
Comparison of Requirements Hand-Off, Analysis, and Negotiation: Case Study

Samuel Fricker and Martin Glinz
Department of Informatics, University of Zurich, CH-8050 Zurich, Switzerland

Email: {fricker, glinz}@ifi.uzh.ch

Abstract—Companies in the software business often distribute
requirements engineering responsibilities over several roles.
Product management has overall product responsibility and
performs early-phase market-driven requirements
engineering. Product development implements the product and
performs late-phase solution-oriented requirements
engineering. Such shared responsibility provides advantages in
the utilization of specific knowledge, skills, and resources, but
leads to problems of mutual understanding and coordination.

Earlier research proposed a negotiation process,
handshaking with implementation proposals, that allows
product management and development to achieve agreed
requirements understanding. The process found acceptance in
industry, but the relative advantages compared with
traditional requirements hand-off and analysis had not been
understood yet. This paper fills this gap by describing a case of
measuring requirements and design volatility and an
architect’s requirements understanding during requirements
hand-off, analysis, and negotiation.

Keywords-requirements specification; requirements
communication; requirements negotiation; empirical study

I. INTRODUCTION

Software businesses often distribute requirements
engineering responsibilities over several roles [1]. Well
established is the collaboration of product management
concerned with market needs [2] and product development
concerned of the technological aspects of a product [3]. Such
shared responsibility provides advantages in the utilization of
specific knowledge, skills, and resources. However, it leads
to problems of mutual understanding and to coordination
needs between the two roles.

For a given product, product management is responsible
for early-phase requirements engineering [4]. Goal
structuring [5] is employed for continuous elicitation, triage,
analysis, and management of requirements that are used for
roadmapping and release planning of software products [6].
Product development is responsible for late-phase
requirements engineering of given product releases. It uses
software specifications techniques [7-9] to prescribe
structure, behavior, and desired properties of the solution that
is implemented by ensuing development projects.

The interdependencies between product management and
development require intertwining early-phase and late-phase
requirements engineering [10]. Requirements
communication based on requirements hand-off from
product management to development risks leading to
unsatisfactory results. It may be complemented with system
analysis [8] and with negotiation of implementation

proposals [11]. Implementation proposals are a form of
coarse-grained traceability between early- and late-phase
requirements. Handshaking, the combination of these
practices to establish a shared requirements understanding,
was successfully transferred to industry [12], without
understanding the practices’ relative advantages however.
This leaves questions unanswered regarding the value of
such added investment upfront of a development project.

The paper provides method selection support by
comparing the relative effect of requirements hand-off,
analysis, and negotiation on requirements and design
volatility and on a solution architect’s requirements
understanding. It describes a case in which these effects were
measured, facilitated by expressing early-phase requirements
with goal models, late-phase requirements with a solution-
oriented system specification, and traceability between these
requirements with implementation proposals. The case
showed that the three practices can be regarded as steps in a
win-win negotiation process. Hand-off corresponded to
product management positioning, analysis to product
development positioning, and negotiation to position
alignment. Omission of a practice would have led to delays,
system value, or acceptance problems.

Section II introduces traceability between early- and late-
phase requirements. Section III describes the planning,
section IV the operation, and section V the analysis and
discussion of the requirements communication case. Section
VI discusses the results. Section VII concludes.

II. EARLY- TO LATE-PHASE REQUIREMENTS TRACEABILITY

A formalization of early- and late-phase requirements
and traces is needed to measure the effects of requirements
hand-off, analysis, and negotiation on requirements and
design volatility and on requirements understanding in a
repeatable manner. The here employed approach for
documenting requirements and traces is a formalization of
the Handshaking method [11, 12]. A product manager is
expected in this formalization to expresses early-phase
requirements with the requirements abstraction model
(RAM) [5], a simple goal modeling paradigm employed in a
product requirements management. RAM ensures that
requirements are sufficiently atomized and that means and
ends are not confounded, hence allowing observing volatility
of comparable requirements. Development expresses late-
phase requirements with ADORA [8], a system specification
language that, in contrast to UML for example, ensures
specification consistency. Implementation proposals are
constructed by referring to RAM-based requirements and to
ADORA model fragments.

2010 18th IEEE International Requirements Engineering Conference

1090-705X/10 $26.00 © 2010 IEEE

DOI 10.1109/RE.2010.29

167

A. Requirements Abstraction Model

The requirements abstraction model (RAM) [5] is a
simple goal modeling paradigm that supports continuous
product requirements engineering by distinguishing four
requirements abstraction levels. It has successfully been used
in industry where it yielded all-over-the-board improvements
compared with unstructured requirements management [13].

Figure 1 shows an extract of the industrial RAM model
developed during the case described in Section IV, a license
management system. The requirements on higher abstraction
levels motivate requirements on the next-lower abstraction
level. The highest abstraction level relates to company
strategy, the lowest to product design. This traceability from
design to strategy ensures that product design supports the
achievement of company objectives.

Figure 1. RAM-based early-phase requirements.

RAM allows observing whether a product manager has
changed his interests and expectations by monitoring the
requirements placed at a given abstraction level. High
abstract levels capture interests, low levels expectations
towards development.

B. ADORA and Design Decisions

ADORA [8] is a hierarchical approach to object-oriented
modeling of a software system that integrates functional,
structural and behavioral aspects of the system into one
coherent model. Late-phase requirements are specified with
ADORA in terms of actors, objects, scenarios, and states.
ADORA allows such modeling with flexible degree of detail
for incrementally validating completeness, feasibility, and
acceptance of the system to be implemented. The decisions
captured in such an archetype model for the system to be
developed are subsumed by the term design in this paper.

Figure 2 shows a high-level ADORA model for the system
developed during the case described in section IV. A ‘license
manager’ was planned to be built that consisted of a ‘license
server’, a ‘sales server communication module’ connected to
a set of ‘customer’-operated ‘external sales servers’, a set of
‘customer support’-operated ‘thin clients’, a ‘product
communication module’ that communicated with ‘protected
products’, and a set of ‘Enterprise Resource Planning (ERP)
interfaces’ that communicated with ‘ERP systems’.

Figure 2. High-level system specification with ADORA.

ADORA allows a development team to document interests
in terms of planned product design. The specification further
supports analysis of advantages, limitations, risks, and
implementation effort of the specified system.

An ADORA model consists of a number of design
decisions [14-16] that correspond to requirements placed on
low RAM abstraction levels. Taxonomies of design decision
types characterize typical system specification concerns [17].
TABLE I summarizes the ADORA support for common
design decision types. TABLE II shows how the design from
Figure 2 can be expressed with design decisions.

TABLE I. MAPPING OF DESIGN DECISION TYPES TO ADORA CONCEPTS.

Existence
Functionality Scenario, State
Parts Object, Object Set, Element of Environment (Actor)
Data Signal, Annotation for Model Element
Structure
Relationships Nesting, Association, Scenario Relationships, State Transition
Architectural Style Annotation (Tag) for Set of Model Elements
Design Pattern Annotation (Tag) for Set of Model Elements
Properties
Design Rule Annotation (Tag) for Model Element
Technology Use Annotation (Tag) for Model Element
Texture
Interface Annotation (Tag) for Model Element
Metaphor Annotation (Tag) for Model Element

TABLE II. DESIGN FROM FIGURE 2 EXPRESSED WITH DESIGN DECISIONS.

Existence
Parts - LicenseManager, Sales Server, License Server, SalesServer Communication

Module, ThinClients, Product Communication Module, ERPInterfaces;
- Customer, Customer Support, Protected Product ERP System.

Structure
Rela-
tion-
ships

- License Server part of License Manager, ThinClient part of
LicenseManager, etc.;

- License Server connected to ThinClient, ThinClient connected to
Customer Support, etc.

ADORA models allow observing whether the
development team has changed its intentions. Changed
design decisions imply changed development intentions.

C. Implementation Proposals

Implementation proposals (IP) support requirements
communication by capturing tentative or decided agreements
between product management and development for given
negotiation themes [12]. An IP is created for a negotiation
theme and captures coarse-grained traceability between
relevant requirements and design. It can be enhanced by

168

documenting negotiation and planning concerns. IP are
negotiated one theme after the other until sufficient coverage
of requirements is achieved. This ultimately leads to win-win
decisions and a trusted customer–supplier relationship.

The following subsections discuss the IPs in terms of
their basic structure, negotiation support and other attributes.
Figures 3-5 show examples that are simplified versions of
the IPs created in the study described in section IV.

1) Basic Structure: IP document how given design
proposed by a development team contributes to given
requirements that are provided by a product manager.
Design decisions and requirements stand in a many-to-many
relationship to each other. One design decision can be
motivated by a number of requirements. One requirement
can be implemented by combinations of design decisions.

IP balance richness and flexibility for handling variants
by grouping requirement–design traces into themes. A theme
can be dedicated to an important part of the solution, to a
product feature, to a development increment, or to any other
concern that is meaningful to the communicating parties. The
theme is documented by the IP’s title.

Figure 3. Handling of UnlockKeys implementation proposal (simplified).

Figure 3 shows an IP for the theme ‘handling of unlock
keys’. It describes functionality, parts, and data that an
architect has proposed and relates that design to justifying
requirements provided by a product manager. The design
concerned the ‘thin clients’ introduced in Figure 2 that
interacted with the stakeholder ‘customer support’ within the
scenario ‘request unlock key’. Connected to the ‘thin clients’
was the ‘license server’ introduced in Figure 2 that contained
a ‘generator’ that then contained an ‘unlock key generator’
connected to a ‘database’. The ‘license server’ interacted
with a ‘protected product’ within a second scenario ‘request
unlock key’. The design fulfilled the requirements R013
‘product unlock key’, R023 ‘protect product with license
administrator’, and R035 ‘reverse unlock key computation’.

2) Negotiation Support: The first interpretation of
handed-off requirements is often not perfect. A proposed
solution may be based on wrong assumptions and have
unacceptable side effects.

The fewer requirements are handed-off to development,
the more assumptions need to be taken for justifying
proposed design. These assumptions state the conditions
under which the design is meaningful. Confirmed
assumptions may be turned into requirements.

The thinner the product manager’s understanding of
solution technologies and architecture is, the more difficult it
is for her to predict their impact on product utilization and
context. Solution concepts can provide surprising
advantages, disadvantages, and risks, hence need to be
discussed and agreed during the requirement negotiations.
Accepted impact may be turned into requirements.

Figure 4 shows an IP for the theme ‘thin client’ justified
with assumptions and impact considerations. The proposed
design concerned the previously mentioned ‘thin clients’ that
were connected to the ‘license server’ and interacted with
‘customer support’ within the scenario ‘request unlock key’.

Figure 4. Implementation proposal based on assumptions and impact.

An IP describes a preferred design and lists dismissed
designs with the reasons for their dismissal. Figure 5 shows
the IP ‘thin client’ that resulted from development discussing
the IP shown in Figure 4 with product management. The
preferred alternative was justified with the now discovered
requirement R059 ‘customizable interface’ that replaced the
assumptions and impact from Figure 4.

Figure 5. Implementation proposal with preferred and dismissed designs.

3) Other Attributes: Not only traceability, assumptions,
design impact, and alternatives need to be managed in
requirements communication, but also the communication
process itself, effort estimation, project planning, acceptance
testing, and integration of requirements communication into
other company-specific processes. IP support these concerns
with additional specific attributes [12].

IPs allow observing how requirements are aligned with
design. The coarse-grained traces indicate how far design
covers requirements and how far requirements cover design.
The more requirements are covered by agreed IPs the more
completely requirements understanding has been established.
The history of changes to the traces shows how requirements
understanding has changed.

169

III. REQUIREMENTS COMMUNCATION CASE: PLANNING

Adoption of good requirements communication practices
requires an understanding of the practices’ relative effects on
a solution architect’s requirements understanding. Good
understanding of requirements requires in addition that
requirements and design volatility have been stabilized. Case
study research [18] has been employed to explore the relative
effects of requirements hand-off, analysis, and negotiation on
these factors. This form of research provides rich insights
into how and why the practices have influenced requirements
understanding. The ultimate objective was to provide method
selection advice to practitioners confronted with
requirements communication.

The study answers the following research questions. Q1a:
How much does the presentation of requirements influence
design? Q1b: How much does the presentation of design
influence requirements? Q2: Are requirement–design traces
useful for measuring how much requirements are understood
by the requirements receiver? A lack of influence of
requirements on design (low Q1a) would imply that a
customer cannot push requirements to a supplier using
requirements hand-off. Unidirectional influence of
requirements on design (low Q1b and high Q1a) would
imply that hand-off based on unambiguous requirements
specification [19] followed by requirements and system
analysis suffices for successful requirements communication.
Reciprocal influence of requirements and design (high Q1b
and high Q1a) would imply that requirements negotiation is
critical for requirements communication. Affirmation of Q2
would encourage the use of traceability-based measurements,
rather than measurements of the requirements specification
[7], for managing requirements communication.

Q1 and Q2 are answered by studying the effect of the
treatments in the sequence described in TABLE III. This
sequence exposes the relative effect of requirements and
system analysis (PO2) to requirements hand-off (HO) and of
requirements negotiation (NE) to requirements and system
analysis (PO2). The sequence allows answering Q1 because
definition of requirements and design and their exposure to
the collaboration partner can be controlled. Q2 is answered
by comparing the evolving degree of agreed traceability
between requirements and design with the architect’s
subjective perception of requirements understanding.

TABLE III. CASE STUDY PHASES AND TREATMENTS.

Phase Treatment
1. Positioning 1 (PO1) Product manager (PM) prepares requirements
2. Hand-off (HO) PM hands requirements off to architect
3. Positioning 2 (PO2) Architect analyzes requirements and system
4. Negotiation (NE) Both negotiate requirements and design
5. Confirmation (CO) Both document negotiation results

The following data was collected along the process
described in TABLE III. Requirements and ADORA model
baselines were used to study the effects of the treatments on
requirements and design, hence to answer Q1b and Q1a.
Implementation proposal baselines and architect interviews
were used to understand the degree of the architect’s
requirements understanding, hence to answer Q2. Both

parties were interviewed after the study to understand their
stance towards the experienced case.

TABLE IV describes the measurements applied on the
collected data for answering the research questions. The
measurements are based on the concepts presented in section
II. Requirements volatility is measured on the RAM feature
level. Design volatility is measured in terms of ADORA
model elements and text annotations of these elements.
Traceability is measured by analyzing the implementation
proposals.

TABLE IV. MEASUREMENTS.

Measurement Scale Levels
Q1a: Degree of Influence of Requirements Presentation on Design
Design volatility in
given phase

Fraction of changed
design decisions

 0%: treatment without effect
100%: treatment dominant

Q1b: Degree of Influence of Design Presentation on Requirements
Requirements volatility
in given phase

Fraction of changed
requirements

0%: treatment without effect
100%: treatment dominant

Q2: Correlation of Traceability with Perceived Requirements Understanding
Architect’s perceived abi-
lity to develop accepted
solution (Exec-Ability)

Rating
0% - 100%

0%: no knowledge
60%: able to develop solution

100%: perfect understanding
Coverage of require-
ments by design (R-Cov)

Fraction of requirements
used to justify design

 0%: no coverage
100%: complete coverage

The study was performed with early-phase requirements
prepared for an industrial software development project. A
product manager and a solution architect followed the
process described in TABLE III. The product manager was a
practitioner with more than 20 years experience in a global
Fortune500 company in the power technologies domain. He
participated for improving his requirements communication
skills. He intended to develop the specified product. The
company used the requirements abstraction model to
structure product requirements and had a tradition in
modeling systems with graphical languages. The solution
architect was a student with ½ year software engineering
experience. He participated for learning about requirements
engineering and for receiving study credits. His grading
depended partially on the quality of solution design.

Participant selection followed the intensity and critical
case strategies. It ensures minimal common background and
full control of communication. It represents an extreme case
of imbalance of seniority. If Q1b is high for the chosen
solution architect, it is likely to be high for situations where
product management can less dominate.

The study started with a briefing about research
objectives and the requirements communication process. The
specific research questions Q1a, Q1b, and Q2 were not
communicated, however. The study was finalized by
debriefing the participants, analyzing collected data, and
validating the results with the study participants.

A. Threats to Validity

1) Construct Validity: The study design balances
different validity threats and gives measurement of
requirements and design evolution first priority. High
requirements atomicity and proper separation of abstraction
levels are facilitated by employing RAM. Design changes
are followed by monitoring changes in the ADORA models.

170

The use of ADORA further mitigates problems like
consistency of the system specification [8].

The study design reduces the likelihood that attempts of
persuading the product manager of a given solution conceal
lack of requirements understanding. An inexperienced
architect can’t easily manipulate an experienced product
manager. Hence, the study results that concern the effects of
design on requirements are defensive and likely to be
amplified with increased architect experience.

2) Conclusion Validity: Control of the process outlined
in TABLE III and of the communication between product
manager and architect is facilitated by working with a
student architect. This control eliminates confounding
effects that emerge from a shared background and contact
network between the parties and from communication other
than HO and NE. It also facilitates proper use of ADORA and
implementation proposals, contributing to data reliability.

Exec-Ability is a measure typically applied in industrial
practice for judging requirements understanding, but carries
the risk that measurements cannot be repeated with exactly
the same results. Interviews regarding the meaning of the
obtained values for the architect and the rationale for the
values given were used to increase measure reliability.

3) Internal Validity: A rich picture of the evolving
requirements understanding is provided by complementing
quantitative data with qualitative data about the behavior
and reflections of the product manager and the architect.
The qualitative data allows knowing the tactics employed
for achieving agreed requirements understanding, for
understanding the reasons for the study outcomes, and for
posing new questions that become apparent from the
increased understanding of requirements communication

4) External Validity: Measurability and control of the
study operations are traded off to some degree against
realism with respect to industrial practice. An inexperienced
architect cannot contribute deep product knowledge. Use of
the implementation proposal’s negotiation attributes
assumptions and impact requires such domain knowledge.
Hence, the study results that concern these attributes are
defensive and likely to be amplified in a full industrial
context, for example with increased architect experience.
Use of the basic requirements, design, and theme attributes
is not affected.

The study focuses on the technical content of
requirements and design and excludes budget and effort
negotiations. Scarce budget encourages deletion of low-value
requirements and corresponding implementation. Hence, the
study results that concern such requirements and design
changes are defensive and likely to be amplified.

Case studies generalize through models or theories that
are explored with rich data, and not statistically through a
high number of data points. The here presented case study
provides insights into evolving requirements, design, and
mutual understanding by making the process and changes
transparent, describing examples, and by reporting opinions
of the participants.

IV. REQUIREMENTS COMMUNCATION CASE: OPERATION

A. Positioning 1 (PO1)

The product manager prepared 51 requirements for a
license management system in a spreadsheet according to
RAM principles. Figure 1 shows some of these requirements.
The product manager collected, specified, and agreed the
requirements with stakeholders during ½ calendar-year with
approximately 1 person-month work effort. An experienced
requirements engineer ensured that the requirements
specification was of high quality.

Column R-Post-PO1 in TABLE V lists the distribution of
the 51 requirements over the RAM abstraction levels. The
requirements below the product level were linked with
contribution links to requirements on the next-higher
abstraction level. A glossary with 21 definitions and a
business process specification that described the interplay of
5 of the function-level requirements complemented the
requirements specification.

TABLE V. EVOLVING NUMBER OF REQUIREMENTS (*: REQUIREMENTS
AFFECTED BY LOWER-LEVEL REQUIREMENT CHANGES IN PHASE NE).

Abstraction Level
All Requirements

Requirements
Addressed by IPs

R-Post-
PO1

R-Post-
NE

IP-Post-
PO2

IP-Post-
NE

Product-Level:
Business goals

8 8 *6 *7

Feature-Level:
Product goals

16 30 5+*1 22+*2

Function-Level:
Usage of solution 23 41 4 30

Component-Level:
Ideas for solution design

4 7 0 4

Total 51 86 11 65

B. Hand-Off (HO)

The product manager handed the requirements over to
the architect. The product manager explained in a one-hour
meeting the purpose of the product, discussed the business
process and walked through all requirements. The architect
asked two questions. The meeting had an open and friendly
atmosphere, which was enabled by preceding informal
coffee-corner discussions.

The architect felt after the meeting that he started to grasp
the expectations towards the system, but that his level of
requirements understanding, in terms of his ability to
develop an acceptable product, was still very low (row HO in
TABLE VI). He felt that the meeting was too short to absorb
the amount of presented information. He was not able to
build a consistent mental picture of the system yet.

TABLE VI. ARCHITECT’S EFFORT AND PERCEIVED ABILITY TO EXECUTE.

Phase Invested Effort (hours) Perceived Ability to Execute
(Exec-Ability)

PO1 0h 0%
HO 1h 20%
PO2 64h 55%
NE 2h 65%
CO 4h 70%

171

C. Positioning 2 (PO2)

The architect specified the system intended to fulfill the
requirements by incrementally designing the solution with
the ADORA language and tool and by separately documenting
non-ADORA supported design decisions. He used object-
oriented design principles and regularly reviewed the
solution against requirements. The creators of ADORA
ensured mastery of the language. The resulting model
expressed the architect’s opinion of what should be built.
Figure 2 shows a high-level view of the model. Column
Post-PO2 (prepared) of TABLE VII lists the frequency of the
design decisions types he employed.

TABLE VII. EVOLUTION OF SYSTEM SPECIFICATION (*: NON-ADORA).

Type of
Design Decision

System Specification Implementation
proposals (IP)

Po
st

-P
O

2
pr

ep
ar

ed

Po
st

-P
O

2
ne

go
ti

at
ed

Po
st

-N
E

ne
go

ti
at

ed

IP
1

IP
2

IP
3

IP
4

Total number 447 126 161 33 34 47 66
Functionality Decisions
Scenarios 13 13 15 3 4 4 4
Scenario Relationships 2 2 2 0 2 0 0
States 82 0 0 0 0 0 0
State Transitions 114 0 0 0 0 0 0
Structure Decisions
Objects 20 16 17 6 6 10 13
Object Sets 1 1 3 1 1 0 0
Nestings 117 29 34 9 10 13 16
Associations 23 11 21 7 6 3 3
Actors 9 6 7 4 3 1 1

Architectural Style* 1 1 1 1 1 0 0
Data Decisions
Signals 18 0 0 0 0 0 0

Entities and Attributes* 34 34 34 0 0 11 23

Data Flow* 10 10 20 0 0 5 5
Property Decisions

Design Rules* 3 3 7 2 1 0 1

The architect prepared the ensuing negotiation phase with
four implementation proposals (columns IP1-IP4 in TABLE
VII) by following the structure described in section II.C. The
implementation proposal IP1 described the overview and
IP2, IP3, and IP4 one major part of the system. Figure 3
gives a representative example of such an implementation
proposal, which has been simplified for presentation and
confidentiality reasons. The implementation proposals
established traceability between requirements and design and
contained those design decisions that the architect believed
to be relevant for negotiating the solution with the product
manager. Column Post-PO2 (negotiated) in TABLE VII
shows how much of the overall system specification was
covered by the four implementation proposals. Column IP-
Post-PO2 in TABLE V shows how many of the requirements
were covered by the four implementation proposals.

PO2 lasted 17 weekdays and required 64 person-hours
effort (47% workload). The architect believed that he had
increased, but not reached a satisfactory level of
requirements understanding yet (row PO2 in TABLE VI). He

perceived the situation uncomfortable that many design
decisions were based on assumptions.

D. Negotiation (NE)

NE was performed in one 2-hour meeting between the
product manager and the architect. Again the meeting had an
open and friendly atmosphere. They reviewed the four
prepared implementation proposals. Figure 6 shows how rich
media and face-to-face contact were used for the
requirements and design negotiations. Implementation
proposal-describing slides, requirements printouts, and ad-
hoc drawings on paper were used to point to, criticize, and
modify design decisions and requirements. Physical
proximity was used to enhance spoken statements with body
language that expressed importance and certainty.

Figure 6. Negotiation meeting with rich media.

TABLE VIII. CHANGES FROM PRE- TO POST-NEGOTIATION POSITIONS.

Type of
Change

Number of
Require-

ments (#R)

Negotiated
Fraction of
Require-

ments (%R)

Number of
Design

Decisions
(#DD)

Negotiated
Fraction of

ADORA Model
(%DD)

Stable 51 100% 119 94%
Modified 0 0% 7 6%
Deleted 0 0% 0 0%
Added 35 68% 35 28%
Additionally
Covered by IPs 14 27% 0 0%

The discussions led to modifications and additions of the
proposed design (columns #DD and %DD in TABLE VIII
and column Post-NE negotiated in TABLE VII). Previously
unstated requirements (column R-Post-NE in TABLE V) and
lack of requirements understanding motivated these changes.
Clarifications also helped to link non-understood
requirements to the design (last row in columns #R and %R
in TABLE VIII). Column IP-Post-NE in TABLE V shows
the resulting total number of requirements addressed by
implementation proposals.

The architect perceived his requirements understanding
after the negotiation meeting just good enough to run a
project for implementing an acceptable solution (row NE in
TABLE VI). He got so confident because the product
manager accepted the majority of the proposed design.

E. Confirmation (CO)

The architect revised the implementation proposals and
documented the previously agreed requirements and design
changes.

172

CO lasted 5 calendar days and required ½ person-day
effort (17% workload). The revision of the implementation
proposals further increased the architect’s confidence in his
requirements understanding (row CO in TABLE VI).

F. Finalization

The product manager confirmed the study results. He was
satisfied with the experience. He continued to develop the
requirements by negotiating with two experienced teams
with license management technologies. Further adjustments
of the requirements reduced development cost and better
utilized the capabilities of the teams and of their solutions.

Also the architect confirmed the study results. He stated
that experience in the license management domain would
have enabled him to be more active during HO. The
implementation proposals helped him, however, to become a
useful discussion partner in NE. He valued the confirmation
he received from the product manager that the proposed
system satisfied the product manager’s intentions.

V. REQUIREMENTS COMMUNICATION CASE:
ANALYSIS AND INTERPRETATION

The presented case provides insights in the collaboration
of the product manager in the customer role and the architect
in the supplier role during requirements communication. It
describes the parties’ effort profiles, the reciprocal influence
of requirements and design knowledge (Q1a and Q1b), and
the effect of hand-off (HO), analysis (PO2), and negotiation
(NE) on the architect’s requirements understanding (Q2).

A. Effort and Collaboration Profile

Requirements communication was structured as a
negotiation process and attempted to minimize the
interaction between the negotiating parties. Figure 7 shows
the effort profile of the product manager and Figure 8 of the
architect. Less effort was devoted to NE than the 80%
suggested by negotiation literature [20], a result from
effective preparation or a consequence of the study design.

The product manager invested 96% of his effort and the
architect 90% to define their negotiation positions. The
product manager generated ideas, specified requirements,
and negotiated with stakeholders during PO1. The architect,
learned ADORA, consulted domain literature, and specified
the proposed system in PO2. The positioning was performed
independently and was necessary for successful negotiation.

Requirements communication necessitated only 3 hours
of direct interaction (HO and NE) and corresponded to
roughly 4% of the effort for each of the two roles. HO
established contact between the product manager and the
architect and launched PO2. The architect got to know the
product manager’s negotiation style and a feeling for how to
communicate with him. The trust-enabling activities of
having a coffee together and sharing personal background
preceded the meeting. NE allowed sharing and aligning
requirements and design knowledge. The face-to-face
situation and the use of rich media permitted ad-hoc
documentation and pointing to concepts under discussion.
This increased the precision of the discussions and ultimately
negotiation efficiency and the exploration of alternatives.

Increased interaction between the two parties is likely to
shorten the requirements communication effort. Early
feedback during PO1 would have allowed the product
manager to focus and tailor the requirements specification
for the specific architect. Architect experience and early
feedback from the product manager would have shortened
PO2. More interaction, however, necessitates geographic
proximity and great availability for meetings, factors which
often are only given in small-scale collocated development.

Figure 7. Effect of treatments on product manager’s concerns.

Figure 8. Effect of treatments on architect’s concerns.

B. Effect of Design Presentation on Requirements

Design knowledge triggered requirement changes. The
51 requirements produced during PO1 accounted for only
59% of all requirement changes. The 35 requirements added
as a result of NE accounted for 41%. Effort negotiations
would have introduced even more requirement changes due
to deletion of low-priority requirements. Figure 7 shows that
the 41% change was achieved with just 2.4% of effort.

Only 36% of the system specification was justified by the
requirements before NE. States, state transitions, nesting of
states, and signals were not used to specify the
implementation proposals. These design decision types made
up for almost all disregarded design. Hence, some decision
types were perceived to be meaningful for negotiation and
others redundant or not useful.

The many requirements changes during NE show that the
product manager understood design by discussing
implementation proposals. Such requirements change was
not possible during HO because he did not understand how
the requirements impacted the solution.

96.4%

1.2% 2.4%

59%

41%

28.2%
36.0%

36.0%

0%

20%

40%

60%

80%

100%

PO1 HO PO2 NE CO
Effort Profile Product Manager

Fraction of Requirement Changes (Feature‐Level)

Coverage of System Specification (D‐Cov)

1.4%

90.1%

2.8% 5.6%

75%

25%31%

76% 76%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

PO1 HO PO2 NE CO
Effort Profile Architect

Fraction of Design Changes

Coverage of Feature‐level Requirements (R‐Cov)

173

Knowledge of the intended solution triggered
requirements elaboration and changed the product manager’s
position. Added requirements provided rationale for why the
initially proposed solution contradicted with his intentions
and motivated proposed design modifications. The product
manager’s post-study activities show that he tried to utilize
knowledge and capabilities of development teams to improve
requirements and consequently the product. He then did not
only add requirements to justify changes to the solution, but
also modified and deleted requirements to exploit strengths
and to account for weaknesses of a possible solution.

C. Effect of Requirements Presentation on Design

Changes in requirements understanding caused design
changes. The system design defined during PO2 made use of
31% of the feature-level requirements and accounted for
75% of all design changes (Figure 8). NE led to 76%
requirements coverage and to 25% design changes. More
known requirements were traced and new ones identified.

Even-though the architect was able to produce a large
fraction of acceptable design, he only understood a minority
of the requirements. The not understood requirements
affected a minor, but significant part of the design. NE
significantly increased the share of understood requirements,
led to previously unstated requirements, and allowed to
correct design. The added requirements and rapid feedback
on design proposals triggered the necessary design changes.

The many design changes during NE also show that the
architect had acquired sufficient knowledge in the license
management domain to be receptive for additional input,
hence to change his position. This was not possible during
HO when he had no understanding of the domain, hence
could not absorb the large amount of presented information.

The design did not explicitly trace 24% of the
requirements after NE. The traces could have been implicit,
the requirements candidates for being deleted, or design
changes still pending. Requirements communication may not
have been concluded, but would have continued in later
project phases to provide the assistance needed to correct
errors as early as possible. The effect of this uncertainty on a
development project needs to be further investigated.

D. Towards Measuring Understanding

Two variables measured evolving requirements
understanding: perceived ability to develop an acceptable
product (Exec-Ability) and percentage of known feature-
level requirements traced by proposed design (R-Cov). Exec-
Ability is the architect’s subjective confidence for
developing an accepted product. R-Cov is opinion-
independent and derived from comparing implementation
proposals with product requirements. The measures correlate
but react differently to PO1, HO, PO2, NE, and CO. Figure 9
shows how the variables evolve.

PO1: Both variables indicated 0% before HO. The
architect did neither know the product domain nor the
product manager’s intentions. No design existed.

HO: Exec-Ability reacted to HO. R-Cov did not change.
The architect’s perceived understanding increased because
he had received the requirements. Still no design existed.

PO2: Exec-Ability’s slope was similar to the slope of R-
Cov during PO2. Exec-Ability was more optimistic than R-
Cov, however. The architect judged at the end of PO2 that he
understood the requirements and design almost well enough
to successfully run a development project. At the same time
product design explicitly considered only 31% of the known
feature-level requirements. The architect’s perceived
understanding was higher than documentation suggested.

NE: R-Cov was very sensitive to NE. Exec-Ability made
a small, but important change. 76% of the requirements,
including the new discovered ones, justified the design after
NE. The architect was confident to be able to develop an
accepted but not perfect product. A now started development
project would have been likely to be satisfactory.

CO: Exec-Ability was sensitive to CO. The architect’s
confidence increased again slightly, motivated by a feeling
of being confirmed in the thinking he had at the end of NE.
R-Cov did not change. No traces were added.

R-Cov appears to be a useful opinion-independent
measure of requirements understanding. R-Cov was more
pessimistic than Exec-Ability before requirements were
aligned with design as a result of NE and more optimistic
after NE. The change from pessimistic to optimistic
correlated with the small but important change of perceived
requirements understanding from just not good-enough to
slightly more than good-enough. R-Cov is easily computed
using project data without requiring human judgment. The
indicator should be further validated, however, by studying
its relationship with important success measurements such as
software acceptance and project planning accuracy [12].

Figure 9. Exec-Ability (60%: good-enough) and R-Cov evolution.

VI. DISCUSSION

A. Contributions

The study compared the relative effect of requirements
hand-off, analysis, and negotiation between an experienced
product manager and an inexperienced architect.
Requirements hand-off followed the product manager’s
positioning and launched analysis. It enabled independent
analysis work, but led to clearly insufficient requirements
understanding by the architect. Systems analysis supported
the architect’s positioning. It led to almost good-enough
requirements understanding, with only 31% of the

0%

20%

40%

60%

80%

100%

0%

60%

0 10 20 30 40 50 60 70 80
Effort Architect (hours)

Perceived Ability to Execute (Exec‐Ability)

Coverage of Feature‐level Requirements (R‐Cov)

174

requirements used for justifying the solution, however.
Negotiation of implementation proposals aligned the two
positions so that the right design fulfilled the right
requirements. The presentation of design triggered a large
number of requirements changes. Some of these changes
were employed to motivate significant changes to the
proposed solution. Requirements understanding was
perceived good-enough only after this negotiation.

The study further explored the evolution of the indicator
R-Cov, the fraction of requirements traced by design, for
measuring evolving requirements understanding. R-Cov was
pessimistic compared with the architect’s subjective ability
to successfully implement a solution before requirements
negotiation and optimistic afterwards. R-Cov values were
very sensitive to requirements negotiation, where
requirements and design were aligned, and correlated with
the small, but important change in the architect’s subjective
ability to implement the system from just not good-enough to
slightly more than good-enough. This encourages
investigating whether calibrated R-Cov threshold values may
be used to assure requirements communication quality.

B. Related Work

1) Traceability: Traceability reduces the discontinuity
of information between requirements and system
specifications that hampers the ability of stakeholders to
communicate about a system. The effort for specifying and
maintaining traces between single requirements and design
decisions [21, 22] is often prohibitive [23], however. Fine-
grained traceability links would have been too narrow in the
described case for requirements analysis and exploring
design alternatives. Traceability between just specification
documents, then again, would have been too wide and
would have discouraged exploration of alternatives.

Implementation proposals apply the idea of model
connectors for transforming requirements to architecture [24]
to requirements communication. The here presented study
has shown that implementation proposals, a coarse-grained
form of traceability, can be employed to document
agreement between a product manager and an architect for
given negotiation themes. The themes referred to parts of the
solution and encouraged the product manager and architect
to express and adjust their positions in terms of adjusted
design and requirements until an agreement was found.

2) Co-Evolution of Requirements and Design: Delivery
of accepted software requires intertwining requirements and
design [10]. Goal-oriented reasoning can provide
constructive guidance for architects in their design tasks
[25]. Rules can be used to ensure consistency of formal
specification across abstraction levels [26]. There here
presented work considers the alignment of requirements and
design not as a formal-analytical, but as a collaborative
activity for scalability purposes. It has shown that alignment
can be achieved with a negotiation process that involves
proposal, change and agreement on traces between
requirements and design. The negotiation led to shared
requirements understanding, utilized the knowledge of the
involved parties, and forced early requirements changes.

Empirical research showed that requirements
identification is intimately related to solution generation and
detailing [27]. The most important problems of designers
related to understanding significance and relationships of
requirements and to remembering requirements for use
during design. The significant increase of R-Cov, the degree
of requirements utilization for justifying solution design, in
the here presented study has shown that seeking feedback on
design proposals from a stakeholder helps mitigating these
problems. The negotiations, further, enabled the product
manager to discover previously unstated, but relevant
requirements that affected design, adding empirical evidence
to earlier work that stated that requirements negotiations can
be employed to surface tacit knowledge [28].

3) Quality Assurance: A Only measured quality can be
managed. Requirements specification completeness has
been proposed earlier to measure requirements
understanding [29], but has been challenged because it is
subjective, hard to measure, and easily forgeable [30]. The
here presented study has evaluated R-Cov, a measurement
originally defined for implementation control [31], for
measuring requirements understanding. R-Cov appears to be
more trustworthy than specification completeness because it
can be measured in a repeatable manner and can not be
manipulated by the customer or supplier alone if R-Cov is
based on agreed implementation proposals. In addition, the
small transition of perceived ability to execute from less
than to slightly more than sufficient correlated with a sharp
increase of the R-Cov value from 31% to 76%. A threshold
calibrated with historical values can indicate good-enough
requirements understanding, hence save costly surprises
down the development road.

C. Limitations

The study was performed in a semi-industrial
environment. This setup provided advantages in the control
and measurement of the situation, but may create questions
in the transferability of the results to industrial practice [32].
Key differences between the chosen setup and industry are
the architect’s experience, the enforced isolation of the
communicating parties, the enforced use of ADORA, and
attention on proper measurement of R-Cov.

Greater architect experience encourages persuading the
product manager of a solution, hence is likely to amplify the
already strong effect of design on requirements. Budget and
implementation effort negotiations lead to similar
amplification. Unwillingness to cooperate reduces the effect.

Intensive collaboration between product managers and
architects increases the number of opportunities for
knowledge and information exchange, hence is likely to
reduce the communication effort observed in the study.

Design is often formulated pragmatically, and not with a
single predetermined specification language. Hence,
implementation proposals will vary more and better expose
issues to be negotiated, hence will even more effectively lead
to mutual understanding than indicated by the study. Such
variability, however, will not increase general-purpose
understandability of the specifications.

175

The study did not consider the effect of the reached
requirements understanding on the development project.
Earlier research indicates, however, that similar R-Cov
values may lead to predictable development projects and
accepted solutions [12]. The study also did not consider the
product manager’s understanding of product requirements,
which clearly evolved through the exposure of the design,
hence limiting the understanding of why presentation of
design influences requirements.

VII. CONCLUSIONS

The paper has evaluated the relative effect of
requirements hand-off, analysis, and negotiation on
requirements and design volatility and on requirements
understanding. Confrontation of the architect with
requirements led to design changes, confrontation of the
product manager with solution design to requirement
changes. Negotiation of implementation proposals aligned
the two positions so that the right design fulfilled the right
requirements. The study gave insights into the effort profile
of the communication partners and proposed and evaluated
an indicator, R-Cov, to measure evolving requirements
understanding and to manage requirements communication
quality. The results support selection of requirements
communication practices to ease challenges in the
collaboration between marketing and development [1].

Future research should generalize the discovered
knowledge by evaluating the proposed measurements in a
substantial number of possibly more complex settings and
corroborate R-Cov as a requirements communication quality
indicator. Future research should also address the
understanding of requirements communication by evaluating
the product manager’s evolving requirements understanding.

REFERENCES
[1] A. Griffin, and J. Hauser, “Integrating R&D and Marketing: A

Review and Analysis of the Literature,” Journal of Product
Innovation Management, vol. 13, pp. 191-215, 1996.

[2] C. Ebert, “Software Product Management,” Crosstalk, vol. 22, no. 1,
pp. 15-19, 2009.

[3] I. Sommerville, Software Engineering, 8th ed.: Addison Wesley,
2006.

[4] B. Regnell, P. Beremark, and O. Eklundh, “A Market-Driven
Requirements Engineering Process: Results from an Industrial
Process Improvement Programme,” Requirements Engineering, vol.
3, pp. 121-129, 1998.

[5] T. Gorschek, and C. Wohlin, “Requirements Abstraction Model,”
Requirements Engineering, vol. 11, no. 1, pp. 79-101, 2006.

[6] I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal,
and L. Bijlsma, “Towards a Reference Framework for Software
Product Management,” in 14th IEEE International Requirements
Engineering Conference (RE'06), Minneapolis, 2006.

[7] IEEE 830-1998, IEEE Recommended Practice for Software
Requirements Specifications, 1998.

[8] M. Glinz, S. Berner, and S. Joos, “Object-Oriented Modeling with
ADORA,” Information Systems, vol. 27, pp. pp.425-444, 2002.

[9] OMG, Unified Modeling Language (UML) Version 2.1.2, Object
Management Group, 2007.

[10] B. Nuseibeh, “Weaving Together Requirements and Architectures,”
Computer, vol. 34, no. 3, pp. pp.115-117, 2001.

[11] S. Fricker, T. Gorschek, and P. Myllyperkiö, “Handshaking between
Software Projects and Stakeholders Using Implementation

Proposals,” in Intl. Working Conference on Requirements
Engineering: Foundation for Software Quality (RefsQ'07),
Trondheim, Norway, 2007.

[12] S. Fricker, T. Gorschek, C. Byman, and A. Schmidle, “Handshaking
with Implementation Proposals: Negotiating Requirements
Understanding,” IEEE Software, vol. 27, no. 2, pp. 72-80, 2010.

[13] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “Industry
Evaluation of the Requirements Abstraction Model,” Requirements
Engineering, vol. 12, pp. 163-190, 2007.

[14] J. Tyree, and A. Akerman, “Architecture Decisions: Demystifying
Architecture,” IEEE Software, no. March/April 2005, pp. pp.19-26,
2005.

[15] P. Kruchten, P. Lago, and H. van Vliet, “Building Up and Reasoning
About Architectural Knowledge,” in 2nd Intl. Conference on the
Quality of Software Architectures (QoSA 2006), Västerås, Sweden,
2006.

[16] J. S. van der Ven, A. Jansen, J. Nijhuis, and J. Bosch, "Design
Decisions: the Bridge between Rationale and Architecture,"
Rationale Management in Software Engineering, A. Dutoit, R.
McCall, I. Mistrík, B. Paech, eds.: Springer, 2006.

[17] P. Kruchten, “An Ontology of Architectural Design Decisions in
Software Intensive Systems,” in 2nd Groningen Workshop on
Software Variability, 2004.

[18] R. Yin, Case Study Research: Design and Methods, 3rd ed.: SAGE
Publications, 2003.

[19] C. Rupp, “Requirements and Psychology,” IEEE Software, vol. 19,
no. 3, pp. 16-18, 2000.

[20] L. Thompson, The Mind and Heart of the Negotiator, 3rd ed.:
Prentice Hall, 2004.

[21] J. Dick, “Design Traceability,” IEEE Software, vol. 22, no. 6, pp.
14-16, 2005.

[22] A. Dardenne, S. Fickas, and A. van Lamsweerde, “Goal-Directed
Requirements Acquisition,” Science of Computer Programming, vol.
20, no. 1, pp. pp.3-50, 1991.

[23] O. Gotel, and A. Finkelstein, “An Analysis of the Requirements
Traceability Problem,” in 1st International Conference on
Requirements Engineering (ICRE'94), 1994.

[24] N. Medvidovic, P. Grünbacher, A. Egyed, and B. Boehm, “Bridging
Models Across the Software Lifecycle,” The Journal of Systems and
Software, vol. 68, no. 3, pp. 199-215, 2003.

[25] A. Van Lamsweerde, "From System Goals to Software
Architecture," Formal Methods for Software Architectures, M.
Bernardo and P. Inverardi, eds.: Springer, 2003.

[26] E. Sikora, M. Daun, and K. Pohl, “Supporting the Consistent
Specification of Scenarios across Multiple Abstraction Levels,” in
16th International Working Conference on Requirements
Engineering: Foundation for Software Quality (RefsQ 2010), Essen,
Germany, 2010.

[27] A. Chakrabarti, S. Morgenstern, and H. Knaab, “Identification and
Application of Requirements and Their Impact on the Design
Process: A Protocol Study,” Research in Engineering Design, vol.
15, no. 1, pp. 22-39, 2004.

[28] P. Grünbacher, and R. Briggs, “Surfacing Tacit Knowledge in
Requirements Negotiation: Experiences using EasyWinWin,” in
34th Hawaii International Conference on System Sciences, 2001.

[29] K. Pohl, “The Three Dimensions of Requirements Engineering,”
Information Systems, vol. 19, no. 3, pp. 243-258, 1994.

[30] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh,
G. Kincaid, G. Ledeboer, P. Reynolds, P. Sitaram, A. Ta, and M.
Theofanos, “Identifying and Measuring Quality in a Software
Requirements Specification,” in 1st International Software Metrics
Symposium, 1993.

[31] R. Costello, and D.-B. Liu, “Metrics for Requirements Engineering,”
Journal of Systems and Software, vol. 29, pp. 39-63, 1995.

[32] M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects -
A Comparative Study of Students and Professionals in Lead-Time
Impact Assessment,” Empirical Software Engineering, vol. 5, pp.
201-214, 2000.

176

