Feature Unweaving: Efficient Variability Extraction and Specification for
Emerging Software Product Lines

Reinhard Stoiber, Martin Glinz
Department of Informatics, University of Zurich, Switzerland
Email: {stoiber, glinz}@ifi.uzh.ch

Abstract—Successful software products frequently evolve
into software product lines, whether intentionally or not. In
such cases, product managers have to be involved in creating
and specifying the commonality and variability of the evolving
software product line in order to continuously assure a winning
business case.

In this paper we introduce feature unweaving, a novel
approach that allows a product manager to efficiently evolve
an integrated graphical requirements model into a product
line model: when he or she has identified variable elements,
feature unweaving automatically extracts these elements and
refactors them into a feature, using an aspect-oriented ap-
proach. Feature unweaving significantly reduces the required
effort for variability specification, both on a clerical and
intellectual level. Furthermore, variability constraints can be
added to capture more knowledge about the features and their
interdependencies. We evaluate and validate our approach with
two case studies.

Keywords-Graphical Requirements Modeling; Variability
Extraction; Variability Modeling; Aspect-oriented Modeling;
Requirements Engineering; Software Product Lines

I. INTRODUCTION

Software product management is the discipline and role
which governs a software product from its inception to the
market/customer delivery in order to generate biggest pos-
sible value to the business. Its major internal functions are
portfolio management, product roadmapping, requirements
management and release planning [18].

In product roadmapping, release planning and for
customer-oriented tailoring of products, software product
management has to deal with the problem of variability.
Using a software product line approach [10] for this pur-
pose has major advantages: development costs are reduced,
products can be developed faster and the software qual-
ity will increase because of reuse. However, proactively
building a full-fledged software product line is costly and
risky. As a consequence, practitioners often employ ad-hoc
variability modeling solutions in the form of spreadsheets,
AND/OR tables or similar. Such solutions, however, turn
out to be insufficient: the variability and, in particular, the
variability constraints can’t be expressed properly. Moreover,
this approach is error-prone because traceability must be
done manually. Other strategies for the transition towards
a software product line are (i) creating a small product line
initially and then evolving it into one that covers the full

product scope, and (ii) extracting a product line from already
existing product specifications [7].

In this paper we present a new approach, called feature
unweaving, that supports both of the aforementioned strate-
gies: it provides semi-automatic, incremental extraction of
variability from an existing product requirements model.
While a software product manager still needs to identify
the elements of the model that vary, the extraction and
refactoring of these elements into features is fully automated.
Such an automated extraction reduces the effort and cost
for creating variable features and, equally important, it
guarantees that the original model and the new, refactored
model are semantically equivalent, thus saving the effort for
manual consistency checking.

We have developed the algorithmic concepts of feature
unweaving [16] [4] as well as an implementation in the
framework of the ADORA [3] language and tool.

The core elements of our approach are the use of inte-
grated requirements modeling and aspect-oriented modeling.
An inherently integrated requirements model, such as an
ADORA [3] model, avoids information scattering of the
specification over multiple diagrams, which happens when
using UML, for example [10]. Integrated modeling is a
key enabler for our approach, since it allows giving a full
selection of elements that constitute a variable feature in
a single view. For modeling variability, we use aspect-
oriented modeling [8] with slight generalizations [4]. In our
approach, variable features are modularized with aspects,
while the commonality of a product line remains a plain-
vanilla ADORA model [12] [16].

We validate feature unweaving with two case studies.
The first one evaluates the efficiency of feature unweaving
compared to an AND/OR table-based approach using a
real-world governmental decision system exemplar. As a
result we found a significant increase in efficiency for all
variability-related tasks. The second case study presents
a comparative evaluation of our approach and one that
combines UML with feature modeling. The requirements
of an existing case study from the mobile phone domain [9]
have been modeled with both concepts, balanced and com-
pared. The results indicate that specifying requirements and
variability in ADORA is more efficient than using UML in
combination with feature modeling: the latter required about
60% more graphic modeling elements to specify the given

Proceedings of IWSPM’10: 4th International Workshop on Software Product Management. At RE’10, Sydney, Australia. Sept 27, 2010.

(©2010 IEEE Computer Society.

set of requirements.

The remainder of the paper is organized as follows.
Section II motivates our approach from a practitioner’s view-
point. Section III describes the details of feature unweaving.
Sections IV and V present the case studies. Section VI
discusses related work and Section VII concludes.

II. BACKGROUND, PROBLEM AND MOTIVATION

The practitioners that we collaborated with individualized
their software products by specifying all requirements in one
comprehensive requirements specification and augmenting
that specification with tables that described admissible com-
binations of software features. Such all-inclusive specifica-
tions, called reference model henceforth, led to challenges
for stakeholders. User representatives with differing, but
overlapping interests needed to review the requirements for
understanding which requirements were relevant for them.
The project board (consisting of application owner, depart-
ment heads and portfolio manager) needed to make scope
decisions with a seemingly never-ending list of requirements
whose interrelationships were hard to extract from the
specification. The involved requirements engineers had to
invest an immense effort for maintaining the consistency
and structure of the requirements specification.

Some software or software-intensive products turned out
to be very successful and attracted additional customers
and markets. Variability inevitably was introduced to fo-
cus and tailor the products to their emerging new target
environments. In fact, they became software product lines.
Other products, however, turned out to be considerably less
successful than expected and disappeared again in the short
or medium term. Though variability may have been antici-
pated, it did not step in. Therefore, creating all potentially
promising software products as software product lines from
the very beginning is rather risky for product managers. As
there are high initial costs connected with creating a software
product line, the practitioners decided to rely on ad-hoc
solutions with spreadsheets, AND/OR tables and similar, e.g.
as in [9].

The advantages of using ad-hoc spreadsheets to manage
the variability of an evolving product line lie in the creation,
understanding and maintenance of the variability with only
little costs, training and effort. Simple and widely available
COTS tooling suffices.

AND/OR tables define a matrix of all variable product
features (typically the rows) and all existing or planned
products (typically the columns). While this gives a succinct
overview of the product portfolio, this approach has two sig-
nificant shortcomings: Firstly, AND/OR tables don’t specify
any constraints between variable features explicitly. As a
consequence, regular patterns in the table might be due to a
constraint, but they might also occur just accidentally. If, for
example, every product contains exactly one element from a
set of features, it is not clear whether or not this means

that these features are mutually exclusive. Secondly, for
every feature in the AND/OR table, traceability links to the
correponding requirements are necessary. Only when these
exist, an efficient reuse of the specification is possible. The
practitioners we worked with did not build complete sets of
traceability links between product features and requirements
for evolving product lines, due to the high effort required
for that. Instead, domain experts knew much of this trace-
ability by heart and shared their knowledge in meetings and
reviews. The lack of explicit specification may be economic
for products with an early phase-out. For sustained software
product management, however, this approach is too risky.

Using feature modeling [5] or a similar approach (e.g.,
OVM [10] or decision modeling, e.g. [11]) instead of
AND/OR tables solves the first of the two problems: the
variability model can be specified intensionally, including
the variability constraints, while the product portfolio can
still be represented as a list of configurations. However, the
second problem remains: traceability links or mappings need
to be defined for every feature onto the requirements; see [2]
for a typical example. However, creating these mappings is
costly, labor-intensive and error-prone.

Existing solutions that automate the extraction and spec-
ification of variability all require a given set of product
specifications out of which the requirements variability and
the feature model are extracted [17] [19]. Currently, to the
best of our knowledge, no solution exists that provides
considerable automation support in creating a variability
specification incrementally from a single reference or prod-
uct model.

The approach we present in this paper allows a semi-
automatic extraction of variability from an existing product
requirements model. Using feature unweaving, a product
manager does not need to create any dedicated variability
model or mappings at all. Instead, he or she can directly
identify variable requirements in the requirements model and
extract them with the feature unweaving function. Feature
unweaving then refactors the requirements model and spec-
ifies the selected elements with aspect-oriented modeling.
This eases the creation of a software product line consider-
ably. Additionally, feature unweaving also guarantees that,
after every extraction of a variable feature, the resulting
model is semantically equivalent to the original model.
Therefore the semi-automatically created variability model
will be correct by construction, which eliminates the cost
for verifying this equivalence manually.

III. THE FEATURE UNWEAVING FUNCTION
A. Types of Variability

The way a variable feature is unwoven from a require-
ments model depends on the degree of scattering and tan-
gling of this feature in the original model. Scattering means
that the model elements belonging to a feature are scattered
over many components of the model. Tangling means that

elements of various features are contained within a single
component such that this component lacks cohesiveness.

Feature unweaving rectifies the scattering and tangling
of variable features by fully extracting these elements and
modeling them with aspects. We have identified three basic
types of variability that occur in a requirements model.

1) Local Variability: Local variability means that a vari-
able feature affects only elements within one container (i.e.
a node that modularizes a certain concern). A container
in ADORA is an object, object set or aspect. Thus, local
variability is not scattered over more than one container, but
tangling may occur within a container. Local variability can
always be modularized with a single aspect.

In our real-world requirements examples, see [14], [4] and
[20], local variability was a type of variability that we found
frequently.

2) Homogeneously Cross-Cutting Variability: Homoge-
neously cross-cutting variability means that a variable fea-
ture affects requirements at two or more locations in the
same way. These locations can be somewhere in the behav-
ioral or user interaction specification in the same container,
but at different locations, or in different containers. Such
a homogeneously cross-cutting variability is scattered over
one or more concerns and affects several locations in the
specification. Therefore, also one or more other concerns are
tangled with such a variable feature. Homogeneously cross-
cutting concerns are typically modularized with aspects, as
for example logging or authentication [8]. These concerns
can also be variable in a software product line.

To modularize homogeneously cross-cutting variability
with a single aspect container, the feature unweaving func-
tion needs to recognize that all selected elements at the
different locations are equal and, thus, merge them. Our
current implementation of feature unweaving does not yet
automatically perform these tasks, but, instead, unweave
such a selection as a heterogeneously cross-cutting variabil-
ity (see below). Merging then could be performed manually
or automated by the tool as well.

In our real-world requirements exemplars we did not find
any homogeneously cross-cutting variability.

3) Heterogeneously Cross-Cutting Variability: Hetero-
geneously cross-cutting variability means that a variable
feature affects the requirements in two or more different
containers in a different way. Thus, such a variable feature
is scattered over multiple containers in the model and these
containers are tangled with the variable feature.

To modularize such variability appropriately, multiple
nested aspect containers have to be created. A base aspect
container needs to be created that contains a nested aspect
for every other container that is cross-cut by this variability.
The selected model elements of every container need to
be extracted into one of these aspects. Their respective
weaving semantics can then be created analogously to a local
variability, see above.

When different model elements in different parent con-
tainers in the model vary because of the same variability
decision, it is beneficial to unweave them together as a
single variable feature. This way only a single variability
binding decision is required for selecting or dismissing these
requirements and no additional constraint is necessary. This
reduces the complexity of the resulting model and therefore
elevates the efficiency.

In our real-world examples we found such heteroge-
neously cross-cutting variability quite frequently. The bigger
and more detailed our models were, the more often vari-
able features were heterogeneously cross-cutting. We could
simplify the structure of the variability by unweaving them
all together into one hierarchically structured base aspect.
Our feature unweaving algorithm and implementation fully
support an automated refactoring of a selection of heteroge-
neously cross-cutting variability.

B. The Feature Unweaving Algorithm

1) The ADORA Language: ADORA is an integrated re-
quirements and architecture modeling language that is based
on abstract objects instead of classes and uses a decomposi-
tion hierarchy as its main means for modularizing models. In
contrast to UML, which builds on the idea of a set of loosely
coupled diagrams, ADORA allows integrating all views of a
model into one consistent and coherent structure [3].

As a hierarchy of abstract objects cannot modularize all
relevant kinds of concerns, the original version of ADORA
described in [3] has been extended by capabilities for aspect-
oriented modeling [8]. Aspects are a means for modularizing
crosscutting concerns, i.e. information that is scattered and
tangled in the model. In product line requirements modeling,
ADORA uses aspects for modeling variable features [12]
[14]. For an overview of variability modeling in ADORA,
including an explanation of the notation see [14]. Feature
unweaving builds upon the aspect-oriented extension of
ADORA defined in [8] with slight generalizations (see [4])
which turned out to be necessary for supporting aspect
modeling also for very abstractly specified requirements.

2) An Overview of the Feature Unweaving Algorithm:
In order to apply feature unweaving in the ADORA tool, the
user (e.g., a product manager or a requirements engineer)
selects the variable elements that s/he wants to unweave and
points at the location in the diagram where the extracted
aspect(s) shall be positioned. Then ADORA automatically
performs the refactoring, using the algorithm explained
below. Figure 1 defines the basic terms used. Figures 2 and
3 describe the structure of the algorithm. The details are
omitted. Instead, we demonstrate the algorithm in action for
a typical example in Figure 4 .

The unweaving algorithm consists of five main steps
(Figure 2). As a first step, the algorithm creates a base aspect
container (AC). This base AC and the base ADORA model
are then handed over to the recursive extraction function to

PC ... parent container; a model element that directly contains
one or more selected element(s); it can be an object, an
object set, a state (statecharts can be hierarchical), an aspect
container, or the ADORA model itself

BasePC ... the lowest-level PC in the hierarchy that contains
all the selected elements to unweave

AC ... aspect container; a container element where variable
elements for an unweaving are extracted into; it must include at
least one outgoing join relationship (JR); it can hierarchically
contain other ACs (nested)

BaseAC ... the lowest-level AC created that contains all el-
ements of one variable feature; for cross-cutting features it
typically has other nested ACs

Figure 1. Definitions

1. Create the BaseAC

2. Call the recursive extraction function (parameters: the
ADORA model, the BaseAC)

. Remove all redundant ACs in the BaseAC

. Fine-tune the graphic layout

N W

5. Set the BaseAC as a variability (this adds a unique decision

item and annotates the outgoing join relationships)

Figure 2. The feature unweaving algorithm

perform the extraction. This recursion works as described in
Figure 3. The base parent container (BasePC) needs to be
found first. This is the lowest-level container (typically an
object, but can also be an aspect) in the model that contains
all selected elements (see the definitions in Figure 1). Having
the BasePC found, all selected elements within this container
are extracted into the BaseAC. Next, the necessary join
relationships are computed and created. These are defined in
such a way that a weaving of all the extracted requirements
always results in a semantically equivalent model to the
original one. As a last step of this recursion, if further nested
elements exist, a new AC is created inside the BaseAC and
the next recursive call is performed, using the BasePC and
the newly created AC as parameters. Thus, the recursion
incrementally descends into the next lower part of the model
and extracts the selected elements. Eventually, when all
selected elements have been extracted, no further BasePC

Input-parameters: a PC, an AC

2.1 Find the BasePC

2.2 Extract all directly nested selected elements of the BasePC

into this AC

2.3 Calculate and set the join relationship(s)

2.4 For every nested PC that contains any selected element
2.4.1 Create a new AC inside this AC
2.4.2 Call the recursive extraction function (parameters: this

BasePC, the new AC)

Figure 3. The recursive extraction function in the unweaving algorithm

is found and the recursion terminates.

The recursion may create redundant ACs (i.e., ACs that
only contain other ACs). These are removed in step 3 of
the algorithm. At this point, the modeling of the extracted
elements is completed and the layout will be fine-tuned
in step 4. This concerns mostly reducing white space and
aligning the extracted elements coherently. Finally, in step
5, the extracted aspects will be specified as a variability
for the evolving product line model. Setting the attribute
‘variability’ to ‘true’ in the Base AC will recursively also set
this property for all child ACs and produce a unique decision
item that gets annotated onto all join relationships created
for one variable feature extraction. This decision item is
included in the decision table henceforth, as a means for
variability management [14] and product derivation [15].

3) Feature Unweaving Illustrated: The algorithm is il-
lustrated using an example and a detailed execution trace of
feature unweaving applied to it (Figure 4). This example
also includes the semantic details that were omitted in
the general description of the algorithm. Diagram a of
Figure 4 shows a non-trival reference model in ADORA and
a selection of elements that a product manager considers
constituting a variable feature. The mouse pointer indicates
the location where the extracted feature shall be positioned.
The selection represents a heterogenously cross-cutting vari-
able feature. It involves a component that includes some
behavior description and two steps of a hierarchic scenario
chart orthogonally nested in the hierarchic base structure.
Starting from this diagram, the subsequent ones below show
various intermediate steps of the extraction process. The
last diagram shows the final refactored model. The white
and grey coloring is used to better visualize containment
hierarchies.

Diagram b of Figure 4 shows the situation after the first
execution of the recursive extraction function (i.e. after step
2.4.1 of the algorithm, see Figure 3). The BasePC in this
execution is the System object, which does not directly
contain any selected objects. Thus, nothing is extracted
and the BaseAC is left empty in step 2.2. A new nested
aspect container has been created in step 2.4.1. The second
execution of the recursive extraction function processes
Component B as PC. This object contains a couple of
selected elements to extract. First, the sub-scenario sc2 is
extracted. This requires removing the connection of sc2 to
its parent scenario and relocating sc2 into the new AC. Next,
the object Component B.I is relocated. As Component B.1
has no connections, this is straightforward. The intermediate
result (after step 2.2) is shown in Diagram c. To complete
this extraction, an appropriate join relationship needs to be
computed and created in step 2.3. In this case, a simple
join relationship with the weaving type ‘before’ between
the extracted scenario and scenario sc3 suffices. To keep
the core model consistent, the sequence number of scenario
sc3 is changed from 3 to 2. The result after step 2.3 is

e System
Component A

ssanan) GEOTCED

Component |~ ~ k
A1 N~

Component B

@
A

Component B.1

statechart
B.1
6 System
Component A

statechart A.1

Component
A1

<<Feature Name>>

/]

19§
!

Component B

4
Pt

Component B.1

statechart
B.1
6 System
Component A

statechart A.1 @ <<Feature Name>>

Component |~ ~ Component B.1

Al A - statechart
B.1

Component B @
@ System
Component A

RN

statechart A.1 @ <<Feature Name>>
Component |~ "~ Component B.1
A1 N> M

statechart
B.1

Component B @4—"”'—__ [
e System
Component A

<<Feature Name>>

@ @
Component |~ ~
Al N> %

Component B.1

statechart
B.1

Component B @<___,|___-
“ System
Component A
statechart A.1 @
Compo- <place
nentA.1 holder>

Component B

@ System

statechart A.1
Compo- <place ™\ 4 .
nentA.1 holder>

<<Feature Name>>

t

Component B.1

statechart
B.1

<<Feature Name>>

[
<}
3
o
<}
=1
@
2
>

Component B.1

statechart
B.1

Component B

G System

Component A

statechart A.1
Compo- <place \ <
nentA.1 holder>

Component B @ < 1 _____

Decision Table
ID__Description Rationale Constraints
D1 _TBD TBD

Feature 1]

Component B.1

statechart
B.1

...] FeatureName Decision
[...] Feature 1 undecided

Figure 4. Feature unweaving illustrated by example. a) shows a reference
model. The selected elements are those that shall be extracted. b)-g) show
intermediate steps, and h) shows the resulting refactored model.

shown in Diagram d. This model and the reference model
given in Diagram a are semantically equivalent: the join
relationship specifies that if scenario sc2 would be woven,
it would become a sub-scenario of scenario and would be
inserted just before the sub-scenario sc3 [8].

In diagram e, another AC within the BaseAC was created
when component A was traversed, but left empty because
there were no selected elements contained directly. Prior to
the current recursive call, another nested AC was created into
which the nested selected elements of the object Component
A.1 will be extracted. Diagram f shows the results of this
extraction. In this case, the scenario to extract is the only sib-
ling node of its parent scenario in this container. Therefore,
it cannot be relocated directly because the join point would
get lost. Consequently, a <placeholder> scenario is created
and an ‘instead’ weaving semantics selected to be applied
here [4]. Diagram g shows the result. After this execution, no
BasePC is found anymore and thus the recursion terminates.

Diagram # finally shows the resulting refactored model,
including all remaining steps of the feature unweaving
algorithm. In particular, the corresponding decision item and
an entry in the decision table [12] have been created. This
model is syntactically correct and semantically equivalent
to the one in Diagram a by construction. The originally
selected variable elements are now explicitly modularized
as a variable feature with aspect-oriented modeling.

IV. CASE STUDY 1: EFFICIENCY EVALUATION

Feature unweaving was validated by comparing it with
the widely established AND/OR table-based approach in the
typical contexts where product line models are used: product
variant definition, release planning, and product line evolu-
tion. The following questions were asked: is the approach
efficient for defining a variability model and for defining
product variants? Is the approach efficient for supporting
feature evaluation and selection? Is the approach efficient
for maintaining consistency? Answers to these questions
support decision making for whether and when to adopt
feature unweaving and for steering its further development.

A. Case Description

A decision support system for a government was studied
as a case for answering these questions. In this case three
departments desired to use the same system to decide upon
customer requests. The departmental business processes
resembled each other. Another department was responsible
for accounting of the financial transactions managed by the
system. The reference model covered all possible autho-
rizations, business transactions, and entities to be managed.
AND/OR tables described the desired provision of informa-
tion and functionality of the system to the departments.

B. Research Design

Table I summarizes the followed process. Five macro
steps were executed for Product Variant Definition: an initial

Table I
VALIDATION OPERATIONS.

Steps Results

Product Variant Definition

1. Specify requirements model for product 1. | Prod1: requirements model of product 1.

Var12: product line model for

2. Extend Prod1 with differences towards

products 2. requirements of products 1 and 2.

3. Derive requirements models for products 1 | Prod1: requirements model of product 1.
and 2 from Var12. Prod2: requirements model of product 2.
4. Extend Var12 with differences towards Var123: product line model for

product 3. requirements of products 1, 2, and 3.

5. Derive requirements models for products
1, 2, and 3 from Var123.

Prod1: requirements model of product 1.
Prod2: requirements model of product 2.
Prod3: requirements model of product 3.

Feature Evaluation and Selection

1. Evaluate effort for selecting a subset of
requirements for implementation.
Feature Evaluation and Selection

Total number of possible products
Number of elements to compare

1. Change a requirement in product 1. Change to Prod1.

Changes to Prod2 and Prod3 if necessary.

2. Ensure that the altered requirement is
changed in all affected products.

product requirements model was created (ProdSpecl), the
variability was specified/extracted when the second product
got introduced (VarSpecli2), the two product specifications
were derived again (ProdSpecl?2), further variability was
specified/extracted when a third product was introduced
(VarSpec123) and the product specifications created again
for all three products (ProdSpeci23). Further, for Feature
Evaluation and Selection the required effort for reasoning
about new product configurations was studied and for Con-
sistency Maintenance the required effort for introducing a
change in an existing product configuration was evaluated.
AND/OR tables were directly defined on the requirements
and modified ad-hoc. Requirements were not grouped into
features in the AND/OR tables in this real-world exemplar.
Feature unweaving grouped requirements into features and
was performed with a prototypical implementation of the
ADORA tool!.

Simple quantitative measurements were taken to answer
the validation questions. The numbers of required edit ma-
nipulations were measured to evaluate the efficiency for
product variant definition and for maintaining consistency.
The numbers of possible products and features to compare
were used to measure the efficiency for feature evaluation
and selection. Smaller numbers were regarded to indicate a
higher efficiency. Sub-section D presents these results.

C. Limitations and Threats to Validity

The study validates feature unweaving in a laboratory
situation. The use of real-world exemplars increases the
confidence that the results apply in general. Implementation
of feature unweaving in the ADORA tool ensures that the
constructs of interest are evaluated in the way they have
been presented. The sequence of activities used to answer the

IThe ADORA tool is available under an open source license from
http://www.ifi.uzh.ch/rerg/research/projects/adora/

The System
Customer Relevant Entity Decision - Rejection
_Consultanon
Request Controlled Entity -_Decree
- " Approval
Reconsideration Misuse Entity -
General Approval ilngle I
—
Base
€Y Approval
Mutation Transaction Question Financial Transaction
Extension Transaction1 Information Ciedi
Outpayment
Unloading Transaction2 Report
Compensation
Cancellation Transaction3 Declaration |Repon1 |
5 2 Info1 — Claim
Suspension Transaction4 Statistic
Info2 Additional Claim
Revocation Transaction5
. n Info3
Correction Transaction6 ,—lReminder
Figure 5. Requirements model ProdI of product 1.
The System
Customer Relevant Entity Decision || pecision 7 T Rejection
Non-controlled
R t h D
Certifiable - Non-
" n Entity Info General Approval | | Single consider-
Reconsideration Approval ation of
Controlled Entity m Confir- Request
Boundary Entity GA4 mation
- - Agree-
Mutation Transaction
Extension Transaction1 | Question | | Information |
Unloading Transaction2 Report
Cancellation Declaration Report1
Transaction4 Infot Statistic
Revocation Info2
n Info3
Correction ,Wl
Figure 6. Requirements model Prod2 of product 2.

research questions is described and discussed with lessons
learned.

Feature unweaving was conceptualized and implemented
with ADORA. For a transfer of the results to other mod-
eling languages, the impact of ADORA-specific language
features needs to be investigated. Efficiency measurements
were based on numbers of edit manipulations and not on
measurements of time. This is due to the fact that the
implementation of ADORA is still on a prototype level and
that AND/OR tables were used ad-hoc, without tool support.

This study measures only the effort for specifying the
variability and not the required effort for identifying variable
features in the first place. By minimizing the required
effort for extracting and for removing the specification of
variability by refactoring this may also improve efficiency
in variability identification. Such correlation, however, was
not measured and is subject to future work.

While in this case study the AND/OR table did not
aggregate requirements towards features, such grouping is
frequently done in practice, e.g., see [9]. Using an AND/OR
table with feature grouping would yield different and prob-
ably better results, but also require additional traceability.
Section V presents a complementary second case study
where such feature grouping was applied.

The System
Financial Transaction
Credit
Outpayment
Compensation
Claim Reminder
Additional Claim
Debt Collection
Figure 7. Requirements model Prod3 of product 3.
N trolled fi
jon-controllex Boundary Entity Decision
Certiable . o CEEE
N e [
S~o N Misuse Entity (i n 7 .
~ N ’ -
SN T v / ’ d i
The System U 5 7 prd e
’—‘Dec‘am"on N Customer Relagany Entity Decision K Réjection
Request Controlled Eni ‘ Decres
a \)
Reconsideration
Mutation Transaction [Question]
Extension [Transactiont] | [Information Financial Transaction
Credit
[Suspersion | J Unloading [ransaction2 | | ["Report
Cancellation Declaration
Transactiond Infot [
Info2 Claim
[Revocation | = Additional Claim
s (o (oo
rTmnsac‘uur\S i I u
Figure 8. Product line model Varl2 covering products 1 and 2.

D. Operations and Results

1) Product Variant Definition: Figures 5-7 show the
product requirements models Prodl, Prod2, and Prod3 and
Figures 8-9 the product line models Var/2 and Varl23 that
have been developed according to the process described in
Table I. Table II summarizes the results of all validation
operations. It presents the measured effort for specifying the
product and product line models by using feature unweaving
(left hand side) and AND/OR tables (right hand side).

2) Feature Evaluation and Selection: The relative effort
of release planning was estimated by comparing the number
of elements to consider for variability resolution and the
number of possible products, based on the latest product
line model Vari23. In ADORA 13 variable features need to
be considered for release planning. Among these features
hierarchical constraints (sub-features can only be chosen
if their parent-feature is selected; otherwise the configu-

r
Boundary Entity Decision
GAl Base
‘Special Entity S;ppm Approval
eje- []
clion p
7 -
4 ’ -
-
_-

Non-controlled
Entity

Certifiable
Entity

~ N
~< N Misuse Entity Info
~ N }
<X T T’ / ,
B I /

Enmy Decision ’ m—-‘l Réfection
Y Copditgtion
Controlled Entity. / ?’ 2 Decree
Approval f

le
General Approval

Customer

Request

Reconsideration

Mutation Transaction [Question]
Extension [Transactiont] | [information Financial Transaction
Credit
[Suspension | Unloading [Transaction2] | ["Report
Il i 1
Canceltion [
Transactiond. Infot
Info2 Claim
== | — Adcitona Clam
I
/
/
The System
mTransa-mcnS I Il u [Reminder_] [~ = ~{[Dobi Cotecton Ji

Figure 9. Product line model Vari23 covering products 1, 2, and 3.

Work Result

Table II

COMPARISON OF SPECIFICATION EFFORT.

Feature Extraction

Model requirements of Prod1

AND/OR Table

Prod1

| Specify Prod1: add 47 regs.

| Specify Prod1: add 47 regs.

Add variability

Var12

Extract Prod1: add 5 aspects (15 regs.)
Add Prod2: add 6 aspects (14 regs.)

Add Prod2: add 14 regs.
Expand table: add 72 cells

Derive products from Var12

Prod1
Prod2

Weave 5, remove 6 aspects
Weave 6, remove 5 aspects

Remove 14 requirements
Remove 15 requirements

Add variability

Var123

Extract Prod1+2: add 1 aspect (31 regs.)
Add Prod3: add 1 aspect (1 req.)

Add Prod3: add 1 req.
Expand table: add 75 cells

Derive products from Var123

29 product derivation operations

Prod1 Weave 6, remove 7 aspects Remove 15 requirements
Prod2 Weave 7, remove 6 aspects Remove 16 requirements
Prod3 Weave 2, remove 1 aspect Remove 53 requirements
Total 75 specification operations 209 spec. operations

84 prod. deriv. operations

ration is invalid) already exist, see Figure 9. Taking these
into account, an overall of 4’100 products are allowed in
ADORA. This number is calculated automatically [15]. In
the AND/OR table approach, 62 requirements need to be
considered and no constraints could be defined. Thus, all
combinations of requirements are possible, leading to 262
(4.61%10'®) possible products.

3) Consistency Maintenance: The relative effort for
maintaining consistency was estimated by the number of
operations necessary to introduce a requirements change and
the number of operations needed to re-derive all product
models from the updated product line or reference model,
based on the latest product line model. For both approaches,
only one operation is necessary to introduce the requirements
change. In the feature unweaving approach, 29 weaving
operations are necessary when all product specifications are
re-derived manually (see Table II). If the previous product
configurations were saved in ADORA, such consistency
maintenance is even reduced to only two operations (one
for the actual change plus one for re-weaving all previ-
ously saved product configurations). In the AND/OR table
approach, the change is performed in the reference model
and 84 operations are necessary to re-derive all previously
created product models (see Table II). Alternatively, the
change could be applied to all products and the reference
model directly, which would require only five operations.
However, this is risky: consistency requires that the change
is introduced equally in all affected models, otherwise the
reference and product models become inconsistent.

E. Lessons Learned

1) Strengths: Feature unweaving has successfully been
implemented and supported the product line engineering
tasks efficiently. Feature unweaving required 2.8 times less
manipulations for specifying variability, 2.9 times less ma-
nipulations for deriving product variants, and 2.8 time less

manipulations for propagating requirement changes than
the AND/OR-table approach in the presented case. The
number of elements to be considered for release planning
was reduced by a factor of 4.8.

Knowledge related to product line architecture and ap-
plication domain was encoded. Feature unweaving allowed
grouping requirements that needed to be implemented to-
gether into aspects and defining dependencies. The resulting
aspect tree Varl23 can be compared with feature trees [5]
and provides aggregated information regarding allowed com-
binations of requirements. This information is left implicit
in the mind of the modeler when using the AND/OR-table
approach.

The requirements modeler developed a mental map of the
product line requirements in a form that can be conveyed
to the reader of the model. The geometric layout of re-
quirements and aspects in Var/23 provided cues regarding
product line properties that could not be codified with an
AND/OR-table approach.

Feature unweaving simplified planning for new products
and increased the quality of such planning. The product line
model Varl2 acted as a template and checklist that allowed
incremental definition of variability to accommodate for the
subsequently added product Prod3. The product could be
added by locally changing commonality and aspects, hence
reusing parts of the specification, instead of adding an entire
new definition of the product in terms of a column in the
AND/OR-table.

2) Limitations: Feature unweaving and weaving changed
the model layout. These operations required rearranging
model elements by placing them into aspects or abstract
objects respectively. The negative effects of such rearrange-
ments were reduced by compacting nodes and saving a
layout after manual arrangement. The modeler’s mental map
related to the concerned model elements was still disturbed,
however.

AND/OR tables are a generic concept that can be used
with any type of requirements description and model-
ing. Feature unweaving in contrast is built specifically for
ADORA and designed for extracting variability in inte-
grated requirements models. Therefore, if a requirements
specification already exists in a textual or UML format,
then an ADORA specification needs to be created first,
before feature unweaving can be used. Depending on the
amount of effort spent on transitioning towards an ADORA
requirements specification, the overall improved efficiency
in requirements variability modeling will be lower or even
negative, accordingly.

3) Other issues: The approach introduced a considerable
amount of aspect containers and join relationships. One
could argue that using that many aspects may be prob-
lematic. Large numbers of aspects, however, did not cause
any problems or obstacles. Feature unweaving and removing
of aspect-oriented variability modeling are performed fully

Table IIT
STATISTICS ON THE REQUIREMENTS AND VARIABILITY MODELS OF THE
GOPHONE CASE STUDY, DERIVED FROM [20].

1. Requirements | 2. Requirements and Variability

ADORA [EA ADORA |[EA pure::variants
diagrams 1 17 1 17 1
elements 174 254 261 331 68
connections | ~ 200 338 318 482 38
cross-tree
constraints 14) 12
Sub-total - - 830 119

ota 609 94 049

automatic by the tool as refactorings, see also [16], for ex-
ample. Engineers don’t need to deal with weaving semantics
and can use visualization to hide irrelevant aspect details
[13]. Section V confirms these results and shows that the use
of aspects can even reduce the amount of model elements
required for specifying the variability.

V. CASE STUDY 2: A COMPARATIVE EVALUATION

Zoller [20] has performed a comparative evaluation of
three state-of-the-art requirements and product line variabil-
ity modeling concepts: (1) Sparx-Systems Enterprise Archi-
tect (EA) in combination with pure-systems pure::variants,
(2) IBM Rational Focal Point, and (3) ADORA. He modeled
the GoPhone software product line, a hypothetical case from
the mobile phone domain [9], for all three concepts. He
carefully assured that the three specifications he created were
equivalent in content. Then he performed a quantitative and
qualitative comparison of the three concepts and derived
strengths and weaknesses for each of them. This section
presents Zoller’s results on ADORA (integrated requirements
modeling using aspects to modularize variable features) and
EA & pure::variants (requirements modeling with UML and
mappings to a feature diagram).

Table III presents some quantitative figures for the created
requirements and variability models. The figures in the
left part of the table characterize the specification before
the variability was specified. The right part characterizes
the situation with the variability modeling included. In
ADORA, feature unweaving was used to create the variability
specification. For EA, a feature model was created with
pure::variants and all variable UML model elements in EA
were annotated with pure::variants feature restrictions.

For specifying the software requirements given in the
GoPhone case study report [9], the UML-based requirements
specification required an overall of 61.5% more graphical el-
ements (sum of all nodes and edges of all graphic diagrams)
than required in the ADORA specification (609 vs. 375). The
main reason for this significant difference is the fact that
ADORA does not need explicit traceability links between
different diagrams, because this traceability is implicit in the
hierarchical nesting of elements. Another reason is that the
user interaction modeling in EA required significantly more

graphic modeling elements than the integrated scenario chart
modeling in ADORA.

When including also the variability modeling (see the
right part of Table III), we get equally strong results.
The specification of an additional feature diagram and of
all necessary annotations in the requirements specification
required overall 59,8% more model elements than the
variability specification with aspect-oriented modeling in
ADORA (949 vs. 594). For EA a new dedicated feature
model had to be created with pure::variants. 68 features
(38 of them mandatory and 30 variable or group features),
38 hierarchy connections between features and 12 cross-tree
constraints were specified. Or-constraints between features
were modeled with group features and respective types of
sub-features and therefore did not require additional cross-
tree constraints. In EA, feature restriction and links to all the
affected model elements had to be created in every diagram
where variability occurred. This explains the significant
increase in model elements and connections. In ADORA, a
new aspect was created for every variable feature, including
nested sub-aspects when required. As an important result
of this study, we have actually found that 15 out of 25
variable features (66.7%) were heterogeneously crosscutting,
i.e. required nested sub-aspects. However, the strong increase
of model elements was a result of the many pseudo-elements
needed because of limitations/requirements of ADORA’s
aspect weaving semantics [4] [8]. This was especially true
for statecharts: 71 additional new pseudo-states and end
states were introduced (an increase of the number of states
by 88.7%) while only 4 pseudo-scenarios had to be added
(an increase of only 6.9%; an example of a pseudo-scenario
node can be seen in Figure 4 in the diagrams e-f, labeled
as <placeholder>). The additional states also introduced
additional state transitions (connections), consequently. The
other added elements and connections were the required
aspect containers and join relationships. Further, 14 explicit
constraints were specified on the resulting variability model,
including the cardinality-based constraints.

Taking these results and complementing them with other
quantitative and qualitative results, Zoller has concluded that
the integrated modeling, the comprehensive model overview
and the reduced modeling effort are among the benefits of
ADORA. The need for that many pseudo-elements was cred-
ited as a negative point and also that when deriving products,
aspects are woven and the “aspect-oriented” modeling of
cross-cutting concerns gets lost. For EA the use of modeling
standards (UML, feature model) and the reduced need of
redundancy (recurring charts were put into separate diagrams
and simply referenced) was credited as a plus, while the need
of that many diagrams and the big effort needed for creating
and maintaining all the feature annotations were assessed
as disadvantages. In summary, every of the two concepts
still has advantages. The statistics as presented in Table III,
however, provides a clear indication towards a more efficient

specification of software product lines in ADORA.

VI. RELATED WORK

Existing approaches to product line modeling build on
a dedicated variability model, typically a feature model
[5], an orthogonal variability model (OVM) [10], or de-
cision models, e.g., [11]. Variability is then mapped onto
the corresponding engineering artifacts, for example onto
UML models [2]. All these approaches basically possess the
same advantages and weaknesses as the ‘UML-with-feature-
modeling’ concept we evaluated in Section V. Feature un-
weaving does not require an additional dedicated variability
model, but models variability directly in the requirements
specification using aspects.

Recently, also other aspect-oriented approaches for soft-
ware product line requirements engineering have been in-
troduced [1] [21]. These, however, still require a dedi-
cated additional variability model and manually defined
constraints and traceability links to keep the product line
model consistent. Bonifacio and Borba [1] require engineers
to write the codified configuration knowledge (i.e., mappings
between feature expressions and their related engineering
artifacts) manually. In the approach of Zschaler et al. [21], all
variability information (variants and their orderings, actions,
pointcuts, etc.) has to be defined by hand. In contrast, feature
unweaving only requires manual identification of variable
model elements. The extraction and creation of the necessary
aspect structure in ADORA is fully automatic. Variability
constraints can be specified later based on this refactoring
and projections can be generated that show, for example,
only the pure variability model [13], yielding a view similar
to a feature diagram. As Sections IV and V have shown, such
an alternative paradigm of variability modeling reduces the
effort for variability specification and decreases the size of
the overall product line specification.

Aspect model unweaving as presented by Klein et al. [6]
also deals with extracting aspects from models. However,
this work deals with removing elements of aspects that had
been woven previously. Feature unweaving in contrast does
not revert any previous weaving operation, but extracts a
set of selected model elements and creates all the required
aspects and weaving semantics in the first place.

There is also other work on automation support for creat-
ing variability models in requirements engineering. Weston,
Chitchyan, and Rashid [19] use an early aspects mining tool
to find candidate crosscutting concerns, according to their
semantic similarity, over textual requirements documents
of different products. Therewith their approach allows to
automatically construct feature models from diverse and
heterogeneous requirements documents. Wang et al. [17]
introduce a formal model of use cases based on which ap-
plication feature models are constructed after some prepro-
cessing. These models are then adjusted and finally merged
into a domain feature model semi-automatically, after all

conflicts have been removed. Both approaches assume that
specifications of concrete products already exist beforehand.
The feature models are constructed (semi-)automatically in a
reverse engineering way. With feature unweaving, variability
extraction is already supported when a second or further
product requirements specification is created. The variability
is extracted and specified as soon as it surfaces or be-
comes relevant. A later reverse engineering of the variability
model hence becomes obsolete. This enables an automation-
supported variability modeling already in an early stage of
the software product line life cycle. In fact, as evaluated in
Section IV, the efficiency for creating a concrete product
specification is already increased when a second software
product gets introduced and a product line is created for
these two products.

VII. CONCLUSION

The paper has presented a new approach, called feature
unweaving, that enables automated extraction and explicit
modularization of a set of selected variable elements in
a requirements model based on aspect-oriented modeling.
The technical concepts were explained and an algorithmic
implementation was introduced. Two real-world case studies
were performed. The first case study has shown significant
improvements in efficiency of product line specification,
product variant definition, release planning, and consistency
maintenance. The second one has provided evidence of a
significant reduction of the complexity and necessary size
of the graphical product line requirements specification.

Future conceptual research will address the graphical
layout of model fragments when aspects are extracted or
woven and a full formalization of the feature unweaving
semantics. Future empirical work will focus on validating the
approach in real organizational contexts where product line
architects and domain experts collaborate with stakeholders.

ACKNOWLEDGMENT

The authors would like to thank Dr. Samuel Fricker for his
enabling and active support that has made the case studies
presented in this paper possible.

REFERENCES

[1] R. Bonificio and P. Borba, “Modeling scenario variability as crosscut-
ting mechanisms,” in Proceedings of AOSD ’09. ACM, 2009.

[2] K. Czarnecki and M. Antkiewicz, “Mapping features to models:
A template approach based on superimposed variants,” in Proc. of
GPCE’05. Springer, 2005.

[3] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with
ADORA,” Inf. Syst., vol. 27, no. 6, pp. 425444, Elsevier, 2002.

[4] M. Jehle, “Feature unweaving: Semi-automated aspect extraction in
product line requirements engineering,” Master’s thesis, University of
Zurich, 2010.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Tech.
Rep., CMU/SEI-90-TR-021, November 1990.

[6] J. Klein, J. Kienzle, B. Morin, and J.-M. Jézéquel, “Aspect model
unweaving,” Proc. of MoDELS’09. Springer, 2009.

[71 C. W. Krueger, “Easing the transition to software mass customization,”
in Proc. of PFE ’01. Springer, 2002.

[8] S. Meier, Aspect-Oriented Requirements Modeling. Ph.D. dissertation.
University of Zurich, 2009.

[9] D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. Dorr, and
K. Schmid, “GoPhone - a software product line in the mobile phone
domain,” Fraunhofer IESE, Tech. Rep. No. 025.04/E, March 2004.

[10] K. Pohl, G. Bockle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[11] K. Schmid and I. John, “A customizable approach to full lifecycle
variability management,” Sci. Comput. Program., vol. 53, no. 3, pp.
259-284, Elsevier, 2004.

[12] R. Stoiber, S. Meier, and M. Glinz, “Visualizing product line domain
variability by aspect-oriented modeling,” Proc. of REV’07 Workshop
at RE’07. IEEE CS, 2007.

[13] R. Stoiber, T. Reinhard, M. Glinz. “Visualization support for software
product line modeling,” Proc. of VISPLE 08 Workshop at SPLC’08.
Lero, Univ. of Limerick, 2008.

[14] R. Stoiber and M. Glinz, “Modeling and managing tacit product
line requirements knowledge.” Proc. of MaRK’09 Workshop at RE’09.
IEEE CS, 2009.

[15] R. Stoiber and M. Glinz, “Supporting stepwise, incremental product
derivation in product line requirements engineering,” Proc. of Va-
MoS’10, ICB-Research Report 37, SSE, Univ. Duisburg-Essen, 2010.

[16] R. Stoiber, S. Fricker, M. Jehle, and M. Glinz, “Feature unweaving:
Refactoring software requirements specifications into software product
lines.” Proc of RE’10 (posters track). IEEE CS, 2010.

[17] B. Wang, W. Zhang, H. Zhao, Z. Jin, H. Mei, “A use case based
approach to feature models’ construction,” in Proc. of RE’09. IEEE
CS, 2009.

[18] I v. d. Weerd, S. Brinkkemper, et al., “On the creation of a reference
framework for software product management: Validation and tool
support,” Proc. of INSPM’06 Workshop at RE’06. IEEE CS, 2006.

[19] N. Weston, R. Chitchyan, and A. Rashid, “A framework for construct-
ing semantically composable feature models from natural language
requirements,” in Proc. of SPLC’09. ACM, 2009.

[20] U. Zoller, “A comparison of three different concepts for requirements
modeling of software product lines — A case study-based investigation
[in German],” Bachelor’s Thesis, University of Zurich, 2010.

[21] S. Zschaler, P. Sanchez, J. Santos, M. Alférez, A. Rashid, L. Fuentes,
A. Moreira, J. Aratjo, and U. Kulesza, “VML* - a family of languages
for variability management in software product lines,” in Proc. of
SLE’09. Springer, 2009.

