Modeling and Managing Tacit Product Line Requirements Knowledge

Reinhard Stoiber, Martin Glinz

Department of Informatics, University of Zurich, Switzerland
{stoiber | glinz} @ifi.uzh.ch

Abstract

The success of very large product lines systems with
globally distributed stakeholders often builds significantly
on the implicit knowledge of individuals. Final products
are typically built by integrating numerous detailed specifi-
cations of subsystems. But how exactly all these parts can
and need to be integrated to build valid end products is often
left unspecified and to numerous discussions, reviews and
the expertise of senior architects and product managers.

Building a high-level product line requirements model
that explicitly and formally specifies common and vari-
able requirements, their precise integration semantics and
the constraints for selecting variable features helps signif-
icantly to manage this crucial and often tacit requirements
knowledge. Based on an industrial exemplar we motivate
and demonstrate such an approach and discuss our early
findings regarding knowledge and rationale management in
product line requirements engineering.

1. Introduction

The complexity and functionality of software in today’s
software product line environments is growing faster than
ever. Requirements engineering is the key activity in speci-
fying product lines on the one hand abstract enough, so that
negotiations with customers can be performed on them, and
on the other hand detailed enough, so that they provide a
sound basis for implementing solutions.

In current product line requirements practice and re-
search, most approaches build upon many different, sep-
arate requirements models and documents. Working with
multiple separate diagrams and/or documents for describing
the requirements requires frequent, time-consuming switch-
ing of views and context. Additionally, for product lines,
an orthogonal specification of the variability is needed as
well, using e.g. feature trees [8] [1], OVM [11], or deci-
sion modeling [13]. Specifying the variability orthogonally
introduces the need for traceability between variants in the

orthogonal variability model and the corresponding require-
ments that specify these variants.

For software product lines, which typically are long-
living systems, explicit documentation of design rationale
is beneficial, especially in maintenance and evolution [2].
Further, past research has shown that capturing and sharing
other tacit knowledge about requirements is also beneficial
for reuse, traceability, evolution and collaboration in dis-
tributed projects [12] [18].

In our ongoing research, we are developing a new prod-
uct line requirements engineering approach, where we ex-
plore a combination of aspect-oriented requirements mod-
eling with table-based boolean decision modeling [14]. The
latter is a significant enhancement over our previous work
[15]. We are developing an experimental implementation of
this approach based on ADORA, an integrated requirements
and architecture modeling language and tool that allows
modeling a requirements specification with one single and
coherent graphical model [5]. Modularizing the variable re-
quirements with aspects makes it possible to integrate the
variability specification also into that single model, thus
not requiring any additional traceability or mappings. With
table-based boolean decision modeling we further specify
the details of the variability and variability constraints.

In this paper we introduce an industrial product line ex-
emplar and motivate the need for a more explicit product
line commonality and variability specification, which previ-
ously was typically implicit and subject to various meetings
and requirements reviews when new systems and products
were built. With modeling a high-level product line require-
ments specification we show how our approach could ex-
plicitly model such product line requirements knowledge.
This knowledge included identifying common and vary-
ing requirements, integration semantics of how and where
variable requirements can be integrated with other artifacts,
necessary constraints for building valid systems, and the
documentation of rationale for variability and constraints.

In section 2 we introduce the industrial background and
motivate. Section 3 describes the product line exemplar and
how we modeled it. In section 4 we discuss in detail how

Proceedings of the Second International Workshop on Managing Requirements Knowledge (MaRK’09), Atlanta, USA, September 2009.

©2009 IEEE.

such tacit product line knowledge could be expressed ex-
plicitly with our modeling. Section 5 critically discusses
potential threats and limitations and section 6 concludes.

2. Industrial Background and Motivation

This work has been motivated by challenges identified at
a global Fortune-500 company with a tradition in develop-
ing industrial software-intensive systems and development
sites spread globally. The systems the company produces
are typically built on a three-level composition hierarchy:
systems are built of products, and products are built of com-
ponents. Components are systematically developed to be
reusable. Products are assembled with using as many of the
existing components as possible and already appear on price
lists of the company. And systems, finally, are built from
implementing products in order to provide services and ap-
plications. The development units typically organize cata-
logues of available engineering artifacts as spreadsheets at
the different levels of the composition hierarchy and main-
tain portfolios of components, products and/or systems they
offer.

As we have identified in a previous study [4], this com-
position hierarchy in the company does not consist of a
company-wide product line variability specification. Thus,
constraints between artifacts were negotiated as part of the
requirements reviewing activities and hence much of the un-
derstanding of commonality, variability and variability in-
terdependencies between products was in fact tacit and dis-
tributed in the organization. When a new system was built,
the high-level conceptual design, i.e. which feature combi-
nation the system could finally implement, or, respectively,
which combination of components and products, was sub-
ject to numerous reviews, personal knowledge and expertise
of many individuals, down- and upwards the composition
hierarchy.

We have studied one of the company’s product lines in
detail and, together with two domain experts, built a high-
level product line requirements specification with our ap-
proach.

3. An Industrial Product Line Exemplar

The product line we modeled specifies industrial au-
tomation devices at the product and components level, with
globally distributed stakeholders involved.

Figure 1 shows the graphical requirements specification
and the decision and constraints tables of this product line.
The graphical notation is briefly explained in the figure leg-
end. The commonality is modeled with abstract objects or
object sets and the variable requirements are modularized

!anonymized upon request by the organization

with aspect containers and join relationships. Every vari-
able join relationship is annotated with a decision item and
the details and constraints of these decision items are mod-
eled in the decision and constraints tables.

Common to all configurations of the product line are a set
of automation devices, each consisting of an event logger
and a persistence mechanism, and a configuration tool. The
automation devices can send events to each other and a field
engineer can manage the client- and server-side subscrip-
tions for these events. There are three different options for
persistency, one of them being mandatory: no persistency,
a ring buffer, or a file system. The automation devices can
be of two types: supervisory unit or intelligent field device.
For a supervisory unit, the field engineer can configure the
system topology and for an intelligent field device, he can
start up the device. The intelligent field device is config-
ureable by the configuration tool. For that, one or more of
the three available communication standards A, B, and C!
needs to be supported both at server- and client-side. The
configuration tool can download field device settings and
also knows all device type data. An intelligent field device
can also have an optional web server for remote monitoring.
Deploying a web interface requires both the communication
standard A installed and either a file system or a ring buffer
persistency.

The tables in the lower half of Figure 1 specify the details
of the product line variability. The first table, the decision
table, builds upon the decision items that are defined for all
join relationships of variability. Based on these decisions
the products can be built by weaving the selected variability
into the commonality, using a slightly extended form of the
weaving semantics defined in [9]. The second and the third
table below formally specify the variability constraints: first
the variation points which are defined with minimum and
maximum number of decisions required to be true, and then
the global constraints, which are defined with boolean al-
gebra, typically with logical implications. The ADORA tool
is also capable of visualizing these constraints graphically
in the requirements model [16]. For example, the solid line
connecting the join relationship arrows labeled D1 and D2
in Figure 1 visualizes that these two decision items consti-
tute variation point VP1. Further, the ADORA tool is also
capable of analyzing the constraints and checking the satis-
fiability of all currently interesting decision configurations
using a boolean satisfiability (SAT) solving tool. The result-
ing constraint propagations are listed in the columns ifTrue
and ifFalse in the decision table.

For every decision item we also document a description
or derivation question, which helps analysts derive products
from the product line. Further, we document design ratio-
nale for all decision items and constraints, thus describing
the reasons why the variants and constraints were designed

Communication Standard A Communication Standard B Communication Standard C Legend:
4 it Std A Std A Std B StdB Std C Std C D Object Set
ransmi Server Client Server Client Server Client
device D5 -
tat =/ AY _ —
stalus > ~.D3 T U Object
AN N ~ S e
Web D3 Nt — e = 0 VP2 ~~__,7 D5
Server Intelligent Fiécg:)evice I«/ - \\ = O Acor
- Configqalion Too}_/
write Communication A -
settings Server Communication download _~~ Association
Client settings
start-up Settings o Do — D State
i i field device Server evice manage el
Supervisory Unit Type Data Engineer
configure /1 Transition
system .
D2 before
topolo! - VP1 -
P T /Q\ " 7 File System Scenario
- Autdmation Device File g Buff
System D1 before ™~ P ing Bufter)
Topology 1 manage 2 manage Ring ./ Scenario
and State subscriptions subscriptions D_8 _4 Buffer Connection
Manager event towards server fromclients ./ — |[[L-® W ___---—7
\/ | - Aspect
manage No Persistency Container
device and X ---_b No Joi
d subscriptions VP3 - A oin
P 7 Relationship
Decision Table
ID Description / Derivation Question Design Rationale Constraints ifTrue ifFalse | Decision
D1 | Should the automation device be a supervisory unit? The automation device platform is used for cost and quality reasons. | VP1 -D2 D2 undecided
D2 | Should the automation device be an intelligent field device? | The automation device platform is used for cost and quality reasons. | VP1 -D1 D1 -D6 | undecided
D3 | Should the intelligent field device support communic. std. A? | Standard A is the newest and most performant one. VP2, C1 -D6 undecided
D4 | Should the intelligent field device support communic. std. B? |Is a must in some countries. VP2 undecided
D5 | Should the intelligent field device support communic. std. C? | C is still required by many legacy systems. VP2 undecided
D6 | Should the intelligent field device a web interface? The web interface allows access over the world wide web. C1 undecided
D7 |Is there no memory in the automation device? Might be interesting for non-critical systems. VP3 -D8 -D9 -D6 undecided
D8 |Is there a ring buffer in the automation device? Ring buffers are cheap to implement and fast. VP3, C1 -D7 -D9 undecided
D9 |Is there a file system in the automation device? File system offer huge amounts of storage space. VP3, C1 -D7 -D8 undecided
Variation Points Table
ID Description / Rationale minCard | maxCard | Decisions Involved
VP1 | An automation device always can be either a supervisory unit or an intelligend field device. 1 1 D1, D2
VP2 [There are three different communication standards to configure a field device: standard A, B, and C. At least one must be chosen. 1 3 D3, D4, D5
VP3 | There exist three different persistency types: no persistency, a ring buffer, or a file system. One of these must be selected. 1 1 D7, D8, D9
Constraints Table
| 1D Description / Rationale Antecedent Operator Cc juent
[C1 | Aweb interface always requires the communication standard A and a local persistency installed (either ring buffer or FS). D6 => D3 and (D8 or D9) |

Figure 1. The automation device product line specified in the AborA language.

like this. This helps better understand the model and is ben-
eficial when evolving a product line, particularly in dynamic
and multi-stakeholder environments.

4. How Tacit Product Line Variability Knowl-
edge Became Explicit

Modeling product line requirements with our approach
allows the explicit specification of information which can-
not be expressed explicitly in other modeling approaches
and thus would remain tacit knowledge. Subsequently, we
will pinpoint these novel concepts (in bold) and discuss how
we modeled this previously tacit requirements knowledge.

Modeling common and variable requirements in a
single diagram, with aspects. This is a capability that is
unique to compositional (additive) approaches to product
line engineering. It allows modeling the commonality with
a simple conventional model, which only shows the really

common requirements (i.e. in contrast to subtractive prod-
uct line approaches where models of commonality and vari-
ability are mingled). The same is true for variable features:
every variant is modeled as an aspect, showing only the re-
quirements it may add to the system specification. With as-
pects, commonality and variants can be shown in the same
model. The aspectual join relationships also show explicitly
and precisely where and how a variability can impact other
variants or the commonality.

This is particularly useful for managing distributed de-
velopment that involves different teams. Typically, for ev-
ery single product feature a dedicated development team is
responsible. Every team needs to know how exactly and
where their artifacts will be integrated with other system ar-
tifacts. As this information is modeled explicitly in our ap-
proach, development teams working on single components
or features can easily comprehend which technical interde-
pendencies might occur with other system artifacts and with
which other development units they may need to coordinate

their development.

Our aspect modeling approach is equally useful for
maintaining and evolving the product line. On a fine-
grained development level (components, or below) artifacts
are often reused in various parts of the system. In order to
maintain and evolve such artifacts, one needs to know all
places where they are used. Without modeling such rela-
tionships explicitly, development teams for different lower-
level features often don’t really know where and how their
components actually are and will be applied. Neither do
they know whether their artifacts were integrated seam-
lessly, or whether there wasn’t an ideal fit and workarounds
had to be built. Explicitly modeling features and how they
integrate is thus crucial for evolving high-quality compo-
nents and products.

Explicit and visual decisions and constraints, in the
graphic requirements model. Product managers and solu-
tion architects working on more coarse-grained levels fur-
ther need to know which combinations of integrating vari-
able requirements are legal to form a working product or
system. Therefore constraints that are required for techni-
cal feasibility of the products must be formulated and also
other, non-technical constraints, such as, e.g., long-term
portfolio or marketing strategies, should be formulated ex-
plicitly. With our table-based decision and constraints mod-
eling we provide the necessary framework to model con-
straints formally and explicitly. In our industrial case, a
lot of knowledge about feature interdependencies and other
constraints that previously was distributed in the organiza-
tion could now be made explicit this way.

Rationale descriptions for variability and constraints.
An explicit documentation of rationale is beneficial, also for
variability in software product lines [17]. Figure 1 shows
how our approach supports the documentation of rationale
for every variability decision item and constraint. Thus, en-
gineers can easily document why the variability and its con-
straints were designed in a specific way in a product line.
Such rationale is especially helpful when it comes to main-
tenance, optimization and evolution of the product line. The
separate column for rationale information encourages re-
quirements engineers to document also their design ratio-
nale knowledge explicitly.

5. Critical Discussion

For our argumentation in this paper we have essentially
assumed that all stakeholders involved in the product line
are working on one single and shared central product line
requirements model. This assumption implies that all stake-
holders have access to this shared model and are working
on the most recent version, so that no versioning conflicts
will occur. In our research environment we are currently
using a subversion repository to store and share our models.

Ideally, for such a multi-stakeholder and distributed prod-
uct line, additional version control mechanisms and access
rights management should be implemented. This way the
stakeholders can work on their parts of the central prod-
uct line model concurrently. An authorization mechanism
would also be beneficial, to guarantee that only authorized
stakeholders are able to maintain and change the concerned
requirements. In our current research, we do not focus on
version control for product line models. However, a real
industrial application of our approach would require an im-
plementation of versioning and access right mechanisms.

Every stakeholder in the system should have the pos-
sibility to suggest issues for improvement, which could
then be reviewed and criticized by the responsible archi-
tects and development teams and eventually be approved
and integrated. Doing so would essentially require an in-
tegration of a groupware support system, like for exam-
ple EasyWinWin [7]. Integrating such groupware with our
product line approach would address a so-called many-to-
many requirements negotiation constellation [3]. New re-
quirements to the product line, for example demanded by
markets or various customers, would need a negotiation
with all the involved development teams on the one hand.
Changes in more detailed existing technical requirements
on the other hand would need to be negotiated with po-
tentially all market- and customer-responsible stakeholders
as well. Considering further that both of these situations
might happen severalfold and probably concurrently with
different parts of the product line, a sophisticated many-to-
many negotiation constellation support would be required.
Implementing such groupware support for evolving product
line specifications might possibly be a future research area
within our project.

Another limitation is that ADORA is a language for
modeling requirements and high-level architecture. Conse-
quently, it only supports model simulation as a means of
validating and evolving models [6], but currently neither
supports detailed design nor code generation. In terms of
model-driven engineering capabilities, UML [10] is supe-
rior to ADORA, hence. The reason why we don’t use UML
is UML’s fundamental inherent weakness of spreading a
model over dozens of loosely coupled diagrams which dra-
matically complicates integrated product line modeling and
also makes model understanding difficult, because a model
reader needs to switch between numerous diagrams and has
to integrate the contents of different diagrams mentally. So
in all cases where an integrated model is essential such as
in our product line modeling approach, as well as for under-
standing complex models, where a tool can generate views
at any level of abstraction from an integrated model, we
consider ADORA to be the better choice than UML.

6. Conclusion and Future Work

In this paper we have presented a new approach to prod-
uct line requirements engineering and its application to an
industrial exemplar from a multi-stakeholder, distributed
environment. Our approach builds on (i) modularizing vari-
able feature requirements with aspects, (ii) using explicit
join relationships for their integration semantics, (iii) mod-
eling the commonality and the variability of the product line
in a single aspectual model, (iv) describing details of the
variability including variability constraints in tabular form,
and (v) visualizing variability constraints graphically.

We demonstrated that, with our approach, we could doc-
ument various product line requirements knowledge explic-
itly that previously was distributed in the organization and
was handled implicitly, relying on the expertise and experi-
ence of the involved stakeholders.

In our future work we plan to investigate many-to-many
negotiation constellation support with our approach. We
will continue developing our concepts and tool implemen-
tation. The focus will be on semi-automated requirements
composition with dynamic aspect weaving and on the prob-
lem of providing more user-friendly layouts when weaving
aspects graphically in such a notation. We further plan to
validate our approach empirically in industry for gaining
more insight and evidence about the usefulness and poten-
tial of this new kind of product line requirements modeling.

References

[1] K. Czarnecki, S. Helsen, and U. Eisenecker. Formal-
izing Cardinality-based Feature Models and their Spe-
cialization. Software Process Improvement and Prac-
tice, 10(1) , 2005. pp. 7-29.

[2] A.H. Dutoit, R. McCall, I. Mistrik, B. Paech
(Eds.). Rationale Management in Software Engineer-
ing. Springer, 2006.

[3] S. Fricker, P. Griinbacher. Negotiation Constellations -
Method Selection Framework for Requirements Nego-
tiation. Proceedings of RefsQ’08. LNCS 5025, Berlin,
Springer. 37-51.

[4] S. Fricker, R. Stoiber: Relating Product Line Context
to Requirements Engineering Processes Using Design
Rationale. Proceedings of PiK’08 Workshop. Munich,
Germany, 2008.

[5] M. Glinz, S. Berner, S. Joos: Object-oriented model-
ing with ADORA. Information Systems 27, 6. 425-444.
Elsevier, 2002.

[6] M. Glinz, C. Seybold, S. Meier. Simulation-Driven
Creation, Validation and Evolution of Behavioral Re-
quirements Models. Dagstuhl-Workshop MBEES 2007.
Informatik-Bericht 2007-01, TU Braunschweig, Ger-
many. 103-112. 2007.

[7] P. Griinbacher, B. Briggs. Surfacing Tacit Knowledge
in Requirements Negotiation: Experiences using Easy-
WinWin. Proceedings of HICSS 01. 2001.

[8] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson:
Feature Oriented Domain Analysis Feasibility Study.
SEI Technical Report CMU/SEI-90-TR21 1990.

[9] S. Meier, T. Reinhard, R. Stoiber, M. Glinz. Model-
ing and Evolving Crosscutting Concerns in ADORA.
Proceedings 11th Early Aspects Workshop @ICSE’07.
Minneapolis, USA. 2007.

[10] Object Management
http://www.uml.org/

[11] K. Pohl, G. Bockle, van der Linden, F.: Software Prod-
uct Line Engineering — Foundations, Principles, and
Techniques. Springer, Heidelberg, 2005.

[12] I. Rus, M. Lindvall. Knowledge Management in Soft-
ware Engineering. Guest Editor’s Introduction. /IEEE
Software. May/June 2002.

[13] K. Schmid, I. John. A customizable approach to full
lifecycle variability management. Science of Computer
Programming, Vol. 53, No. 3. Elsevier. 2004.

[14] R. Stoiber, M. Glinz. Software Product Line Re-
quirements Engineering Based on Aspects (SPREBA).
Research Project at the University of Zurich. URL:
http://www.researchportal.ch/unizh/p12003.htm

[15] R. Stoiber, S. Meier, M. Glinz. Visualizing Product
Line Domain Variability by Aspect-Oriented Modeling.
Proceedings of REV’07 Workshop. 1EEE CS. 2007.

[16] R. Stoiber, T. Reinhard, M. Glinz. Visualization Sup-
port for Software Product Line Modeling. Proceedings
of ViISPLE’08 Workshop. 2008. pp 313-322.

[17] A. Thurimella, B. Bruegge, O. Creighton. Identify-
ing and exploiting similarities between rationale man-
agement and variability management. Proceedings of
SPLC’08. 2008.

[18] A. Thurimella, W. Maalej, H-J. Happel. MaRK’ 09
Workshop. http://www1.cs.tum.edu/static/mark09/

Group. UML.

