
feature

72	 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

We’re using a negotiation process, called hand-
shaking with implementation proposals,1 to com-
municate requirements effectively—even in situa-
tions where almost no written requirements exist
and where distance separates the customer from
developers. Handshaking is an efficient technique
that uses architectural options2 as a way to un-
derstand requirements, to make implementation
decisions that create value, and to establish the
foundation for a stable project. The handshaking
process supports the communication between a
company’s product management and its develop-
ment organization, with the former acting as a
customer of the latter.3

We describe the communication challenges,
solutions, and lessons learned in developing the
handshaking process and the results of applying
it at 10 European and Asian project development
sites of Asea Brown Boveri (ABB) and Danaher
Motion Särö (DHR). The “Industry Partners”
sidebar characterizes these organizations.

Background
On many occasions we found product managers
who felt unable to convey the desired meaning of
their requirements and architects confronted with
requirements that were too fragmentary for sound
solution design. This resulted in requirements cy-
cle times that senior management considered un-
acceptable. In this difficult situation, some prod-
uct managers understandably began architecting
the solution themselves, turning to increased con-
trol in an attempt to ensure rapid development of
an acceptable product.

Development teams responded, sometimes
fiercely, to this micromanagement and loss of
autonomy. Architects stopped accepting require-
ments from product managers at great personal
risk of being laid off. In their eyes, it wasn’t prod-
uct management’s job to design the product. Fur-
thermore, such design decisions risked breaking
the product or weren’t realizable within a mean-
ingful timeframe.

R equirements engineering focuses on good specification practices but has yet to
find working solutions for effective requirements communication. Inadequate
communication and tacit assent to a demanding customer’s requests make it
hard to fully understand a project’s requirements.

A bidirectional
process for
agreeing on product
requirements
proves effective
in overcoming
misunderstandings
that arise in the
traditional handoff
of requirements
specifications to
development teams.

Samuel Fricker, University of Zurich and Fuchs-Informatik AG

Tony Gorschek, Blekinge Institute of Technology

Carl Byman, ABB

Armin Schmidle, ABB Switzerland

Handshaking with
Implementation Proposals:
Negotiating Requirements
Understanding

r e qu ir em en t s eng ine er ing

	 March/April 2010 I E E E S O F T W A R E � 73

Handshaking with implementation propos-
als was developed as an answer to requirements
communication problems. To be useful for indus-
try product development, the communication ap-
proach had to be practical and effective for both
small-scale collocated and large-scale distributed
development.

Good-Enough Requirements
According to a widely held belief, a development
project’s success is highly dependent on its re-
quirement specification’s quality. Standards en-
courage requirement specifications to be correct,
unambiguous, complete, consistent, ranked, veri-
fiable, modifiable, and traceable. We support the
view that documentation should be “as good as
possible,” but only to the extent that quality isn’t
penalizing the engineering processes.

Requirements specifications should be good
enough and adapted to the situation at hand.
Inadequately specified requirements lead to am-
biguity and misunderstandings that cause large
corrective costs down the development road.
However, too much detail and quality improve-
ment retards the delivery of development results
while also increasing specification costs and un-
necessarily constraining the solution space.

But what are good-enough requirements? An-
swers from experienced developers and product
managers helped us identify some criteria.4 The
developers expected the requirements they re-
ceived to be valid and traceable back to real cus-
tomer needs and company strategy, to be selected
for implementation on a priority basis, and to
be consistent and stable for the targeted market
release.

Experienced product managers adapted speci-
fications to their receivers—namely, the develop-
ment teams. They chose to collaborate directly
with the team and stakeholders to elaborate new-
to-the-world product features before they speci-
fied the identified requirements. They specified in
detail features known to stakeholders but new to
the team and provided access to domain experts
who could support the team in properly interpret-
ing these requirements. However, they also as-
sumed that requirements considered standard for
a given product were obvious, and they specified
them only coarsely, if at all. They expected the
development team to refine the resulting incom-
plete specification.

Even though these criteria were useful in es-
tablishing some aspects of good-enough require-
ments, we came to consider requirements quality
as a moving target.

Handshaking
with Implementation Proposals
We addressed the moving target of good-enough
requirements by replacing requirements handoff
with a bidirectional communication process. In
this process, product management takes the cus-
tomer role and uses requirements to control the
development results. The development team takes
the supplier role, proposing designs and their im-
pacts to communicate their intentions. Require-
ments are “good enough” if the customer accepts
the planned solution.

To increase communication efficiency, the
customer tailors the requirements specification
to a specific supplier by investing the most effort
in defining novel requirements and by specify-
ing deltas toward already-known requirements.
If the supplier lacks important expertise, the cus-
tomer assists in finding and building competence
in this area. Focusing on the supplier’s needs re-
quires knowledge of the supplier’s expertise, but
it also concentrates the specification effort where
it’s most needed and mitigates misunderstandings.

To ensure solution acceptance, the supplier
generates rapid feedback by proposing the de-
sign for those product themes that are critical for
stakeholder satisfaction or hard to correct when
committed to. A theme might relate to a product
feature, an important part or subsystem of the so-
lution, or a development increment. Its source is
often a product roadmap or an architectural con-
cern, and it is defined just broadly enough to ex-
plore design alternatives and their impacts on re-
quirements and project planning.

The customer reviews the proposals and se-
lectively adjusts requirements or suggests product
design changes when catching wrong assumptions
and misunderstandings. In communicating these
changes to the supplier, the customer includes do-
main knowledge and business rationales that mo-
tivate them. This rapid feedback builds on lessons

Asea Brown Boveri (ABB) is a leader in power and automation techno­
logies that enable utility and industry customers to improve their perfor­
mance while lowering their environmental impact. The ABB group of com­
panies operates in about 100 countries and employs more than 110,000
people.

Danaher Motion Särö (DHR) develops software and hardware equip­
ment for navigation, control, fleet management, and service of automated
guided vehicle (AGV) systems. More than 50 AGV system suppliers world­
wide use DHR technologies and expertise in their own products. The head­
quarters and R&D center are located in Särö, Sweden, with 85 employees.

Industry Partners

74	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

from prototyping and iterative development.5,6 It
lets suppliers express their intentions as early as
possible, with minimal but sufficient formality
and with the customer in mind.

Handshaking assists such requirements com-
munication with a template, the implementation
proposal, for documenting the supplier’s design
proposals. It also provides a straightforward nego-
tiation process for agreeing on the proposals. The
negotiations engage the customer and supplier in
a learning process for understanding what consti-
tutes good-enough requirements. Observing how
requirements are interpreted and matched with
product design lets the customer gauge the suppli-
er’s expertise and resources. This knowledge en-
ables further tailoring of the requirements speci-
fication. The more the communication partners
handshake, the better they become at anticipating
problems of understanding and acting in an in-
creasingly proactive manner.

Implementation Proposals
Implementation proposals support communication
by providing a form for recording architecture de-
cisions7 and design rationales.8 They document re-
quirements understanding by providing traceabil-
ity between customer requirements and supplier
design decisions for a given theme. Figure 1 shows
an example implementation proposal extracted
from a seven-page document.

A basic implementation proposal contains three
attributes that relate the design to the requirements
for a given theme. Several attributes can extend this
basic template to support effective requirements ne-
gotiation and project planning. Table 1 summarizes
these attributes.

The basic attributes are mandatory for effective
handshaking. They establish traceability between
customer interests and supplier intentions for a

given theme. Negotiation attributes enrich the ar-
gumentation for understanding requirements cor-
rectly by documenting investigated alternatives, by
revealing assumptions and expected impact of the
planned product, and by capturing any remaining
open issues that need agreement. Planning attri-
butes support project planning by defining how the
solution will be realized and its costs.

Companies can tailor the template to support
company-specific processes, adding attributes such
as identifiers, executive summaries, and revision
histories.

In contrast to goal and system modeling ap-
proaches, implementation proposals don’t enforce
any specification formalism. Instead, the proposal
author specifies the design on a case-by-case basis
in the way believed to be most efficient. Meaning
arises from connecting the design to the require-
ments it intends to fulfill.

Practitioners use the same template for sketch-
ing a proposal on a whiteboard, presenting slides,
and defining the sections of an implementation-
proposal document. They start by specifying the
basic attributes to be flexible and fast in early nego-
tiation phases, extend the specification when neces-
sary, and comprehensively document the agreement
reached.

Handshaking negotiations are effective when
the supplier has expertise in the implementation
proposal’s theme. This expertise is also needed for
subsequent project work and can come from the
supplier’s own employees, consultation with do-
main experts, and prototyping.

Handshaking Process
Handshaking leads the customer and supplier
through requirements communication in three
phases: taking a position, negotiating, and confirm-
ing agreement.9 Figure 2 illustrates this process.

Log data

Supervision device

Log data

Field device with
event logger

Log data

Field device with
event logger

Title: Event Logging
Requirements: RID-110 Log user activities,
 RID-130 Event subscription,
 RID-190 ▀, RID-200 ▀, RID-230 ▀,
Assumptions: Compliance to regulation ▀ needed.
Design: System structure (per drawing to the right).
 Event logger interface: Function_EL1 ▀, Function_EL2 ▀.
 Host application support functions: Function_HA1 ▀, Function_HA2 ▀.
 Event logger behavior: ▀
Impact: Minimum ▀ Kbytes memory in �eld device.
 Minimum ▀ Mbytes memory in supervision device.
 Well-de�ned interfaces ease source-code integration into existing devices.
Dismissed alternatives: None investigated.
Open issues: Evaluate impact on third-party devices.
 Workshops for de�ning integration strategy and effort estimation.
Scope: All devices from current portfolio.

Figure 1. Industry
example of an
implementation
proposal. The brown
boxes represent
proprietary data from
a real implementation
proposal.

	 March/April 2010 I E E E S O F T W A R E � 75

During positioning, both the customer and the
supplier share their expectations and intentions
in the form of requirements and implementation
proposals. The customer and supplier negotiate as
many implementation proposals for a given require-
ments specification as they need to achieve a shared
understanding of the requirements. Typically, the
product manager specifies requirements before
the development team starts creating implementa-
tion proposals. However, we also observed devel-
opment teams that proactively approached prod-
uct management with implementation proposals.
In either case, the information exchange lets the
two parties recognize where they understand each
other and where conflicts exist.

During negotiation, both parties seek to re-
solve conflicts. The customer corrects unaccept-
able proposals by adjusting misinterpreted and
unfeasible requirements and by adding missing
requirements. The supplier proposes alternative
solutions to correct wrong assumptions, unaccept-
able impacts, and excessive costs. All the negotia-
tions we observed ended with an agreement. Con-
ceivably, however, a decision not to collaborate
with each other could result.

To confirm agreement, the two parties update
the requirements and implementation proposals
according to their agreement. Senior management
should review the agreed implementation propos-
als to verify the successful conclusion of hand-

shaking and to launch the ensuing collaboration
phases.

Practitioners launch handshaking to elabo-
rate and agree on requirements after the cus-
tomer has defined a development project’s vision.
Concluded handshaking results support ensuing
scope negotiations and project planning, where

The customer communicates tailored
requirements to the supplier.

Needs,
objectives,

ideas

Solution

1a

1a

The supplier shares intended design
by communicating implementation
proposals for selected themes to the
customer.

1b

The customer and supplier negotiate
the implementation proposals until
they �nd an acceptable match
between requirements and design.

2

The customer and supplier update
requirements and implementation
proposals to document the reached
agreement.

3

1b

Requirements

Design

3

2Ful�ll

Customer

Supplier

Im
pl

em
en

ta
tio

n
pr

op
os

al

Figure 2. Handshaking process. An implementation proposal describes
how a solution design fulfills requirements for a given theme. The
more of the known requirements that go through the handshaking
process, the more likely the customer will accept the solution.

Table 1
Implementation proposal template description

Attribute group Attribute Description

Basic
attributes

Title The theme addressed by the implementation proposal—a product feature, an important solution
part or subsystem, or a development increment.

Requirements The requirements addressed by the implementation proposal. What does the proposed design
imply for the customer?

Design The design proposed to address the requirements. What parts and functionality of the solution
must be created or modified? What structure, style, and rules will be followed? What technologies
will be used? What are the interfaces?

Negotiation
support

Assumptions Interpretation of the requirements in terms of preconditions that make the design meaningful.

Impact Impact of the design for the customer, supplier, and other stakeholders in terms of advantages,
limitations, and risks.

Dismissed
alternatives

Alternative designs to address the requirements. How was each design investigated, and why
was each alternative dismissed?

Open issues Actions required by the customer to progress with the negotiations—for example, confirm the pro-
posal or provide more information.

Planning
support

Scope Parts of the solution that the design affects.

Necessary activities Activities needed to realize the design—the inputs for effort estimation and project planning.

Effort estimate Estimated effort to realize the design with arguments for why the supplier believes the estimate
is correct.

76	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

the supplier combines the implementation pro-
posals into a specification that defines the overall
development effort’s scope.

Implementation proposals help reach an agreed
understanding of requirements but don’t necessarily
reduce feasibility and completeness risks, which are
better addressed by techniques such as prototyping
and system analysis.

Surprises during the execution of a development
project might necessitate renegotiating implementa-
tion proposals, which is a normal part of the proj-
ect’s change-management process.

Handshaking Negotiations:
Industry Example
A collaborating customer and supplier share the
common goal of developing a high-quality prod-
uct. However, they differ in their specific product
interests, responsibilities, and competencies. This
raises the risk of fundamentally misunderstanding
each other.10

We observed many such misunderstandings be-
tween product managers and development teams.
In one typical case, a development team received
a requirement to support Cyrillic characters in a
project. The product manager introduced the re-
quirement in response to the company’s interest in
the Asian market.

The product manager and development team
discussed the intended design and its purpose to
help bridge the mental worlds between them. The
team expressed implementation proposals in an
“if-then” language pattern: “If we partially im-
plement the planned GUI configurator (proposed
design), we can support the Cyrillic characters
(requirement).” In Figure 3, State 1 illustrates the
team’s proposal.

The development team gave their proposal to
the product manager. He felt that the proposed

design had a negative effect on a so-far-unstated
requirement—specifically, that “reliable products”
had to support the company’s “high-quality” im-
age (Figure 3, State 2). This comment encouraged
the team to defer the GUI configurator implemen-
tation and to propose the alternative of using uni-
code text fonts. The product manager accepted
this proposal (Figure 3, State 3).

Development teams expressed implementation
proposals without sticking to a specific graphical
formalism. Instead, they followed the proposal
structure we’ve outlined by employing text and ad
hoc drawings. Product managers added, removed,
and modified requirements while reacting to the
implementation proposals. In one case, a prod-
uct manager adjusted two thirds of the initial re-
quirements during a first handshaking negotiation
round.

We analyzed the evolving negotiations for
coaching purposes with goal trees, as shown in
Figure 3. We borrowed several argumentation
patterns from the goal-oriented requirements-
engineering field,11 which enhanced the hand-
shaking negotiations. In addition to using the basic
goal-contribution pattern (Figure 3, State 1), the
practitioners combined design decisions, elabo-
rated side effects of a design (Figure 3, State 2), and
considered alternative designs (Figure 3, State 3).

Lessons Learned
Using handshaking with implementation propos-
als to replace requirements handoffs led to recog-
nized improvements at ABB and DHR. The les-
sons learned revealed the strengths and limits of
handshaking that companies should consider when
adopting and further developing the practice.

The first and second authors introduced hand-
shaking to the organizations. They collected the les-
sons learned from 10 development projects by inter-

Requirements
with motivations

(produced by
product

management)

Implementation
proposals

(produced by
development team)

Address
Asian markets

Support Cyrillic
characters

Partially implement
GUI con�gurator

Address
Asian markets

Support Cyrillic
characters

Use unicode
text fonts

Address
Asian markets

Support Cyrillic
characters

High-quality
image

Reliable products

Partially implement
GUI con�gurator

InternationalizationTheme Internationalization

High-quality
image

Reliable products

Partially implement
GUI con�gurator

Internationalization

State 1 State 2 State 3

Figure 3. Implementation proposal evolution. Requirements and design changes resemble a goal-contribution tree that
evolves as a result of handshaking negotiations. The dotted lines highlight the changes between two states.

	 March/April 2010 I E E E S O F T W A R E � 77

viewing product managers and architects after they
had applied the handshaking process. The third
and fourth authors worked independently as lead-
ing architects in three of these projects.

All the development projects targeted new fea-
tures for existing software products or product
lines of software-intensive systems. The projects
lasted from three months to two years with staffs
ranging from four to more than 50 engineers. Seven
projects were collocated, and three were distributed
over three development sites in Europe and Asia.

The projects identified from two to 22 themes
(average 10, median 9) for implementation propos-
als to address. The practitioners used their expertise
in the product domain, rather than formal criteria,
to define which themes and requirements merited
the negotiation process.

An implementation proposal addressed up to 51
requirements (average 8, median 4). One proposal
addressed no requirements but instead justified the
proposed design with assumptions about stake-
holder needs. Full implementation proposal specifi-
cations ranged from seven to 28 pages long (average
16, median 15).

Handshaking for one implementation proposal
required efforts ranging from three to 50 person-
days and lasting from one week to five calendar
months. An important effort driver was the theme
size in terms of affected system components.

Strengths
Handshaking improved requirements. Develop-
ment teams identified missing requirements, hid-
den expectations, and tacit domain knowledge by
proposing their development intentions. The pro-
posed design, explicit assumptions, expected de-
sign impact, and suggested alternatives facilitated
rich discussions for reaching good agreements.
Practitioners judged that the improved require-
ments decreased defect-related costs by about 40
percent.

Handshaking allowed detailed requirements
engineering to be delegated to the development
teams. The teams elicited requirements from prod-
uct users and domain experts. The teams needed
this knowledge to create implementation propos-
als, and it helped them increase product usability
and identify new features for future product im-
provements. Product managers could reduce their
workload and focus on steering development proj-
ects, while giving the development teams more
freedom.

Handshaking improved identification, analy-
sis, and selection of variants. Implementation
proposals supported grouping requirements into

development themes of adequate granularity for
identifying implementation alternatives. Develop-
ment teams determined the product functionality
needed to support the requirements, the changes
required in the current product, and the effort
needed for realizing the proposals. When the de-
velopment teams submitted completed implemen-
tation proposals to their product managers, they
could state clearly what they intended to do and
ask, “Is it what you want? This is what we intend
to do.” This clarity created pressure to properly
evaluate and select implementation alternatives.

Handshaking promoted win-win negotiations.
The teams usually had strong opinions about the
best product functionality to choose. Still, they ex-
pected product management to critically review
their proposals. The understanding of possibilities
and limitations enabled product managers to iden-
tify issues that stakeholders needed to agree on. It
also let them correct development decisions that
were inconsistent with market and stakeholder
needs. This critical examination of implementa-
tion proposals, rather than simply proceeding
with implementation, helped enhance the realized
software’s value and increase the stakeholders’
satisfaction.

Handshaking helped development organiza-
tions achieve deep requirements understanding
and prepare for projects. The more the implemen-
tation proposals were elaborated, the more they
became a part of the organization’s vocabulary
and a focal point for coordinating planned work
results. The implementation proposals docu-
mented how key parts of the solution had to be
implemented, integrated, and verified, hence re-
ducing the remaining design effort and risks in
subsequent project phases.

Handshaking increased the amount and qual-
ity of decision-making information. The product
manager received more and better information that
helped steer the development projects and express
requirements more concisely. Improved informa-
tion also helped the teams increase planning preci-
sion and, hence, better adhere to promises. Over
time, this reduced the need for change manage-
ment during implementation. It also increased trust
and accelerated requirements communication.

Finally, handshaking encouraged development
organizations to reduce their projects’ duration.
The longer a development project lasted, the more
difficult and risky it was to agree and commit to
a proposed implementation. With shorter develop-
ment cycles, the practitioners could postpone is-
sues to the moment when insights had been gained
from development and from product use.

Practitioners
judged that

the improved
requirements

decreased
defect-related
costs by about

40 percent.

78	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

Limitations
Product managers didn’t always receive what they
wanted. Development teams refused, in some
cases, to create implementation proposals, argu-
ing that they didn’t believe the requirements were
valid. Hence, a product manager who uses the
handshaking process must depend on the devel-
opment team’s good will. We consider this limita-
tion a kind of quality control. Product managers
should be able to justify their requirements—for
example, by demonstrating their importance for
achieving company objectives or satisfying cus-
tomer needs.

In another case, a development team was un-
able to create an acceptable implementation pro-
posal. The proposed solution, which the team had
already partially implemented, contained circular
dependencies and exhibited performance and scal-
ability problems. The company reacted by sup-
porting the team with an experienced software
architect. A development team must have expe-
rience in the kind of problems and solutions it’s
proposing.

Requirements that were good enough for the
supplier weren’t necessarily understandable to
practitioners who didn’t participate in the hand-
shaking negotiations. Development teams re-
peatedly accepted badly specified requirements
for which they successfully proposed acceptable
solutions. Outsiders, even domain experts, had
difficulty grasping the meaning of these require-
ments and reusing them in other projects. Hence,
handshaking leads to good agreements and re-
quirements understanding but can’t be used to im-
prove specification quality and to achieve general-
purpose requirements understandability.

One development team was confronted with
requirements from two product managers, rather
than just one. The team had difficulty receiving fi-
nal acceptance of their implementation proposals
because the product managers belonged to differ-
ent organizations and had conflicting views and
no overall authority. In such a constellation, an ad-
ditional mechanism is needed to resolve customer
conflicts.

The teams used lists of themes and require-
ments, and not implementation proposals, to doc-
ument the scope of their development projects.
The one-theme focus of implementation proposals
didn’t directly support scope negotiations. How-
ever, the requirements understanding achieved
with handshaking made it easier to commit to a
scope because product management and the devel-
opment organization had studied and agreed on
development strategy and effort.

Impact on Distributed Development
The three distributed development projects re-
quired more elaborate requirements communica-
tion than smaller-scale collocated projects. The
architect extended the basic handshaking pro-
cess in steps that integrated subteams into the
negotiations:

	 1.	The architect identified and selected key alter-
natives. The architect’s holistic understanding
of available assets and expertise increased the
development organization’s efficiency in creat-
ing a meaningful proposal.

	 2.	The architect negotiated with selected sub-
team leaders. These engineers proposed the
necessary changes in the subsystems for which
they were responsible and estimated the effort
for realizing these changes. The architect fa-
cilitated decision making and ensured the de-
sign’s consistency across subteams.

	 3.	The architect handshaked with product man-
agement, which reviewed the implementation
proposal for its impact. Issues that affected
stakeholders negatively were returned to the
architect, who elaborated further alternatives.

	 4.	Senior management authorized agreements,
checking that the right people were involved in
the negotiations and that the agreement suited
the organization. Their approval empowered
the development organization to start using
the agreed implementation proposal.

The architect performed steps 1 to 3 iteratively.
Changes on the development side affected prod-
uct management and vice versa. He executed the
first iteration informally to see how the involved
parties reacted on the first proposal. The sec-
ond iteration required sufficient effort in writing
and reviewing the implementation proposal to
reduce correctness, feasibility, and consistency
risks to acceptable levels. Step 4 preceded project
planning.

The adjusted handshaking process enabled the
organization to coordinate development across
sites. The implementation proposals provided
holistic views of given design topics for assign-
ing responsibilities and defining interfaces. Engi-
neers expressed their ideas and potential design
effects for other subteams and for stakeholders.
This helped reveal design errors that would oth-
erwise have shown up only during integration or
verification.

Impact on Project Planning
Handshaking with implementation proposals im-

Development
teams

repeatedly
accepted badly

specified
requirements
for which they
successfully

proposed
accepted
solutions.

	 March/April 2010 I E E E S O F T W A R E � 79

proved project planning accuracy. Five projects
with comparable staffing collected standardized
measurements in a history database. This let us
correlate handshaking practices with adherence to
delivery dates.

Four projects covered 67 percent or more of
their scope with implementation proposals and
missed their deadlines by no more than 12 percent.
One project covered only 13 percent of its scope
and missed its deadline by 57 percent. The analy-
sis of variance (ANOVA) indicated a correlation
coefficient of 0.95 between handshaking coverage
and deadline adherence. The linear regression’s
standard error was 0.083. These figures suggest
that development project predictability correlates
with the percentage of known requirements cov-
ered by accepted implementation proposals.

Architects confirmed this correlation. They
estimated that handshaking decreased planning
errors by 50 to 70 percent compared with post-
planning reviews of design specifications. Hand-
shaking helped stabilize release projects. Devel-
opment teams stopped a never-ending stream of
change requests from project management and
other stakeholders by proactively formulating
their intentions in an implementation proposal
and sharing it with stakeholders. This explicit po-
sition became an effective tool for initiating dis-
cussions, forcing decisions about project direction,
and aligning the team’s work with other teams’
development.

Handshaking also improved estimation accu-
racy: The developers that wrote an implementa-
tion proposal estimated its realization effort. The
development team’s first-hand knowledge of nec-
essary activities, local engineering practices, and
individual development performance improved
project planning and effort estimation.

Finally, handshaking enhanced negotiations of
project scope. The development teams used imple-
mentation proposals as building blocks for plan-
ning development projects. The analysis behind
the proposals gave credibility to a team’s argument
for what they could deliver within a given time.
Hence, the teams could strengthen their position
in the negotiations and set realistic expectations.
This helped balance project scope with staffing
and deadlines and thus avoid project delays and
disappointments.

Evolution of Handshaking Practice
As with most new technologies, the handshak-
ing process faced an initiation and learning
threshold. Initiation involved training and defin-
ing tools such as implementation-proposal tem-

plates. Learning meant that at first development
teams created more implementation proposals
than were actually necessary and in too much
detail for handshaking.

Handshaking in the second and third con-
secutive projects was more like calibration. The
teams found appropriate detail levels for the im-
plementation proposals, streamlined the overall
process, and created a common vocabulary for
the practices and tools. Many benefits reported
in this article were already apparent in the first
project, but they became obvious and confirmed
in iterations two and three.

The coverage and quality of implementa-
tion proposals decreased in the fourth iteration.
This decrease became obvious in iteration five.
The teams created too few of the necessary and
planned proposals and specified them only frag-
mentarily. Product management reviewed the
proposals less diligently. As a result, many prob-
lems returned that handshaking had alleviated—
for example, missed deadlines and increased de-
fects and misunderstandings. At iteration six, the
development organization launched measures to
correct this negative trend.

The project teams attributed the devolvement
to an increase in confidence. Over time, engi-
neers and managers had become habituated to
accurate estimates and to few misunderstand-
ings and defects. They began cramming more
features into a project. The resulting increases
in resource demands left insufficient time spent
on handshaking. Requirements communication
began reverting to the same form as before: one-
way delivery.

W e encourage practitioners to test
handshaking with implementation
proposals for requirements commu-

nication.12 Start writing and negotiating imple-
mentation proposals for customer requirements
that are vague or volatile or that are critical for
mutual understanding. Implementation proposals
can be quick and dirty initially and refined after
reaching a first agreement. They helped ABB and
DHR use domain knowledge and experience to
agree on requirements understanding efficiently
and became an important input for robust project
planning.

To seize the full benefits and ensure consis-
tent use of handshaking in your organization, the
technique must be properly institutionalized and
managed. This requires initial effort, but the re-
turns become rapidly evident.

80	 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

References
 1. S. Fricker, T. Gorschek, and P. Myllyperkiö, “Hand-

shaking between Software Projects and Stakeholders
Using Implementation Proposals,” Proc. 13th Int’l
Working Conf. Requirements Eng.: Foundation for
Software Quality (REFSQ 07), Springer, 2007, pp
144–159.

 2. R. Kazman et al., “The Architecture Trade-off Analysis
Method,” Proc. 4th IEEE Int’l Conf. Eng. of Complex
Computer Systems (CCC 98), IEEE CS Press, 1998, pp.
68–78.

 3. A. Griffi n and J. Hauser, “Integrating R&D and
Marketing: A Review and Analysis of the Literature,” J.
Product Innovation Management, vol. 13, no. 3, 1996,
pp. 191–215.

 4. S. Fricker, T. Gorschek, and M. Glinz, “Goal-Oriented
Requirements Communication in New Product Devel-
opment,” Proc. Int’l Workshop on Software Product
Management, IEEE CS Press, 2008, pp. 27–34.

 5. S. Gordon and J. Bieman, “Rapid Prototyping: Lessons
Learned,” IEEE Software, vol. 12, no. 1, 1995, pp.
85–95.

 6. C. Larman and V. Basili, “Iterative and Incremental
Development: A Brief History,” Computer, vol. 36, no.
6, 2003, pp. 47–56.

 7. J. Tyree and A. Akerman, “Architecture Decisions:
Demystifying Architecture,” IEEE Software, vol. 22,
no. 2, 2005, pp. 19–26.

 8. A. Dutoit et al., Rationale Management in Software
Engineering, Springer, 2006.

 9. S. Fricker and P. Grünbacher, “Negotiation Constella-
tions—Method Selection Framework for Requirements
Negotiation,” Proc. 13th Int’l Working Conf. Require-
ments Engineering: Foundation for Software Quality,
Springer, 2008, pp. 37–51.

 10. L. Bucciarelli, “Between Thought and Object in Engi-
neering Design,” Design Studies, vol. 23, no. 3, 2002,
pp. 219–231.

 11. A. van Lamsweerde, “Goal-Oriented Requirements En-
gineering: A Guided Tour,” Proc. 5th IEEE Int’l Symp.
Requirements Eng. (RE 01), IEEE CS Press, 2001, pp.
249–261.

 12. S. Fricker, Pragmatic Requirements Communication:
The Handshaking Approach, Shaker Verlag, 2009;
www.ifi .uzh.ch/rerg/research/handshaking.

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

About the Authors
Samuel Fricker is a postdoctoral researcher at the University of Zurich and a senior
consultant at Fuchs-Informatik AG, a Switzerland-based leader in requirements engineering.
His work includes standardization activities in software product management and research
on stakeholder collaboration. Fricker has a doctorate in informatics from the University of
Zurich. He’s a member of the IEEE and a supporting member of the International Require-
ments Engineering Board. Contact him at fricker@ifi .uzh.ch.

Tony Gorschek is an associate professor of software engineering at Blekinge
Institute of Technology (BTH). He also manages his own industry consultancy company. His
research interests include requirements engineering, technology and product management,
process assessment and improvement, quality assurance, and innovation. Gorschek has a
PhD in software engineering from BTH. He’s a member of the IEEE and the ACM. Contact
him at tony.gorschek@bth.se or visit www.gorschek.com.

Carl Byman is a system architect at ABB. His interests include product development
processes, process improvement, and technology in different areas. Byman received an
MSc in engineering physics from Uppsala Tekniska Högskola. Contact him at carl.byman@
se.abb.com.

Armin Schmidle is a senior project manager in substation automation system
engineering tools at ABB Switzerland. His interests include project management, software
engineering, and requirements management. Schmidle received an electrical engineering
degree from the University of Applied Sciences, Furtwangen, Germany. Contact him at
armin.schmidle@ch.abb.com.

	fricker
	Handshaking with Implementation Proposals:Negotiating Requirements Understanding

	s2fri

