:

{communication, financial, sales, medical, public service,
 software development, public emergency service, ...}

1.1.2 System type:
{management system, information system, CASE tool, ... }

1.1.3 Importance of
.1 Static properties (data): VALUE
.2 Dynamic properties (behavior, function): VALUE

1.2 Overall project size
1.2.1 Duration elapsed: YEARS

1.2.2 Duration total: YEARS

1.2.3 Effort total: PERSON YEARS

1.3 Project type
1.3.1 Experience in application domain of

.1 Customer: VALUE

.2 Supplier: VALUE

1.3.2 Type of customer:
{ in-house, extern }

1.3.3 Type of resulting system:
{ individual, market, prototype, ... }

1.3.4 Type of development:
{ existing platform, replacement, new... }

1.3.5 Companies/Profit Centers involved
.1 Customer: INTEGER
.2 Supplier: INTEGER
.3 Consultant: INTEGER

GI Working Group “Scenario-based Requirements Engineering” 61

1.4 Stakeholder Experience

Stakeholder
experience in
domain: VALUE

A
End-user
repr.

B
Project
manager

C
Software
engineer

D
Consultant

E
Domain
expert

...

1.4.1
Software
development

1.4.2
Scenario use

...

1.5 Scenario Team Structure
1.5.1 Average size of team for treating a single scenario: INTEGER

1.5.2 Team structure for treating a single scenario
.1 Number of user representatives involved: INTEGER
.2 Number of project managers involved: INTEGER
.3 Number of software engineers involved: INTEGER
.4 Number of consultants involved: INTEGER
.5 Number of domain experts involved: INTEGER
< Remark: potentially same persons in different roles (e.g. user representative and domain expert)>

1.5.3 Total number of persons involved in scenario creation and use: INTEGER

62 GI Working Group “Scenario-based Requirements Engineering”

2. Scenario Contents and Presentation
2.1 Kinds of scenarios

<short description of the kinds of scenarios used in the project>: TEXT

2.2 Content
2.2.1 Main modeling focus

.1 Current situation (as is): VALUE

.2 Requirements of the software system (problem): VALUE

.3 Design of the software system (solution): VALUE

2.2.2 Scope
.1 Internal : VALUE
.2 Interaction: VALUE
.3 Context: VALUE

2.2.3 Abstraction
.1 Instance scenarios: VALUE
.2 Type scenarios: VALUE

2.2.4 Viewpoints
.1 Static: VALUE
.2 Dynamic: VALUE
.3 NFR: VALUE

2.2.5 Granularity
.1 Business process (describes relationships among tasks): VALUE
.2 Task (describes relationships among working steps): VALUE
.3 Working step (consists of elementary interactions): VALUE

2.2.6 Cases being modeled
.1 Normal cases: VALUE
.2 Exceptions: VALUE

2.3 Representation
2.3.1 Ontology (modeling primitives and constructs)

.1 Primitives: TEXT

.2 Structuring/abstraction constructs:
.1 Sequence: VALUE
.2 Iteration: VALUE
.3 Alternative: VALUE
.4 Composition: VALUE
.5 Overview diagram: VALUE
.6 Type abstraction: VALUE
.7 Hierarchical decomposition: VALUE

.3 Formality: { informal, semi-formal, formal }

2.3.2 Notation
.1 Free text: VALUE
.2 Structured text/ templates: VALUE
.3 Restricted text (e.g. programming languages): VALUE
.4 Table: VALUE
.5 Diagram: VALUE
.6 Image (screenshot, picture, video, ..): VALUE

2.3.3 Presentation
.1 Static: VALUE
.2 Interactive: VALUE
.3 Animated/simulated: VALUE

GI Working Group “Scenario-based Requirements Engineering” 63

2.4 Scenario figures
2.4.1 Total number of scenarios: INTEGER

2.4.2 Typical size of a single scenarios: PAGES A4

3. Goals of Scenario Use
3.1 Purpose

Subjects/activity: VALUE Understanding Elicitation Validation Documentation Mediation/
Negotiation

3.1.1 Appl. domain

 .A Business process

 .B Terminology

 .C Dom. Knowledge

3.1.2 System vision

3.1.3 Software artifacts

 .A Requirements

 .B Architecture

 .C Code

 .D Test cases

 .E Interface

3.1.4 Legal issues

 .A Contract

3.2 Main objective
<one short paragraph on ”why” using scenarios in the project>: TEXT

4. Process
4.1 Process Context

<short description of scenario process >: TEXT

4.2 Relationships of scenarios to artifacts
<list of artifacts can be extended by those mentioned by the interviewees>

Artifacts A Documented relationship:
 VALUE

B Maintained relationship:
 VALUE

4.2.1 Requirements
4.2.2 Architecture

4.2.3 Code

4.2.4 Test cases

4.2.5 Interface

4.2.6 Glossary/object model

64 GI Working Group “Scenario-based Requirements Engineering”

4.3 Used RE method
4.2.1 Standard method: BOOLEAN

4.2.2 Which standard method OR description of in-house method: TEXT

4.2.3 Type of method: { oo, functional, data, behavior, ... }

4.4 Scenario life cycle
4.3.1 Creation: TEXT

<activities, methods & guidelines used, roles of people involved>

4.3.2 Usage: TEXT
<activities, methods & guidelines used, roles of people involved>

4.3.3 Maintenance and change control: TEXT
<activities, methods & guidelines used, roles of people involved; in particular change
control procedures, change propagation from and to scenarios>

4.3.4 Quality control: TEXT
<activities, methods & guidelines used, roles of people involved; in particular
walkthroughs, inspections etc.>

4.4 Tools
<For each kind of tool the VALUE and possibly the name of the tool is given.>

Tool / purpose Editing Management Checking Transformation ...
VALUEWord

processor TEXT
Graphics
processor
CASE
tool
Hypertext
tool
C&V Mgt
tool
(G)UI Builder

5. Experiences and Expectations
5.1 Benefits: TEXT

5.2 Problems and Needs: TEXT

5.4 Future Plans: TEXT

